Skip to main content

Data Mining in QoS-Aware Media Grids

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 115))

With the advent of high-speed networking technology and multimedia compression, various network-based multimedia services have become available [29]. Clients can download music, send/receive multimedia emails, browse multimedia material in eLibraries and enjoy high quality movies on-line. Media streaming [24] is one of the most popular real-time multimedia services. It enables clients to view multimedia content online without completely downloading it. In addition, it can support complete flexibility in presentation by controlling playback — in other words, clients can alter the presentation by using Video Cassette Recorder (VCR)-like control facilities, such as ‘rewind’, ‘fast-forward’, ‘pause’, and the like. However, rendering high quality media streaming via networks is still a challenging task, not only due to the large size of video files, but also because of the critical requirements to guarantee Quality-of-Service (QoS) — these being delay, loss rate, jitter, and so forth — for distributing real-time media streams over networks.

The Chapter is organized as follows. Section 2 describes related work. Section 3 presents a media grid framework. Section 4 describes the data mining strategy for bandwidth prediction in media grids. Experiments of bandwidth prediction are presented in Sect. 5. Sect. 6 concludes the Chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal R, Imielinski T, Swami A 1993 Database mining: a performance perspective. IEEE Trans. Knowledge and Data Engineering, 5: 914-925.

    Article  Google Scholar 

  2. An de Haar PG, Schoenmakers AF, Eilley ES, Tedd DN, Tickell SA, Lloyd PR, Badham M, O’brien S, Poole R, Sampson P, Harding J, Simula T, Varonen T, Sauvala S 1997 DIAMOND project: video-on-demand system and trials. European Trans. Telecommunications, 8(4): 337-244.

    Article  Google Scholar 

  3. Apostolopoulos JG, Tan W-T, Wee SJ (2002) Video Streaming: Concepts, Algorithms, and Systems. Hewlett-Packard White paper (available online at http://www.hpl.hp.com/techreports/2002/HPL-2002-260.html - last accessed 6 September, 2006).

  4. Berry MJA, Gordon SL (2000) Mastering Data Mining: The Art and Science of Customer Relationship Management. Wiley, New York, NY. 5.Biomedical Informatics Research Network(BIRN)(available online at http://www.birn.net - last accessed 6 September, 2006). 6.Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford University Press, New York, NY.

  5. Carpenter GA and Grossberg S 1988 The ART of adaptive pattern recognition by a self-organizing neural network. Computer, 21(3): 77-88.

    Article  Google Scholar 

  6. Cunha JC and Rana OF 2006 Grid Computing: Software Environments and Tools. Springer-Verlag, London, UK.

    Book  MATH  Google Scholar 

  7. Denoeux T, Lengelle R 1993 Initializing back propagation network with prototypes. Neural Computation, 6: 351-363.

    Google Scholar 

  8. Deutsch JM 2003 Evolutionary algorithms for finding optimal gene sets in microarray prediction. Bioinformatics, 19: 45-52.

    Article  Google Scholar 

  9. Eswaradass A, Sun X-H, Wu M 2005 A neural network based predictive mechanism for available bandwidth. Proc. 19th IEEE Intl. Parallel and Dis-tributed Processing Symp., 4-8 April, Denver, CO. IEEE Computer Society Press, Piscataway, NJ.

    Google Scholar 

  10. EuroGrid(available online at http://www.eurogrid.org/- last accessed6 September, 2006).

  11. Foster I, Kesselman C(1998) The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  12. Fu XJ, Wang LP 2001 Linguistic rule extraction from a simplified RBF neural network. Computational Statistics (special issue on Data Mining and Statistics), 16(3): 361-372.

    MATH  MathSciNet  Google Scholar 

  13. Geva S, Wong MT, Orlowski M 1997 Rule extraction from trained artificial neural network with functional dependency preprocessing. Proc. 1st Intl. Conf. Knowledge-Based Intelligent Engineering Systems, 21-23 May, Adelaide, South Australia, 2: 559-564.

    Google Scholar 

  14. Globus Toolkit (available online at http://www.globus.org/toolkit/docs/4.0/data/ - last accessed 6 September, 2006).

  15. Grid Physics Network (GriPhyn) (available online at http://www.griphyn.org last accessed 6 September, 2006).

  16. Halgamuge S, Wang LP (eds.) 2005 Computational Intelligence for Modeling and Prediction. Springer-Verlag, Berlin.

    Google Scholar 

  17. Hall J, Mars P 1998 The limitations of artificial neural networks for traffic prediction. Proc. 3rd IEEE Symp. Computers and Communications, 30 June -2 July, Athens, Greece. IEEE Computer Society Press, Piscataway, NJ: 147(2): 8-12.

    Google Scholar 

  18. Haykin S 1999 Neural Networks: A Comprehensive Foundation (2nd ed). Prentice Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  19. Jie W, Hung T, Wentong C 2005 An information service for grid virtual organi-zation: architecture, implementation and evaluation. J. Supercomputing, 34(3): 273-290.

    Article  Google Scholar 

  20. Kolen JF, Pollack JB 1990 Back Propagation is sensitive to initial conditions. Advances in Neural Information Processing Systems 3 Morgan Kaufmann, San Franciscso, CA: 860-867.

    Google Scholar 

  21. Lehtokangas M, Saarinen J, Kaski K, Huuhtanen P 1995 Initialization weights of a multiplayer perceptron by using the orthogonal least squares algorithm. Neural Computation, 7: 982-999.

    Article  Google Scholar 

  22. Li X, Hung T, Veeravalli B (2006) Design and implementation of a multi-media personalized service over large scale networks. Proc. IEEE Intl. Conf. Multimedia & Expo (ICME). Toronto, Canada.

    Google Scholar 

  23. Liu HB, Mao GQ (2005) Prediction algorithms for real-time variable-bit-rate video. Proc. Asia-Pacific Conf. Communications, 3-5 October, Perth, Western Australia: 664-668.

    Google Scholar 

  24. Moreau Y, Vandewalle J 1997 When Do Dynamical Neural Networks with and without Hidden Layer Have Identical Behavior? Technical Report ESAT-SISTA TR97-51, Dept. Electrical Engineering, Katholieke Universiteit Leuven, Belgium.

    Google Scholar 

  25. Partical Physics Data Grid (PPDG) (available online at http://www.ppdg.net last accessed 6 September, 2006).

  26. Ramaswamy S, Gburzynski P 1998 A neural network approach to effective bandwidth characterization in ATM networks. In: Kouvatsos D (ed.) Modeling and Evaluation of ATM Networks Kluwer Academic Publishers, Boston, MA: 431-450.

    Google Scholar 

  27. Rao KR, Bojkovic ZS, Milovanovic DA 2002 Multimedia Communication Systems: Techniques, Standards, and Networks. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  28. Rumelhart DE, Hinton GE, Williams RJ 1986 Learning representations by back-propagating errors. Nature, 323: 533-536.

    Article  Google Scholar 

  29. Sun J, Li HB (2004) 3-D physical motion-based bandwidth prediction for video conferencing IEEE Trans. Circuits and Systems for Video Technology, 14(5): 584-594.

    Article  Google Scholar 

  30. Teo KK, Wang LP, Lin ZP (2000) Wavelet multi-layer perceptron neural network for time-series prediction. Proc. 10th Intl. Conf. Computing and Information, 18-21 November, Kuwait.

    Google Scholar 

  31. Ting R 1998 A multiscale Analysis and Analysis Technique for Management of Resources in ATM Networks. PhD Thesis School of Engineering, City University of New York, NY.

    Google Scholar 

  32. Turner CF, Jeremiah RM 2002 The independent wavelet bandwidth alloca-tion algorithm. Proc. IEEE Global Telecommunications Conf. 17-21 November, Taipei, Taiwan, IEEE Computer Society Press, Piscataway, NJ, 1: 107-111.

    Google Scholar 

  33. Walsh AE (2005) The media grid: a public utility for digital media. Dr. Dobb’s J. Distributed Computing (Distributed Computing issue), November: 16-23.

    Google Scholar 

  34. Wang LP, Fu, XJ 2005 Data Mining with Computational Intelligence. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  35. Wang LP, Li S, Tian FY, Fu XJ 2004 A noisy chaotic neural network for solving combinatorial optimization problems: Stochastic chaotic simulated annealing. IEEE Trans. System, Man, Cybernetics, Part B - Cybernetics, 34(5): 2119-2125.

    Article  Google Scholar 

  36. Wang LP, Smith K 1998 On chaotic simulated annealing. IEEE Trans. Neural Networks, 9: 716-718.

    Article  Google Scholar 

  37. Wang LP, Teo KK, Lin Z 2001 Predicting time series using wavelet packet neu-ral networks. Proc. Intl. Joint Conf. Neural Networks, 15-19 July, Washington, DC. IEEE Computer Society Press, Piscataway, NJ: 1593-1597.

    Google Scholar 

  38. Wasserman PD 1989 Neural Computing: Theory and Practice. Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  39. Wolski R, Spring NT, Hayes J 1999 The network weather service: a dis-tributed resource performance forecasting service for metacomputing. J. Future Generation Computing Systems, 15(5-6): 757-768.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fu, X., Li, X., Wang, L., Ong, D., Turner, S.J. (2008). Data Mining in QoS-Aware Media Grids. In: Fulcher, J., Jain, L.C. (eds) Computational Intelligence: A Compendium. Studies in Computational Intelligence, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78293-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78293-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78292-6

  • Online ISBN: 978-3-540-78293-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics