Skip to main content

Computational Intelligence in Agent-Based Computational Economics

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 115))

Agent-based computational economics is the study of economics using agent-based modeling and simulation, which, according to [21], is the third way, in addition to deduction and induction, to undertake social sciences. An agentbased model is a model comprising autonomous agents placed in an interactive environment (society) or social network. Simulating this model via computers is probably the most practical way to visualize economic dynamics.

In order to build autonomous agents, agent-based computational economists need to employ existing algorithms or develop new algorithms which can enable agents to behave with a degree of autonomy. Sections 1.2, 2 and 3 of the chapter will give a thorough review of the algorithmic foundations of ACE. We also introduce here the field known as computational intelligence(CI) and its relevance to economics. Section 4 then reviews the use of computational intelligence in agent-based economic and financial models. Section 5 gives some general remarks on these applications, as well as pointing to future directions. This is followed by concluding remarks in Sect. 6.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adcock A, Thangavel1 A, Whitfield-Gabrieli S, Knutson B, Gabrieli J (2006) Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3): 507-517.

    Google Scholar 

  2. Aha D (1997) Lazy Learning. Kluwer, Boston, MA.

    MATH  Google Scholar 

  3. Aha D, Kibler D, Marc K (1991) Instance-based learning algorithms. Machine Learning, 6(1): 37-66.

    Google Scholar 

  4. Alfarano S, Lux T, Wagner F (2005) Estimation of agent-based models: the case of an asymmetric herding model. Computational Economics, 26(1): 19-49.

    MATH  Google Scholar 

  5. Alfarano S, Lux T, Wagner F (2007) Empirical validation of stochastic mod-els of interacting agents: a ‘maximally skewed’ noise trader model. European Physics J. B, 55: 183-187.

    MathSciNet  Google Scholar 

  6. Allen F, Karjalainen R (1999) Using genetic algorithms to find technical trading rules. J. Financial Economics, 51(2): 245-71.

    Google Scholar 

  7. Alvarez-Diaz M, Alvarez A (2005) Genetic multi-model composite forecast for nonlinear prediction of exchange rates. Empirical Economics, 30: 643-663.

    Google Scholar 

  8. Amemiya T (1975), Qualitative response models. Annals Economics and Social Management, 4: 363-372.

    Google Scholar 

  9. Andrew M, Prager R (1994) Genetic programming for the acquisition of double auction market strategies. In: Kinnear K Jr. (ed.), Advances in Genetic Programming. MIT Press, Cambridge, MA: 355-368.

    Google Scholar 

  10. Arifovic J(1994) Genetic algorithms learning and the cobweb model. J. Economic Dynamics and Control, 18(1): 3-28.

    MATH  Google Scholar 

  11. Arifovic J (1995) Genetic algorithms and inflationary economies. J. Monetary Economics, 36(1): 219-43.

    Google Scholar 

  12. Arifovic J (1996) The behavior of the exchange rate in the genetic algorithm and experimental economies. J. Political Economy, 104(3): 510-541.

    Google Scholar 

  13. Arifovic J (2001) Evolutionary dynamics of currency substitution. J. Economic Dynamics and Control, 25: 395-417.

    MATH  Google Scholar 

  14. Arifovic J (2002) Exchange rate volatility in the artificial foreign exchange mar-ket. In: Chen S-H (ed.) Evolutionary Computation in Economics and Finance. Physica-Verlag, Berlin: 125-136.

    Google Scholar 

  15. Arifovic J, Eaton B (1995) Coordination via genetic learning. Computational Economics, 8(3): 181-203.

    MATH  Google Scholar 

  16. Arifovic J, Gencay R (2000) Statistical properties of genetic learning in a model of exchange rate. J. Economic Dynamics and Control, 24: 981-1005.

    MATH  Google Scholar 

  17. Arifovic J, Bullard J, Duffy J (1997) The transition from stagnation to growth: an adaptive learning approach. J. Economic Growth, 2(2): 185-209.

    MATH  Google Scholar 

  18. Armano G, Murru A, Marchesi M (2002) NXCS - A hybrid approach to stock indexes forecasting. In: Chen, S-H (ed.) Genetic Algorithms and Genetic Programming in Computational Finance. Kluwer, Boston, MA.

    Google Scholar 

  19. Arthur B (1992) On learning and adaptation in the economy. SFI Economics Research Program, 92-07-038.

    Google Scholar 

  20. Arthur W, Holland J, LeBaron B, Palmer R, Tayler P (1997) Asset pricing under endogenous expectations in an artificial stock market. In: Arthur W, Durlauf S, Lane D (eds.) The Economy as an Evolving Complex System II. Addison-Wesley, Reading, MA: 15-44.

    Google Scholar 

  21. Axelrod R (1997) Advancing the art of simulation in the social sciences. In: Conte R, Hegselmann R, Terna P (eds.) Simulating Social Phenomena. Springer-Verlag, Berlin: 21-40.

    Google Scholar 

  22. Azariadis C, Guesnerie R (1986) Sunspots and cycle. Review Economic Studies LIII: 725-737.

    MathSciNet  Google Scholar 

  23. Azoff M (1994) Neural Network Time Series: Forecasting of Financial Markets. Wiley, New York, NY.

    Google Scholar 

  24. Baestaens D, Van Den Bergh W, Wood D (1994) Neural Network Solutions for Trading in Financial Markets. Pitman, London, UK.

    Google Scholar 

  25. Bauer R. Jr (1994) Genetic Algorithms and Investment Strategies. Wiley, New York, NY.

    Google Scholar 

  26. Bell R, Beare S (2002) Emulating trade in emissions permits: An application of genetic algorithms. In: Chen S-H (ed.) Evolutionary Computation in Economics and Finance. Physica-Verlag, Heidelberg, Germany: 161-175.

    Google Scholar 

  27. Birchenhall C, Lin J-S (2002) Learning and convergence to Pareto optimal-ity. In: Chen S-H. (ed.) Genetic Algorithms and Genetic Programming in Computational Finance. Kluwer, Boston, MA: 419-440.

    Google Scholar 

  28. Bonabeau E (2003) Econometrics of agent-based models. Proc. 2nd Lake Arrowhead Conf. Human Complex Systems (Keynote Speech), 19-22 March, Lake Arrowhead, CA.

    Google Scholar 

  29. Bower J, Bunn D (2001) Experimental analysis of the efficiency of uniform-price versus discriminatory auctions in the England and Wales electricity market. J. Economic Dynamics and Control, 25: 561-592.

    MATH  Google Scholar 

  30. Boyle S, Guerin S, Kunkle D (2005) An application of multi-agent simulation to policy appraisal in the criminal justice system. In: Chen S-H, Jain LC, Tai C-C (eds.) Computational Economics: A Perspective from Computational Intelligence. Idea Group, Hershey, PA: 228-234.

    Google Scholar 

  31. Bullard J, Duffy J (1998) A model of learning and emulation with artificial adaptive agents. J. Economic Dynamics and Control, 22: 179-207.

    MathSciNet  Google Scholar 

  32. Bullard J, Duffy J (1998) Learning and the stability of cycles. Macroeconomic Dynamics, 2(1): 22-48.

    MATH  Google Scholar 

  33. Bullard J, Duffy J (1999) Using genetic algorithms to model the evolution of heterogeneous beliefs. Computational Economics, 13(1): 41-60.

    MATH  Google Scholar 

  34. Cacho O, Simmons P (1999) A genetic algorithm approach to farm investment. Australian J. Agricultural and Resource Economics, 43(3): 305-322.

    Google Scholar 

  35. Chan N, LeBaron B, Lo A, Poggio T (1999). Agent-based models of finan-cial markets: a comparison with experimental markets. Unpublished Working Paper, MIT Artificial Markets Project, MIT, MA.

    Google Scholar 

  36. Chen J, Xu D (1998) An economic forecasting system based on recurrent neural networks. In: Proc. IEEE Intl. Conf. Systems, Man, and Cybernetics, 14-18 October, San Diego, CA. IEEE Press, New York, NY, 2: 1762-1767.

    Google Scholar 

  37. Chen S-H (1997) On the artificial life of the general economic system (I): the role of selection pressure. In: Hara F, Yoshida K (eds.) Proc. Intl. Symp. System Life, 21-22 July, Tokyo, Japan: 233-240.

    Google Scholar 

  38. Chen S-H (2000) Toward an agent-based computational modeling of bar-gaining strategies in double auction markets with genetic programming. In: Leung K-S, Chan L-W, Meng H (eds.) Intelligent Data Engineering and Auto-mated Learning - IDEAL 2000: Data Mining, Financial Engineering, and Intelligent Agents, Lecture Notes in Computer Science 1983. Springer-Verlag, Berlin: 517-531.

    Google Scholar 

  39. Chen S-H (ed.) (2002) Evolutionary Computation in Economics and Finance. Physica-Verlag, Berlin.

    Google Scholar 

  40. Chen S-H (ed.) (2002) Genetic Algorithms and Genetic Programming in Computational Finance. Kluwer, Boston, MA.

    Google Scholar 

  41. Chen S-H, Chie B-T (2004) Agent-based economic modeling of the evolution of technology: the relevance of functional modularity and genetic programming. Intl. J. Modern Physics B, 18(17-19): 2376-2386.

    Google Scholar 

  42. Chen S-H, Chie B-T (2005) A functional modularity approach to agent-based modeling of the evolution of technology. In: Namatame A, Kaizouji T, Aruka Y (eds.) The Complex Networks of Economic Interactions: Essays in Agent-Based Economics and Econophysics, Lecture Notes in Economics and Mathematical Systems 567, Springer-Verlag, 165-178.

    Google Scholar 

  43. Chen S-H, Chie B-T (2007) Lottery markets design, micro-structure, and macro-behavior: An ACE approach. J. Economic Behavior and Organization, (in press).

    Google Scholar 

  44. Chen S-H, He H (2003) Searching financial patterns with self-organizing maps. In: Chen S-H, Wang P (eds.) Computational Intelligence in Economics and Finance. Springer-Verlag, Berlin: 203-216.

    Google Scholar 

  45. Chen S-H, Huang Y-C (2007) Risk preference, forecasting accuracy and sur-vival dynamics: simulations based on a multi-asset agent-based artificial stock market. J. Economic Behavior and Organization. (in press).

    Google Scholar 

  46. Chen S-H, Kuo T-W (1999) Towards an agent-based foundation of financial econometrics: an approach based on genetic-programming artificial markets. In: Banzhaf W, Daida J, Eiben A, Garzon M, Honavar V, Jakiela M, Smith R (eds.) Proc. Genetic and Evolutionary Computation Conf., Morgan Kaufmann, San Mateo, CA, 2: 966-973.

    Google Scholar 

  47. Chen S-H, Liao C-C (2002) Price discovery in agent-based computational modeling of artificial stock markets. In: Chen S-H (ed.) Genetic Algorithms and Genetic Programming in Computational Finance. Kluwer, Boston, MA: 333-354.

    Google Scholar 

  48. Chen, S-H, Liao C-C (2004) Behavior finance and agent-based computational finance: toward an integrating framework. J. Management and Economics, 8.

    Google Scholar 

  49. Chen S-H, Liao C-C (2005) Agent-based computational modeling of the stock price-volume relation. Information Sciences, 170: 75-100.

    Google Scholar 

  50. Chen S-H, Tai C-C (2006) On the selection of adaptive algorithms in ABM: a computational-equivalence approach. Computational Economics, 28(1): 51-69.

    Google Scholar 

  51. Chen S-H, Wang P (eds.) (2003) Computational Intelligence in Economics and Finance. Springer-Verlag, Berlin.

    Google Scholar 

  52. Chen S-H, Yeh C.-H (1996) Genetic programming and the efficient mar-ket hypothesis. In: Koza J, Goldberg D, Fogel D, Riolo R (eds.) Genetic programming 1996: Proc. 1st Annual Conf. MIT Press, Cambridge, MA: 45-53.

    Google Scholar 

  53. Chen S-H, Yeh C-H (1996) Genetic programming learning and the cobweb model. In: Angeline P (ed.) Advances in Genetic Programming 2. MIT Press, Cambridge, MA: 443-466.

    Google Scholar 

  54. Chen S-H, Yeh C-H (1997) Toward a computable approach to the efficient mar-ket hypothesis: an application of genetic programming. J. Economic Dynamics and Control, 21: 1043-1063.

    MATH  MathSciNet  Google Scholar 

  55. Chen S-H, Yeh C-H (1997) Modeling speculators with genetic programming. In: Angeline P, Reynolds R, McDonnell J, Eberhart R (eds.) Evolutionary Programming VI, Lecture Notes in Computer Science 1213. Springer-Verlag, Berlin: 137-147.

    Google Scholar 

  56. Chen S-H, Yeh C-H (1999) Modeling the expectations of inflation in the OLG model with genetic programming. Soft Computing, 3(2): 53-62.

    Google Scholar 

  57. Chen S-H, Yeh C-H (2000) Simulating economic transition processes by genetic programming. Annals Operation Research, 97: 265-286.

    MATH  Google Scholar 

  58. Chen S-H, Yeh C-H (2001) Evolving traders and the business school with genetic programming: a new architecture of the agent-based artificial stock market. J. Economic Dynamics and Control, 25: 363-393.

    MATH  Google Scholar 

  59. Chen S-H, Yeh C-H (2002) On the emergent properties of artificial stock mar-kets: the efficient market hypothesis and the rational expectations hypothesis. J. Economic Behavior and Organization, 49(2): 217-239.

    MathSciNet  Google Scholar 

  60. Chen S-H, Duffy J, Yeh C-H (2001) Equilibrium selection via adaptation: using genetic programming to model learning in a coordination game. Electronic J. Evolutionary Modeling and Economic Dynamics. 1: 1002.

    Google Scholar 

  61. Chen, S-H, Lee W-C, Yeh C-H (1999) Hedging derivative securities with genetic programming. Intl. J. Intelligent Systems in Accounting, Finance and Management, 8(4): 237-251.

    Google Scholar 

  62. Chen S-H, Liao C-C, Chou P-J (2007) On the plausibility of sunspot equi-libria: simulations based on agent-based artificial stock markets. J. Economic Interaction and Coordination, (in press).

    Google Scholar 

  63. Chen S-H, Yeh C-H, Liao C-C (2002) On AIE-ASM: Software to simulate artificial stock markets with genetic programming. In: Chen S-H (ed.) Evolutionary Computation in Economics and Finance. Physica-Verlag, Heidelberg, Germany: 107-122.

    Google Scholar 

  64. Chen T, Chen H (1995) Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Networks, 6: 911-917.

    Google Scholar 

  65. Chidambaran N, Lee C, Trigueros J (2000) Option pricing via genetic program-ming. In: Abu-Mostafa Y, LeBaron B, Lo A, Weigend A (eds.) Computational Finance - Proc. 6th Intl. Conf. MIT Press, Cambridge, MA: 583-598.

    Google Scholar 

  66. Cliff D, Bruten J (1997) Minimal-intelligence agents for bargaining behaviors in market-based environments. Technical Report 97-91, Hewlett-Packet Lab.

    Google Scholar 

  67. Cristianini N, Shawe-Taylor J (2000) An Introduction to Support Vector Machines - and Other Kernel-Based Learning Methods. Cambridge University Press, UK.

    Google Scholar 

  68. Das N (2003) Hedge fund classification using k-means method. EconPapers, 204: 284.

    Google Scholar 

  69. Dawid H(1996) Learning of cycles and sunspot equilibria by genetic algorithms. J. Evolutionary Economics, 6(4): 361-373.

    MathSciNet  Google Scholar 

  70. Dawid H (1999) On the convergence of genetic learning in a double auction market. J. Economic Dynamics and Control, 23: 1544-1567.

    MathSciNet  Google Scholar 

  71. Deboeck G, Kohonen T(1998) Visual Explorations in Finance with Self-Organizing Maps. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  72. Duffy J (2001) Learning to speculate: experiments with artificial and real agents. J. Economic Dynamics and Control, 25: 295-319.

    MATH  MathSciNet  Google Scholar 

  73. Duffy J (2006) Agent-based models and human-subject experiments. In: Tesfatsion L, Judd K (eds.) Handbook of Computational Economics 2. North Holland, Amsterdam, The Netherlands.

    Google Scholar 

  74. Dugundji E, Gulyas L (2003) Empirical estimation and multi-agent-based simulation of a discrete choice model with network interaction effects. In: Macal C, North M, Sallach D (eds.) Proc. Agent 2003 Conf. on Challenges in Social Simulation, 2-4 October, University of Chicago. Argonne National Laboratory, Chichago, IL: 437-453.

    Google Scholar 

  75. Eberhart R, Simpson P, Dobbins R (1996) Computational Intelligence PC Tools. Academic Press, Boston, MA.

    Google Scholar 

  76. Elman J (1990) Finding structure in time. Cognitive Science, 14: 179-211.

    Google Scholar 

  77. Episcopos A, Davis J (1996). Predicting returns on Canadian exchange rates with artificial neural networks and EGARCHM-M model. Neural Computing and Applications, 4:168-174.

    Google Scholar 

  78. Fernández-RodríguezF, Sosvilla-Rivero S, Andrada-Félix J (2003) Nearest-neighbour predictions in foreign exchange markets. In: Chen S-H, Wang P (eds.) Computational Intelligence in Economics and Finance. Springer-Verlag, Berlin: 297-325.

    Google Scholar 

  79. Fogel D (1995) Evolutionary Computation - Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscatawy NJ.

    Google Scholar 

  80. Fogel L (1964) On the Organization of Intellect. PhD Thesis, University of California at Los Angeles, CA.

    Google Scholar 

  81. Franke R (1998) Coevolution and stable adjustments in the cobweb model. J. Evolutionary Economics, 8(4): 383-406.

    MathSciNet  Google Scholar 

  82. Fogel L, Owens A, Walsh M (1966) Artificial Intelligence through Simulated Evolution. Wiley, New York, NY.

    MATH  Google Scholar 

  83. Frels J, Heisler D, Reggia J (2003) Standard-scape: An agent-based model of adoption with incomplete information and network externalities. In: Chen K, Chen S-H, Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov N, Kerre E, Leong H-V, Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu J (eds.) Proc. 7th Joint Conf. Information Sciences, 26-30 September, Cary, NC: 1219-1222.

    Google Scholar 

  84. Gately E (1996) Neural Networks for Financial Forecasting. Wiley, New York, NY.

    Google Scholar 

  85. Gode D, Sunder S (1993) Allocative efficiency of markets with zero-intelligence traders: market as a partial substitute for indiviudal rationality. J. Political Economy, 101(1): 119-137.

    Google Scholar 

  86. Grandmont J-M(1985) On endogeneous competitive business cycles. Econometrica, 53: 995-1045.

    MATH  MathSciNet  Google Scholar 

  87. Grossklags J, Schmidt C (2006) Software agents and market (in)efficiency: a human trader experiment. IEEE Trans. Systems, Man, and Cybernetics, Part C, 36(1): 56-67.

    Google Scholar 

  88. Grossman S (1976) On the efficiency of competitive stock markets where traders have diverse information. J. Finance, 31: 573-585.

    Google Scholar 

  89. Grossman S, Stiglitz J (1980) On the impossibility of informationally efficient markets. American Economic Review, 70: 393-408.

    Google Scholar 

  90. Hann T, Steurer E (1996). Much ado about nothing? Exchange rate fore-casting: Neural networks vs. linear models using monthly and weekly data. Neurocomputing, 10: 323-339.

    MATH  Google Scholar 

  91. Holland J, Holyoak K, Nisbett R (1986) Induction: Processes of inference, learning and discovery (computational models of cognition and perception). MIT Press, Cambridge, MA.

    Google Scholar 

  92. Holland J, Miller J (1991) Artificial adaptive agents in economic theory. American Economic Review, 81(2): 365-370.

    Google Scholar 

  93. Hollans H, Munneke H. (2003) Housing markets and house price appreciation: An Interacity Analysis. Working paper. University of Georgia.

    Google Scholar 

  94. Izumi K, Ueda K (1999) Analysis of dealers’ processing financial news based on an artificial market approach. J. Computational Intelligence in Finance, 7: 23-33.

    Google Scholar 

  95. Jordan M (1986) Serial order: A parallel distributed processing approach. Technical Report 8604. Institute for Cognitive Science, University of California.

    Google Scholar 

  96. Kareken J, Wallace N (1981) On the indeterminacy of equilibrium exchange rate. Quarterly J. Economics, 96: 207-222.

    Google Scholar 

  97. Katz M, Shapiro C(1985) Network externalities, competition, and compatibility. American Economic Review, 75: 424-440.

    Google Scholar 

  98. Keber C (1999) Genetically derived approximations for determining the implied volatility. OR Spektrum, 21: 205-238.

    MATH  Google Scholar 

  99. Keber C (2000) Option valuation with the genetic programming approach. In: Abu-Mostafa Y, LeBaron B, Lo A, Weigend A (eds.) Computational Finance -Proc. 6th Intl. Conf. MIT Press, Cambridge MA.

    Google Scholar 

  100. Kiyotaki N, Wright R (1989) On money as a medium of exchange. J. Political Economy, 97: 927-954.

    Google Scholar 

  101. Kohonen T (1982) Self-organized foundation of topologically correct feature maps. Biological Cybernetics, 43: 59-69.

    MATH  MathSciNet  Google Scholar 

  102. Kohonen T (1995) Self-Organizing Maps. Springer-Verlag, Berlin.

    Google Scholar 

  103. Koyama Y, Sato H, Matusi H, Nakajima Y (2005) Report on UMIE 2004 and summary of U-Mart experiments based on the classification of submitted machine agents. In: Terano T, Kita H, Kaneda T, Arai K, Deghchi H (eds.) Agent-Based Simulation: From Modeling Methodologies to Real-World Applications, (Springer Series on Agent-Based Social Systems 1), Springer-Verlag, Tokyo: 158-166.

    Google Scholar 

  104. Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  105. Koza J (1992) A Genetic approach to econometric modeling. In: Bourgine P, Walliser B (eds.) Economics and Cognitive Science. Pergamon Press, Oxford, UK:57-75.

    Google Scholar 

  106. Kramer M (1990) Nonlinear principal analysis using autoassociative neural networks. AIChE J., 37(2): 233-243.

    Google Scholar 

  107. Krugman P (1996) The Self-Organizing Economy. Blackwell, Cambridge, MA.

    Google Scholar 

  108. Kuan C-M, Liu T (1995) Forecasting exchange rates using feedforward and recurrent neural networks. J. Applied Econometrics, 10: 347-364.

    Google Scholar 

  109. LeBaron B (1999) Building financial markets with artificial agents: Desired goals and present techniques. In: Karakoulas G (ed.) Computational Markets. MIT Press, Cambridge, MA.

    Google Scholar 

  110. LeBaron B (2001) Evolution and time horizons in an agent based stock market. Macroeconomic Dynamics, 5: 225-254.

    MATH  Google Scholar 

  111. LeBaron B, Arthur W, Palmer R (1999) Time series properties of an artificial stock market. J. Economic Dynamics and Control, 23: 1487-1516.

    MATH  Google Scholar 

  112. Lensberg T (1999) Investment behavior under Knightian uncertainty - an evolutionary approach. J. Economic Dynamics and Control, 23: 1587-1604.

    MATH  Google Scholar 

  113. Lettau M (1997) Explaining the facts with adaptive agents: the case of mutual fund flows. J. Economic Dynamics and Control, 21(7): 1117-1147.

    MATH  Google Scholar 

  114. Lucas R (1986) Adaptive behavior and economic theory. In: Hogarth R, Reder M (eds.) Rational choice: The contrast between economics and psychology. University of Chicago Press, IL: 217-242.

    Google Scholar 

  115. MacQueen J (1967) Some methods for classification and analysis of multi-variate observations. In: LeCam LM, Neyman N (eds.) Proc. 5th Berkeley Symp. Mathematical Statistics and Probability. University of California Press, Berkeley, CA, 1: 281-297.

    Google Scholar 

  116. Mandic D, Chambers J (2001). Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures, and Stability. Wiley, New York, NY.

    Google Scholar 

  117. Marimon R, McGrattan E, Sargent T (1990) Money as Medium of Exchange in an Economy with Artificially Intelligent Agents. J. Economic Dynamics and Control, 14: 329-373.

    MATH  MathSciNet  Google Scholar 

  118. Marshall A(1961) Principles of Economics(9th(variorum) ed., with annotations by CW Guillebaud). Macmillan, London, UK.

    Google Scholar 

  119. McNelis P (2005). Neural Networks in Finance: Gaining Predictive Edge in the Market. Elesvier, Burlington, MA.

    Google Scholar 

  120. Midgley G (2005) Systemic intervention for community involvement in complex policy. In: Proc. 1st Intl. Workshop Complexity and Policy Analysis, 22-24 June, Cork, Ireland.

    Google Scholar 

  121. Muth J (1961) Rational expectations and the theory of price movements. Econometrics, 29: 315-335.

    Google Scholar 

  122. Nakajima R (2003) Measuring peer effects in youth smoking behavior. In: Chen K, Chen S-H, Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov N, Kerre E, Leong H-V, Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu J (eds.) Proc. 7th Joint Conf. Information Sciences, 26-30 September, Cary, NC: 1206-1210.

    Google Scholar 

  123. Neely C, Weller P, Ditmar R (1997) Is technical analysis in the foreign exchange market profitable? A genetic programming approach. J. Financial and Quantitative Analysis, 32(4): 405-427.

    Google Scholar 

  124. North M (2003) Applying computational Intelligence to economic policy. In: Chen K, Chen S-H, Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov N, Kerre E, Leong H-V, Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu J (eds.) Proc. 7th Joint Conf. Information Sciences, 26-30 September, Cary, NC: 1231-1234.

    Google Scholar 

  125. Nicolaisen J, Smith M, Petrov V, Tesfatsion L (2000) Concentration and capacity effects on electricity market power. In: Alzala A (ed.) Proc. 2000 Congress Evolutionary Computation, IEEE Society Press, Piscataway, NJ: 1041-1047.

    Google Scholar 

  126. Nicolaisen J, Petrov V, Tesfatsion L (2001) Market power and efficiency in a computational electricity market with discriminatory double-auction pricing. IEEE Trans. Evolutionary Computation, 5(5): 504-523.

    Google Scholar 

  127. Palmer R, Arthur W, Holland J, LeBaron B, and Tayler P (1994). Artificial economic life: a simple model of a stock market. Physica D, 75: 264-274.

    MATH  Google Scholar 

  128. Qian Y (2006) k-means algorithm and its application for clustering companies listed in Zhejiang province. WIT Trans Information and Communication Technologies, 37: 35-44.

    Google Scholar 

  129. Rechenberg I (1965) Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Establishment, Library Translation 1122, August.

    Google Scholar 

  130. Refenes A (1995) Neural Networks in the Capital Markets. Wiley, New York, NY.

    Google Scholar 

  131. Refenes A, Zapranis A(1999) Principles of Neural Model Identification, Selection and Adequacy: With Applications in Financial Econometrics. Springer-Verlag, Berlin.

    Google Scholar 

  132. Sargent T (1993) Bounded Rationality in Macroeconomics. Oxford University Press, UK.

    Google Scholar 

  133. Sato H, Kawachi S, Namatame A (2003) The statistical properties of price fluctuations by computer agents in a U-Mart virtual future market simulator. In: Terano T, Dehuchi H, Takadama K (eds.) Meeting the Challenge of Social Problems via Agent-Based Simulation. Springer-Verlag, Tokyo: 67-76.

    Google Scholar 

  134. Schwefel H (1965) Kybernetische Evolution als Strategies der Experimentellen Forschung in der Strömungstechnik. Diploma Thesis, Technical University of Berlin.

    Google Scholar 

  135. Schewfel H (1995) Evolution and Optimum Seeking. Wiley, New York, NY.

    Google Scholar 

  136. Shadbolt J, Taylor J(2002) Neural Networks and the Financial Markets-Predicting, Combining, and Portfolio Optimisation. Springer-Verlag, Berlin.

    Google Scholar 

  137. Shi S, Xu L, Liu B (1999) Improving the acuracy of nonlinear combined forecasting using neural networks. Expert Systems with Applications, 16: 49-54.

    Google Scholar 

  138. Simon HA (1997) Models of Bounded Rationality, Vol.3. MIT Press, Cambridge, MA.

    Google Scholar 

  139. Smith V, Suchanek G, Williams A (1988) Bubbles, crashes, and endogenous expectations in experimental spot asset markets. Econometrica, 56(6): 1119-1152.

    Google Scholar 

  140. Suykens J, Vandewalle J (1998) The K.U. Leuven time series prediction competition. In: Suykens J, Vandewalle J (eds.) Nonlinear Modeling: Advanced Black-Box Techniques. Kluwer, Boston, MA: 241-253.

    Google Scholar 

  141. Szpiro G (1997) Forecasting chaotic time series with genetic algorithms. Physical Review E, 55: 2557-2568.

    Google Scholar 

  142. Szpiro G (1997) The emergence of risk aversion. Complexity, 2: 31-39.

    MathSciNet  Google Scholar 

  143. Tay N, Linn S (2001) Fuzzy inductive reasoning, expectation formation and the behavior of security prices. J. Economic Dynamics and Control, 25: 321-361.

    MATH  Google Scholar 

  144. Tayler P (1995) Modeling artificial stock markets using genetic algorithms. In: Goonatilake S, Treleaven P (eds.) Intelligent Systems for Finance and Business. Wiley, New York, NY: 271-287.

    Google Scholar 

  145. Terano T, Shiozawa Y, Deguchi H, Kita H, Matsui H, Sato H, Ono I, Kakajima Y (2003), U-Mart: An artificial market testbed for economics and multiagent systems. In: Terano T, Dehuchi H, Takadama K (eds.) Meeting the Challenge of Social Problems via Agent-Based Simulation. Springer-Verlag, Tokyo: 53-66.

    Google Scholar 

  146. Tirole J. (1982) On the possibility of speculation under rational expectations. Econometrica, 50: 1163-1182.

    MATH  Google Scholar 

  147. Trippi R, Turban E. (1993) Neural Networks in Finance and Investing. Irwin

    Google Scholar 

  148. Tsuji M, Kawamura H, Ohuchi A (2003) Measuring the effect of indirect net-work externality in VCR standardization process. In: Chen K, Chen S-H, Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov N, Kerre E, Leong H-V, Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu J (eds.) Proc. 7th Joint Conf. Information Sciences, 26-30 September, Cary, NC: 1215-1218.

    Google Scholar 

  149. Vapnik V (1998) Statistical Learning Theory. Wiley, New York, NY.

    MATH  Google Scholar 

  150. Vapnik V (1998) The support vector method of function estimation. In: Suykens J, Vandewalle J (eds.) Nonlinear Modeling: Advanced Black-Box Techniques. Kluwer, Boston, MA: 55-85.

    Google Scholar 

  151. Vriend N (2001) On two types of GA-Learning. In: Chen S-H (ed.) Evolutionary Computation in Economics and Finance. Physica-Verlag, Heidelberg, Germany: 233-243.

    Google Scholar 

  152. Waldrop M (1992) Complexity: The Emerging Science at the Edge of Order and Chaos. Simon and Schuster, New York, NY.

    Google Scholar 

  153. Wei W-X, Jiang Z-H (1995) Artificial neural network forecasting model for exchange rate and empirical analysis. Forecasting, 2: 67-69.

    Google Scholar 

  154. Weigend A, Huberman B, Rumelhart D (1992) Predicting sunspots and exchange rates with connectionist networks. In: Casdagli M, Eubank S (eds.) Nonlinear Modeling and Forecasting. Addison-Wesley, Reading, MA: 395-432.

    Google Scholar 

  155. Westerhoff F, Reitz S (2003) Nonlinearities and cyclical behavior: The role of chartists and fundamentalists. Studies in Nonlinear Dynamics and Econometrics, 7(4): Article 3.

    Google Scholar 

  156. White H (1988) Economic prediction using neural networks: The case of IBM daily stock returns. In: Proc. IEEE Intl. Conf. Neural Networks 2, 24-27 July, San Diego, CA. IEEE Press, New York, NY: 451-458.

    Google Scholar 

  157. White H(1992) Artificial Neural Networks-Approximation Theory and Learning Theory. Blackwell, Cambridge, MA.

    Google Scholar 

  158. Wu B (1995) Model-free forecasting for nonlinear time series (with application to exchange rates). Computational Statistics and Data Analysis, 19: 433-459.

    MATH  Google Scholar 

  159. Wu S, Bhattacharyya S (2005) Minimal intelligence Agents in double auction markets with speculators. In: Chen S-H, Jain LC, Tai C-C (eds.) Computational Economics: A Perspective from Computationl Intelligence. Idea Group, Hershey, PA: Chapter IV.

    Google Scholar 

  160. Yang J. (2002) The efficiency of an artificial double auction stock market with neural learning agents. In: Chen S-H. (ed.) Evolutionary Computation in Economics and Finance. Physica-Verlag, Heidelberg, Germany: 87-107.

    Google Scholar 

  161. Yeh C-H, Chen S-H (2001) Toward an integration of social learning and indi-vidual learning in agent-based computational stock markets: The approach based on population genetic programming. J. Management and Economics, 5.

    Google Scholar 

  162. Yeh C-H, Chen S-H (2001) Market diversity and market efficiency: The approach based on genetic programming. J. Artificial Simulation of Adaptive Behavior, 1(1): 147-167.

    Google Scholar 

  163. Zirilli J (1996) Financial Prediction Using Neural Networks. Thomson, London, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, SH. (2008). Computational Intelligence in Agent-Based Computational Economics. In: Fulcher, J., Jain, L.C. (eds) Computational Intelligence: A Compendium. Studies in Computational Intelligence, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78293-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78293-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78292-6

  • Online ISBN: 978-3-540-78293-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics