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1 Introduction

For many years, artificial neural networks (ANNs) have been studied and
used to model information processing systems based on or inspired by bio-
logical neural structures. They not only can provide solutions with improved
performance when compared with traditional problem-solving methods, but
also give a deeper understanding of human cognitive abilities. Among various
existing neural network architectures and learning algorithms, Kohonen’s self-
organizing map (SOM) [46] is one of the most popular neural network models.
Developed for an associative memory model, it is an unsupervised learning
algorithm with a simple structure and computational form, and is motivated
by the retina-cortex mapping. Self-organization in general is a fundamental
pattern recognition process, in which intrinsic inter- and intra-pattern rela-
tionships among the stimuli and responses are learnt without the presence
of a potentially biased or subjective external influence. The SOM can pro-
vide topologically preserved mapping from input to output spaces. Although
the computational form of the SOM is very simple, numerous researchers
have already examined the algorithm and many of its problems, nevertheless
research in this area goes deeper and deeper – there are still many aspects to
be exploited.

In this Chapter, we review the background, theories and statistical proper-
ties of this important learning model and present recent advances from various
pattern recognition aspects through a number of case studies and applications.
The SOM is optimal for vector quantization. Its topographical ordering pro-
vides the mapping with enhanced fault- and noise-tolerant abilities. It is also
applicable to many other applications, such as dimensionality reduction, data
visualization, clustering and classification. Various extensions of the SOM
have been devised since its introduction to extend the mapping as effective
solutions for a wide range of applications. Its connections with other learning
paradigms and application aspects are also exploited. The Chapter is intended
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to serve as an updated, extended tutorial, a review, as well as a reference for
advanced topics in the subject.

2 Background

Kohonen’s self-organizing map (SOM) is an abstract mathematical model of
topographic mapping from the (visual) sensors to the cerebral cortex. Model-
ing and analyzing the mapping are important to understanding how the brain
perceives, encodes, recognizes and processes the patterns it receives and thus,
if somewhat indirectly, are beneficial to machine-based pattern recognition.
This Section looks into the relevant biological models, from two fundamental
phenomena involved – lateral inhibition and Hebbian learning – to Willshaw
and von der Malsburg’s self-organization retinotopic model, and then subse-
quently to Kohonen’s simplified and abstracted SOM model. Basic operations
and the SOM algorithm, as well as methods for choosing model parameters,
are also given.

2.1 Biological Background: Lateral Inhibition
and Hebbian Learning

Human visual perception and the brain make up the most complex cognition
system and the most complex of all biological organs. Visual inputs contribute
to over 90% of the total information (from all sensors) entering the brain.
Nature and our living environment are constantly shaping our perception and
cognition systems. Physiologically, human and indeed other animal visual (and
other perception) systems have been evolved to so many different types of
eyes and mammalian visual pathways for different purposes and conditions.
For example, many insects have compound eyes, which have good temporal
resolution and are more directionally sensitive and at the same time make
them smaller and group them into a single structure – giving insects a bet-
ter ability to detect spatial patterns and movement in order to escape from
predators. Compound eyes have good time resolving power. Human eyes need
0.05 second to identify objects, while compound eyes need only 0.01 second.
That is, they are good at recognizing (fast) moving objects. Eyes of large
animals including humans have evolved to single-chambered ‘camera lens’
eyes, which have excellent angle resolution and are capable of seeing distant
objects. Camera eyes have great space resolving power: high spatial resolu-
tion for good details of objects and patterns, and long depth resolution for
both very near and very far objects. They also have brilliant sensitivities for
light intensity – over 20 billion times (that is, 206 dB) range (the brightest to
the darkest) – compared with most digital cameras, which are below 16-bit
resolution (30 dB).

What information do eyes extract from the retina or sensory cells? Visual
information is processed in both the retina and brain, but it is widely believed
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Fig. 1. A cross-sectional diagram of the retina, drawn by Santiago Ramón y Cajal
(1853–1934)

and verified that most processing is done in the retina, such as extracting lines,
angles, curves, contrasts, colours, and motion. The retina then encodes the
information and sends through optic nerves and optic chiasma, where some
left and right nerves are crossed, to the brain cortex in the left and/or right
hemispheres. The retina is a complex neural network. Figure 1 shows a drawing
of the cross section of the retina. The human retina has over 100 million
photosensitive cells (combining rods and cones), processing in parallel the
raw images, codes and renders to just over one million optic nerves, to be
transmitted in turn to the brain cortex.

The Perceptron models some cells in the retina, especially the bipolar
and ganglion cells. These cells take inputs from the outputs of cells in the
previous layer. To put many units together and connect them into layers,
one may hope the resulting network – the Multi-Layer Perceptron – will have
some functionality similar to the retina (despite neglecting some horizontal
interconnections). Indeed, such a structure has been demonstrated as being
capable of certain cognitive and information processing tasks.

Cells in neural networks (either in the retina or brain) also connect and
interact horizontally. The experiment on limulus, or the horseshoe crab, by
Haldan K. Hartline (1967 Nobel Prize Laureate) and his colleagues in the
1960s, has confirmed such processing on the limulus retina (the surface of
the compound eye is shown in Fig. 2(a)). They revealed the so-called ‘lateral
inhibition’ activity among the retina cells. In other words, there exist both
short-range excitatory interaction between nearby cells, as well as long-range
inhibitory interaction between distant neighbours. This consequently explains
the so-called ‘Mach band’ phenomenon on the edges or sharp changes of light
intensity [87] – see Fig. 2(b).
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Fig. 2. (a) Surface of the Limulus eye and simuli: small spot light and rectangular
lighter/darker pattern; (b) recordings of spike rate in the ommatidium axon (the
upper curve is the response to the small spot light at high and low intensities cor-
responding to those of the test pattern in the insert; the lower curve is the response
to the rectangular lighter/darker test pattern (from [87]; also see [99])

Fig. 3. Artistic drawing of a woman (left), and applying Pearson and Ronbinson’s
edge detector – an improved Marr and Hildreth mask – on the photo of the same
woman (right) ([86], reprinted by permission of Cambridge University Press; also
cited in [9])

Lateral inhibition tells us that neurons in the retina do not just feed the
information to upper levels, but also perform an important visual processing
task: edge detection and enhancement. Figure 3 demonstrates a psycholog-
ical experiment that also confirms such fundamental processing in visual
perception.

Neural networks present completely different approaches to computing and
machine intelligence from traditional symbolic AI. The goal is to emulate the
way that natural systems, especially brains, perform on various cognitive or
recognition tasks. When a network of simple processing units interconnect
with each other, there are potentially a massive number of synaptic weights
available to be configured and modified such that the network will suit a
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particular task. This configuration and modification process is carried out
by a learning procedure, that is, learning or training algorithm. The way
these simple units connect together is called the neural architecture. There
are two basic types: feed-forward, in which layers of neurons are concatenated,
and recurrent, in which neurons have feedback from themselves and others.
Examples of these two architectures are the Multi-Layer Perceptron (MLP),
and the Hopfield network, respectively.

The Oxford English Dictionary defines learning as “the process which leads
to the modification of behavior”.1 Learning in general intelligent systems is
often referred to as a process of the systems’ adaptation to their experience
or environment – a key feature of intelligence. According to Hebb, learning
occurs when “some growth process or metabolic change takes place” [30].
Learning in the context of neural networks can be defined as [29]:

“Learning is a process by which the free parameters of neural networks
are adapted through a process of simulation by the environment in
which the network is embedded. The type of learning is determined
by the manner in which the parameter changes take place.”

Neural networks also differ from traditional pattern recognition approaches,
which usually require solving some well-defined functions or models, such as
feature extraction, transformation, and discriminant analysis by a series of
processing steps. Neural networks can simply learn from examples. Presented
repeatedly with known examples of raw patterns and with an appropriate
learning or training algorithm, they are able to extract the most intrinsic
nature of the patterns and perform recognition tasks. They will also have the
ability to carry out similar recognition tasks, not only on trained examples
but also on unseen patterns. Learning methods and algorithms undoubtedly
play an important role in building successful neural networks.

Although many learning methods have been proposed, there are two fun-
damental kinds of learning paradigms: supervised learning and unsupervised
learning. The former is commonly used in most feed-forward neural networks,
in which the input-output (or input-target) functions or relationships are built
from a set of examples, while the latter resembles a self-organization process
in the cortex and seeks inter-relationships and associations among the input.

The most representative supervised learning rule is error-correction learn-
ing. When presented with an input-output pair, learning takes place when an
error exists between a desired response or target output and the actual output
of the network. This learning rule applies an adjustment, proportional to this
error, to the weights of the neuron concerned. Derivation of such a rule can
be often traced backed to minimizing the mean-square error function – more
details can be found in [29]. A derivative of supervised learning is so-called

1 Simpson JA, Weiner ESC (eds.) (1988) Oxford English Dictionary (2nd ed).
Clarendon Press, Oxford, UK.
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reinforcement learning, based on trail-and-error (and reward). The following
definition has been given by [101]:

“If an action taken by a learning system is followed by a satisfactory
state of affairs, then the tendency of the system to produce that par-
ticular action is strengthened or reinforced. Otherwise, the tendency
of the system to produce that action is weakened”.

In contrast to supervised learning, there is no direct teacher to provide
how much output error a particular action has produced. Instead, the output
has been quantified into either ‘positive’ or ‘negative’ corresponding to closer
to or further from the goal. Reinforcement learning has popular backing from
psychology.

Self-organization often involves both competition and correlative learning.
When presented with a stimulus, neurons compete among themselves for pos-
session or ownership of this input. The winners then strengthen their weights
or their relationships with this input. Hebbian learning is the most common
rule for unsupervised or self-organized learning. As stated in [30]:

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth pro-
cess or metabolic changes take place in one or both cells such that As
efficiency as one of the cells firing B, is increased.”

Mathematically, the Hebbian learning rule can be directly interpreted as,

∂wij(t)
∂t

= αxi(t)yi(t) (1)

where α is a positive learning rate (0 < α < 1), and x and y are the input
and output of the neural system, respectively (or can also be regarded as the
outputs of the two neurons). That is, the change of the synaptic weight is
proportional to the correlation between an input and its associated output. If
the input and output are coherent, the weight connecting them is strengthened
(xy is positive), otherwise, weakened (xy is either negative or zero).

Hebbian learning requires some modification before it can be used in prac-
tice, otherwise the weight will easily become saturated or unlimited (positive
or negative). One solution is to add a ‘forgetting term’ to prevent weights
from increasing/decreasing monotonically as in the SOM (see the next Sec-
tion). Alternatively, we can normalize the weights. For instance, Oja proposed
a weight normalization scheme on all weights. This naturally introduces a
forgetting term to the Hebbian rule [81],

wi(t + 1) =
wi(t) + αxi(t)y(t)

{
∑n

j=1[wj(t) + αxj(t)y(t)]2}1/2
(2)

≈ wi(t) + α(t)[xi(t)− y(t)wi(t)] + O(α2)
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where O(α2) represents second- and high-order terms in α, and can be ignored
when a small learning rate is used.

The resulting Oja learning algorithm is a so-called principal component
network, which learns to extract the most variant directions among the data
set. Other variants of Hebbian learning include many algorithms used for
Independent Component Analysis ([36, 82]).

2.2 From Von Marsburg and Willshaw’s Self-Organization
Model to Kohonen’s SOM

External stimuli are received by various sensors or receptive fields (for exam-
ple, visual-, auditory-, motor-, or somato-sensory), coded or abstracted by the
living neural networks, and projected through axons onto the cerebral cortex,
often to distinct parts of the cortex. In other words, the different areas of the
cortex (cortical maps) often correspond to different sensory inputs, though
some brain functions require collective responses. Topographically ordered
maps are widely observed in the cortex. The main structures (primary sensory
areas) of the cortical maps are established before birth ([47], [115], and similar)
in a predetermined topographically ordered fashion. Other more detailed areas
(associative areas), however, are developed through self-organization gradually
during life and in a topographically meaningful order. Therefore studying such
topographically ordered projections, which had been ignored during the early
period of neural information processing research [48], is undoubtedly impor-
tant for understanding and constructing dimension-reduction mapping and
for the effective representation of sensory information and feature extraction.

The self-organized learning behavior of brains has been studied for a long
time by many people. Pioneering works include for example, Hebb’s learning
law (1949) [30], Marr’s theory of the cerebellar cortex (1969) [72], Will-
shaw, Buneman and Longnet-Higgins’s non-holographic associative memory
(1969) [114], Gaze’s studies on nerve connections (1970), von der Mals-
burg and Willshaw’s self-organizing model of retina-cortex mapping ([111],
[115]), Amari’s mathematical analysis of self-organization in the cortex (1980),
Kohonen’s self-organizing map (1982), and Cottrell and Fort’s self-organizing
model of retinotopy (1986). Many still have immense influence on today’s
research. Von der Malsburg (1973) and Willshaw (1976) first developed, in
mathematical form, the self-organizing topographical mapping, mainly from
two-dimensional presynaptic sheets to two-dimensional postsynaptic sheets,
based on retinatopic mapping: the ordered projection of visual retina to the
visual cortex (see Fig. 4). Their basic idea was:

“......the geometrical proximity of presynaptic cells is coded in the
form of correlations in their electrical activity. These correlations can
be used in the postsynaptic sheet to recognize axons of neighbouring
presynaptic cells and to connect them to neighbouring postsynaptic
cells, hence producing a continuous mapping......”
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Fig. 4. von der Malsburg’s self-organizing map model: local clusters in a presynap-
tic sheet are connected to local clusters in a postsynaptic sheet; there are lateral
interconnections within the postsynaptic sheet (solid lines are used to indicate such
connections)

The model uses short-range excitatory connections between cells so that
activity in neighbouring cells becomes mutually reinforced, and uses long-
range inhibitory interconnections to prevent activity from spreading too far.
The postsynaptic activities {yj(t), j = 1, 2, ... Ny}, at time t, are expressed by

∂yi(t)
∂t

+ cyi(t) =
∑

j

wij(t)xi(t) +
∑

k

eiky∗
k(t)−

∑
k′

bik′y∗
k′(t) (3)

where c is the membrane constant, wij(t) is the synaptic strength between
cell i and cell j in pre- and post-synaptic sheets respectively, {xi(t), i =
1, 2, ... Nx}, the state of the presynaptic cells, equal to 1 if cell i is active
or 0 otherwise, ekj and bkj are short-range excitation and long-range inhibi-
tion constants respectively, and y∗

j (t) is an active cell in postsynaptic sheet at
time t. The postsynaptic cells fire if their activity is above a threshold, say,

y∗
i (t) =

{
y∗

j (t)− θ, if y∗
j (t) > θ

0 otherwise
(4)

The modifiable synaptic weights between pre- and post-synaptic sheets are
then facilitated in proportion to the product of activities in the appropriate
pre- and postsynaptic cells (Hebbian learning):

∂wij(t)
∂t

= αxi(t)y∗
j (t), subject to

1
Nx

∑
i

wij = constant (5)
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where α is a small constant representing the learning rate. To prevent the
synaptic strengths becoming unstable, the total strength associated with each
postsynaptic cell is limited by normalization to a constant value after each
iteration.

Kohonen (1982) abstracted the above self-organizing learning principle and
function and proposed a much simplified learning mechanism which cleverly
incorporates the Hebbian learning rule and lateral interconnection rules and
can emulate the self-organizing learning effect. Although the resulting SOM
algorithm was more or less proposed in a heuristic manner ([54]), it is a
simplified and generalized model of the above self-organization process. As
commented in [91]:

“Kohonen’s model of self-organizing maps represented an important
abstraction of the earlier model of von der Malsburg and Willshaw; the
model combines biological plausibility with proven applicability in a
broad range of difficult data processing and optimization problems...”

In Kohonen’s model, the postsynaptic activities are similar to Eqn. (3). To
find the solutions of this equation and ensure they are non-negative properties,
a sigmoid type of nonlinear function is applied to each postsynaptic activity:

yj(t + 1) = ϕ

[
wT

j x(t) +
∑

i

hijyi(t)

]
(6)

where hkj is similar to ekj and bkj , and the input is described as a vector
as the map can be extended to any dimensional input. A typical structure is
shown in Fig. 5.

A spatially-bounded cluster or bubble will then be formed among the post-
synaptic activities and will stabilize at a maximum (without loss of generality
which is assumed to be unity) when within the bubble, or a minimum (that
is, zero) otherwise,

yj(t + 1) =
{

1, if neuron j is inside the bubble
0, otherwise (7)

The bubble is centred on a postsynaptic cell whose synaptic connection
with the presynaptic cells is mostly matched with the input or presynaptic
state, that is the first term in the function in Eqn. (6) is the highest. The
range or size, denoted by η(t), of the bubble depends on the ratio of the
lateral excitation and inhibition. To modify the Hebbian learning rule, in other
words Eqn. (5), instead of using normalization, a forgetting term, βyj(t)wij(t),
is added. Let α = β, and apply Eqn. (7), the synaptic learning rule can then
be formulated as,

∂wij(t)
∂t

= αyj(t)xi(t)− βyj(t)wij(t) = α[xi(t)− wij(t)]yj(t)

=
{

α[xi(t)− wij(t)], if j ∈ η(t)
0 if j /∈ η(t) (8)
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Fig. 5. Kohonen’s self-organizing map model. The input is connected to every cell
in the postsynaptic sheet (the map). The learning makes the map localized, in other
words different local fields will respond to different ranges of inputs. The lateral
excitation and inhibition connections are emulated by a mathematical modification,
namely local sharing, to the learning mechanism (so there are no actual connections
between cells – grey lines are used to indicate these virtual connections)

At each time step the best matching postsynaptic cell is chosen accord-
ing to the first term of the function in Eqn. (6), which is the inner product,
or correlation, of the presynaptic input and synaptic weight vectors. When
normalization is applied to the postsynaptic vectors, as it usually is, this
matching criterion is similar to the Euclidean distance measure between the
weight and input vectors. Therefore the model provides a very simple com-
putational form. The lateral interconnection between neighbouring neurons
and the ‘Mexican-hat’ excitatory or inhibitory rules are simulated (mathe-
matically) by a simple local neighbourhood excitation centred on the winner.
Thus the neuron’s lateral interconnections (both excitatory and inhibitory)
have been replaced by neighbourhood function adjustment. The neighbour-
hood function’s width can emulate the control of the exciting and inhibiting
scalars. The constrained (with a decaying or forgetting term) Hebbian learning
rule has been simplified and becomes a competitive learning model.

Most of Kohonen’s work has been in associative memories ([43]–[48], and
so on). In his studies, he has found that the spatially ordered representation of
sensory information in the brain is highly related to the memory mechanism,
and that the inter-representation and information storage can be implemented
simultaneously by an adaptive, massively parallel, and self-organizing network
[48]. This simulated cortex map, on the one hand can perform a self-organized
search for important features among the inputs, and on the other hand can
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arrange these features in a topographically meaningful order. This is why the
map is also sometimes termed the ‘self-organizing feature map’, or SOFM. In
this Chapter, however, it will be referred to by its commonly used term, the
‘self-organizing map’ (SOM), which comes from Kohonen’s original definition
and purpose, namely associative memory.

2.3 The SOM Algorithm

The SOM uses a set of neurons, often arranged in a 2-D rectangular or hexag-
onal grid, to form a discrete topological mapping of an input space, X ∈ Rn.
At the start of the learning, all the weights {w1,w2, ...,wM} are initialized
to small random numbers. wi is the weight vector associated to neuron i and
is a vector of the same dimension – n – of the input, M is the total number
of neurons, and let ri be the location vector of neuron i on the grid. Then
the algorithm repeats the steps shown in Algorithm 1, where η(ν, k, t) is the
neighbourhood function, and Ω is the set of neuron indexes. Although one can
use the original stepped or top-hat type of neighbourhood function (one when
the neuron is within the neighbourhood; zero otherwise), a Gaussian form is
often used in practice – more specifically η(ν, k, t) = exp[− ‖rν−rk‖2

2σ(t)2 ], with σ

representing the effective range of the neighbourhood, and is often decreasing
with time.

Algorithm 1 Self-Organizing Map algorithm
repeat

1. At each time t, present an input x(t), and select the winner,

ν(t) = arg min
k∈Ω

‖ x(t) − wk(t) ‖ (9)

2. Update the weights of the winner and its neighbours,

∆wk(t) = α(t)η(ν, k, t)[x(t) − wν(t)] (10)

until the map converges

The coefficients {α(t), t ≥ 0}, termed the ‘adaptation gain’, or ‘learning
rate’, are scalar-valued, decrease monotonically, and satisfy [47]:

(i) 0 < α(t) < 1; (ii) lim
t→∞

∑
α(t) →∞; (iii) lim

t→∞

∑
α2(t) < ∞; (11)

They are the same as to those used in stochastic approximation ([92,94]). The
third condition in Eqn. (11) has been relaxed by Ritter and Schulten to a less
restrictive one, namely, limt→∞ α(t) → 0 [90].
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If the inner product similarity measure is adopted as the best matching
rule,

ν(t) = arg min
k∈Ω

[wT
k x(t)] (12)

then the corresponding weight updating will become [53]:

wk(t + 1) =

{
wk(t)+α(t)x(t)

‖wk(t)+α(t)x(t)‖ k ∈ ην

wk(t) k /∈ ην

(13)

Such a form is often used in text/document mining applications (for exam-
ple, [23]).

The SOM algorithm vector-quantizes or clusters the input space and pro-
duces a map which preserves topology. It can also be and has been used for
classification. In this case, the map is trained on examples of known cat-
egories. The nodes are then classified or labelled so that the map can be
used to classify unseen samples. Various methods for labelling nodes can be
found in [59]. The classification performance can be further improved by the
Learning Vector Quantization (LVQ) algorithm [53].

3 Theories

3.1 Convergence and Cost Functions

Although the SOM algorithm has a simple computational form, a formal anal-
ysis of it and the associated learning processes and mathematical properties
is not easily realized. Some important issues still remain unanswered. Self-
organization, or more specifically the ordering process, has been studied in
some depth; however a universal conclusion has been difficult, if not impossi-
ble, to obtain. This Section reviews and clarifies the statistical and convergence
properties of the SOM and associated cost functions, the issue that still causes
confusions to many even today. Various topology preservation measures will
be analyzed and explained.

The SOM was proposed to model the sensory-to-cortex mapping thus
the unsupervised associative memory mechanism. Such a mechanism is also
related to vector quantization (VQ) [63] in coding terms. The SOM has been
shown to be an asymptotically optimal VQ [117, 126]. More importantly,
with its neighbourhood learning, the SOM is both an error tolerant VQ and
Bayesian VQ [66,68].

Convergence and ordering has only been formally proven in the trivial
one-dimensional case. A full proof of both convergence and ordering in mul-
tidimensional systems is still outstanding, although there have been several
attempts (for instance, [19,20,62,64,90,126]). [19] and [20] especially showed
that there was no cost function that the SOM will follow exactly. Such an issue
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is also linked to the claimed lack of an exact cost function that the algorithm
follows. Recent work by various researchers has already shed light on this
intriguing issue surrounding the SOM. Yin and Allison extended the Central
Limit Theorem and used it to show that when the neighbourhood reduces
to just the winner, the weight vectors (code references) are asymptotically
Gaussian distributed and will converge in a mean squares sense to the means
of the Voronoi cells – in other words, an optimal VQ (with the SOM’s nearest
distance winning rule) [126],

wk →
1

P (Xk)

∫
Vk

xp(x)dx (14)

where Vk is the Voronoi cell (the data region) for which the weight vector
wk is responsible, and p(x) is the probability density function of the data. In
general cases with the effect of the neighbourhood function, the weight vector
is a kernel smoothed mean [119],

wk →
∑T

t=1 η(ν, k, t)x(t)∑T
t=1 η(ν, k, t)

(15)

Yin and Allison have also proved that the initial state has a diminishing
effect on the final weights when the learning parameters follow the convergence
conditions [126]. Such an effect has been recently verified by [15] using Monte-
Carlo bootstrap cross validation; the ordering was not considered. In practice,
as only limited data samples are used and training is performed in finite time,
good initialization can help guide to a faster or even better convergence. For
example, initializing the map to a principal linear sub-manifold can reduce
the ordering time, if the ordering process is not a key requirement.

Luttrell first related hierarchical noise tolerant coding theory to the SOM.
When the transmission channel noise is considered, a two-stage optimization
has to be done, not only to minimize the representation distortion (as in
VQ) but also to minimize the distortion caused by the channel noise. He
revealed that the SOM can be interpreted as such a coding algorithm. The
neighbourhood function acts as the model for the channel noise distribution
and should not go to zero as in the original SOM. Such a noise tolerant VQ
has the following objective function ([66, 67]),

D2 =
∫

dxp(x)
∫

dnπ ‖ x−wk ‖2 (16)

where n is the noise variable and π(n) is the noise distribution. [18] and [78]
have also linked the SOM and this noise tolerant VQ with minimal wiring of
cortex-like maps.

When the code book (the map) is finite, the noise can be considered as
discrete, then the cost function can be re-expressed as,
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D2 =
∑

i

∫
Vi

∑
k

π(i, k) ‖ x−wk ‖2 p(x)dx (17)

where Vi is the Voronoi region of cell i. When the channel noise distribution is
replaced by a neighbourhood function (analogous to inter-symbol dispersion),
it becomes the cost function of the SOM algorithm. The neighbourhood func-
tion can be interpreted as a channel noise model. Such a cost function has
been discussed in the SOM community (for example, [32], [50], [58], [117]).
The cost function is therefore,

E(w1, · · · ,wN ) =
∑

i

∫
Vi

∑
k

η(i, k) ‖ x−wk ‖2 p(x)dx (18)

This leads naturally to the SOM update algorithm using the sample or
stochastic gradient descent method [92] – that is, for each Voronoi region, the
sample cost function is,

Êi(w1, · · · ,wN ) =
∫

Vi

∑
k

η(i, k) ‖ x−wk ‖2 p(x)dx (19)

The optimization for all weights {w1,w2, · · · ,wN} can be sought using
the sample gradients. The sample gradient for wj is,

∂Êi(w1, · · · ,wN)
∂wj

=
∂
∑

k η(i, k) ‖ x−wk ‖2

∂wj
= 2η(i, k) ‖ x−wj ‖ (20)

which leads to the SOM update rule – Eqn. (10). Note that although the
neighbourhood function ηi,k is only implicitly related to wj , it does not con-
tribute to the weight optimization, nor does the weight optimization lead to its
adaptation (neighbourhood adaptation is often controlled by a pre-specified
scheme, unrelated to the weight adaptation); thus the neighbourhood can be
omitted from the partial differentiation. This point has caused problems in
interpreting the SOM cost function in the past.

It has however been argued that this energy function is violated at bound-
aries of Voronoi cells where input has exactly the same smallest distance to
two neighbouring neurons. Thus this energy function holds mainly for the
discrete case where the probability of such boundary input points is close to
zero or the local (sample) cost function Êi should be used in deciding the
winner [32]. When a spatial-invariant neighbourhood function is used (as is
often the case), assigning the boundary input to either cell will lead to the
same local sample cost (or error), therefore any input data on the boundary
can be assigned to either Voronoi cells that have the same smallest distance
to it, just as in the ordinary manner (on a first-come-first-served fashion, for
example). Only when the neurons lie on the map borders does such violation
occur, due to unbalanced neighbourhood neurons. The result is slightly more
contraction towards to the centre (inside) of the map for the border neurons,
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compared to the common SOM algorithm, as shown in [50]. Using either the
simple distance or local distortion measure as the winning rule will result in
border neurons being contracted towards the centre of the map, especially
when the map is not fully converged or when the effective range of the neigh-
bourhood function is large. With the local distortion rule, this boundary effect
is heavier as greater local error is incurred at the border neurons due to their
few neighbouring neurons compared with any inside neurons.

To follow the cost function exactly, the winning rule should be modified
to follow the local sample cost function Êi (or the local distortion measure)
instead of the simplest nearest distance, that is,

ν = arg min
i

∑
k

η(i, k) ‖ x−wk ‖2 (21)

When the neighbourhood function is symmetric (as is often the case),
and when the data density function is smooth, this local distortion winning
rule is the same as the simplest nearest distance rule for most non-boundary
nodes, especially if the number of nodes is large. On the map borders, however,
differences exist due to the imbalance of nodes present in the neighbourhoods.
Such differences become negligible to the majority of the neurons, especially
when a large map is used, and when the neighbourhood function shrinks to
its minimum scale.

3.2 Topological Ordering

The ordering to a large extent is still an outstanding and subtle issue, largely
due to the fact that there is no clear (or agreed) definition of ‘order’ [25]. This
is the very reason why a full self-organization convergence theorem includ-
ing both statistical convergence, ordering, and the exact cost function, is still
subject to debate – which has prompted many alternatives, such as [8], [26],
and [100]. The ordering and ordered map are clearly defined only in the 1-D
trivial case. Extension to higher dimensions proves difficult, if not impos-
sible. [7] have proposed a measure called topology product to measure the
topological ordering of the map,

P =
1

N2 −N

∑
i

∑
j

log

(
j∏

l=1

dD(wi,wηo(l,i))dO(i, ηo(l, i))
dD(wi,wηD(l,i))dO(i, ηD(l, i))

) 1
2k

(22)

where dD and dO represent the distance measures in the input (or data) space,
and output (or map) space, respectively; η(l, i) represents the lth neighbour
of node i in either data (D) or map (O) space.

The first ratio in the product measures the ratio or match of weight dis-
tance sequences of a neighbourhood (up to j) on the map and in the data
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space. The second ratio is the index distance sequences of the neighbourhood
on the map and in the data space. The topographic product measures the
product of the two ratios of all possible neighbourhoods.

[109] proposed a topographic function to measure the ‘neighbourhood-
ness’ of weight vectors in data space as well as on the lattice. The neighbour-
hood-ness of the weight vectors is defined by the adjacent Voronoi cells of the
weights. The function measures the degree to which the weight vectors are
ordered in the data space as to their indexes on the lattice, as well as how
well the indexes are preserved when their weight vectors are neighbours.

Defining a fully ordered map can be straightforward using the distance
relations [117]. For example, if all the nearest neighbour nodes (on the lattice)
have their nearest neighbour nodes’ weights in their nearest neighbourhood in
the data space, we can call the map a 1st-order (ordered) map [117], that is,

d(wi,wj) ≤ d(wi,wk), ∀i ∈ Ω; j ∈ η1
i ; k /∈ η1

i (23)

where Ω is the map, and η1
i denotes the 1st-order neighbourhood of node i.

Similarly if the map is a 1st-order ordered map, and all the 2nd nearest
neighbouring nodes (on the lattice) have their 2nd nearest neighbouring nodes’
weights in their 2nd nearest neighbourhood, we can call the map is a 2nd-order
(ordered) map. For the 2nd ordered map, the distance relations to be satisfied
are,

d(wi,wj) ≤ d(wi,wk), ∀i ∈ Ω; j ∈ η1
i ; k /∈ η1

i &k ∈ η2
i ; l /∈ η2

i (24)

and so forth to define higher ordered maps with interneuron distance hierar-
chies [117].

An mth order map is optimal for tolerating channel noise spreading up
to the mth neighbouring node. Such fully ordered maps however may not be
always achievable, especially when the mapping is a dimensional reduction
one. Then the degree (percentage) of nodes with their weights being ordered
can be measured, together with the probabilities of the nodes being utilized,
can be used to determine the topology preservation and that to what degree
and to what order the map can tolerate the channel noise.

[25] proposed the C measure – a correlation between the similarity of
stimuli in the data space and the similarity of their prototypes in the map
space – to quantify the topological preservation,

C =
∑

i

∑
j

F (i, j)G[M(i), M(j)] (25)

where F and G are symmetric similarity measures in the input and map spaces
respectively, and can be problem specific, and M(i) and M(j) are the mapped
points or weight vectors of node i and j, respectively.
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The C measure directly evaluates the correlation between distance relations
between two spaces. Various other topographic mapping objectives can be uni-
fied under the C measure, such as multidimensional scaling, minimal wiring,
the travelling salesperson problem (TSP), and noise tolerant VQ. It has also
been shown that if a mapping that preserves ordering exists then maximiz-
ing C will find it. Thus the C measure is also the objective function of the
mapping, an important property different from other topology preservation
measures and definitions.

One can always use the underlying cost function Eqn. (18) to measure the
goodness of the resulting map including the topology preservation, at least
one can use a temporal window to take a sample of it as suggested in [50].
The (final) neighbourhood function specifies the level of topology (ordering)
the mapping is likely to achieve or is required. To draw an analogy to the
above C measure, the neighbourhood function can be interpreted as the G
measure used in Eqn. (25) and the ‖ x−wk ‖2 term represents the F measure.
Indeed, the input x and weight wj are mapped on the map as node index
i and j, and their G measure is the neighbourhood function (for example,
exponentials). Such an analogy also sheds light on the scaling effect of the
SOM. Multidimensional scaling also aims to preserve local similarities on a
mapped space (see the next Section for more details).

4 Extensions and Links with Other Learning Paradigms

The SOM has been a popular model for unsupervised learning as well as
pattern organization and association. Since its introduction, various exten-
sions have been reported to enhance its performance and scope. For instance,
‘Neural Gas’ was developed to map data onto arbitrary or hierarchical map
structures rather than confined to rectangular grids for improved VQ perfor-
mance [74, 75]. The adaptive subspace SOM (ASSOM) has been proposed to
combine principal component learning and the SOM to map data with reduced
feature space, in order to form translation-, rotation- and scale-invariant fil-
ters [51, 52]. The parameterized SOM (PSOM) has been proposed to extend
SOM for continuous mapping using basis functions on the grid to interpo-
late the map [112]. The stochastic SOM [26] defines a topographic mapping
from a Bayesian framework and a Markov chain encoder, and further explains
the stochastic annealing effect in SOM. The Dislex [76, 77] applies hierar-
chical topographical maps to associate cross-modal patterns such as images
with audio or symbols. The U-matrix was proposed to imprint the distance
information on the map for visualization [105]. The visualization induce SOM
(ViSOM) has been proposed to directly preserve distance information on the
map so as to visualize data structures and distributions [118, 119].

The Temporal Kohonen map [11] and its improved version, the Recurrent
SOM [108], as well as the Recursive SOM [110] have extended the SOM for
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mapping temporal data such as time series, or sequential data such as protein
sequences. Extensions along this direction continue to be a focus of research.
Extension on probabilistic approaches which enhances the scope and capa-
bility of SOM include the Self-Organizing Mixture Network (SOMN) [128],
Kernel-based topographic maps [106,107]; and the generic topographic map-
ping (GTM) [8]. There are many extensions developed in recent years – too
many to completely list here. Recent extensions are also proposed for handling
non-vectorial [55] and qualitative data [35]. For more comprehensive lists and
recent developments, please refer to [1, 13, 38, 40, 53, 83].

The remainder of this Section covers extensions of SOM and their associa-
tions with data visualization, manifold mapping, density modeling and kernel
methods.

4.1 SOM, Multidimensional Scaling and Principal Manifolds

The SOM is often associated with VQ and clustering. However it is also
associated with data visualization, dimensionality reduction, nonlinear data
projection, and manifold mapping. A brief review on various data projection
methods and their relationships has been given before [121].

Multidimensional Scaling

Multidimensional scaling (MDS) is a traditional study related to dimension-
ality reduction and data projection. MDS tries to project data points onto an
(often two-dimensional) sheet by preserving as closely as possible the inter-
point metrics [14]. The projection is generally nonlinear and can reveal the
overall structure of the data. A general fitness function or the so-called stress
function is defined as,

S =

∑
i,j(dij −Dij)2∑

i,j D2
ij

(26)

where dij represents the proximity of data points i and j in the original data
space, and Dij represents the dissimilarity or distance (usually Euclidean)
between mapped points i and j in the projected space. Note, that global
Euclidean distance is usually used to calculate the inter-point distances.
Recently, Isomap was proposed to use geodesic (curvature) distance instead
for better nonlinear scaling [102].

MDS relies on an optimization algorithm to search for a configuration
that gives as low a stress as possible. A gradient method is commonly used
for this purpose. Inevitably, various computational problems – such as local
minima and divergence – may occur due to the optimization process itself. The
methods are also often computationally intensive. The final solution depends
on the starting configuration and parameters used in the algorithm.
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Sammon mapping is a widely-known example of MDS [95]. The objective
is to minimize the differences between inter-point (Euclidean) distances in
the original space and those in the projected plane. In Sammon mapping
intermediate normalization (of the original space) is used to preserve good
local distributions and at the same time maintain a global structure. The
Sammon stress is expressed as,

SSammon =
1∑

i<j dij

∑
i<j

(dij −Dij)2

dij
(27)

A second order Newton optimization method is used to recursively solve
the optimal configuration. It converges faster than the simple gradient method,
but the computational complexity is even higher. It still has local minima
and inconsistency problems. Sammon mapping has been shown to be useful
for data structure analysis. However, like other MDS methods, the Sammon
algorithm is a point-to-point mapping, which does not provide an explicit
mapping function and cannot naturally accommodate new data points. It
also requires the computation and storage of all the inter-point distances.
This proves difficult or even impossible for many practical applications where
data arrives sequentially, the quantity of data is large, and/or memory space
for the data is limited.

In addition to being computationally expensive, especially for large data
sets, and not being adaptive, another major drawback of MDS is lack of an
explicit projection function. Thus for any new input data, the mapping has
to be recalculated based on all available data. Although some methods have
been proposed to accommodate the new arrivals using triangulation [16, 61],
the methods are generally not adaptive. However, such drawbacks can be
overcome by implementing or parameterizing MDS using neural networks –
for example, [65, 71].

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a classic linear projection method
aiming at finding orthogonal principal directions from a set of data, along
which the data exhibiting the largest variances. By discarding the minor com-
ponents, PCA can effectively reduce data variables and display the dominant
ones in a linear, low dimensional subspace. It is an optimal linear projection
in the sense of the mean-square error between original points and projected
ones, in other words,

min
∑
x

⎡
⎣x− m∑

j=1

(qT
j x)qj

⎤
⎦2

(28)

where {q, j = 1, 2, · · · , m, m ≤ n} are orthogonal eigenvectors represent-
ing principal directions. They are the first m principal eigenvectors of the
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covariance matrix of the input. The second term in the above bracket is
the reconstruction or projection of x onto these eigenvectors. The term qT

j x
represents the projection of x onto the jth principal dimension.

Traditional methods for solving the eigenvector problem involve numerical
methods. Though fairly efficient and robust, they are not usually adaptive and
often require presentation of the entire data set. Several Hebbian-based learn-
ing algorithms and neural networks have been proposed for performing PCA,
such as the subspace network [81] and the generalized Hebbian algorithm [96].
The limitation of linear PCA is obvious, as it cannot capture nonlinear rela-
tionships defined by higher than second-order statistics. If the input dimension
is much higher than two, the projection onto the linear principal plane will
provide limited visualization power.

Nonlinear PCA and Principal Manifolds

Extension to nonlinear PCA (NLPCA) is not unique, due to the lack of a
unified mathematical structure and an efficient and reliable algorithm, and in
some cases due to excessive freedom in selection of representative basis func-
tions [39,70]. Several methods have been proposed for nonlinear PCA, such as
the five-layer feedforward associative network [56] and the kernel PCA [97].
The first three layers of the associative network project the original data onto
a curve or surface, providing an activation value for the bottleneck node. The
last three layers define the curve and surface. The weights of the associa-
tive NLPCA network are determined by minimizing the following objective
function,

min
∑
x

‖ x− f{sf (x)} ‖2 (29)

where f : R1 → Rn (or R2 → Rn). The function modelled by the last three
layers defines a curve (or a surface), sf : Rn → R1 (or Rn → R2); the function
modelled by the first three layers defines the projection index.

The kernel-based PCA uses nonlinear mapping and kernel functions to
generalize PCA to NLPCA and has been used for various pattern recognition
tasks. The nonlinear function Φ(x) maps data onto high-dimensional feature
space, where the standard linear PCA can be performed via kernel functions:
k(x,y) = (Φ(x) · Φ(y)). The projected covariance matrix is then,

Cov =
1
N

N∑
i=1

Φ(xi)Φ(xi)T (30)

The standard linear eigenvalue problem can now be written as λV = KV,
where the columns of V are the eigenvectors, and K is a N ×N matrix with
elements as kernels kij := k(xi,xj) = (Φ(xi) · Φ(xi)).

The principal curves and principal surfaces [28, 60] are the principal non-
linear extensions of PCA. The principal curve is defined as a smooth and
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self-consistency curve, which does not intersect itself. Denote x as a random
vector in Rn with density p and finite second moment. Let f(·) be a smooth
unit-speed curve in Rn, parameterized by the arc length (from one end of the
curve) over Λ ∈ R, a closed interval.

For a data point x its projection index on f is defined as

ρf (x) = sup
ρ∈Λ

{ρ :‖ x− f(ρ) ‖= inf
θ
‖ x− f(θ) ‖} (31)

The curve is called self-consistent or a principal curve of ρ if

f(ρ) = E[X | ρf (X) = ρ] (32)

The principal component is a special case of the principal curves if the dis-
tribution is ellipsoidal. Although principal curves have been mainly studied,
extension to higher dimensions – for example principal surfaces or manifolds –
is feasible in principle. However, in practice, a good implementation of princi-
pal curves/surfaces relies on an effective and efficient algorithm. The principal
curves/surfaces are more of a concept that invites practical implementations.
The HS algorithm is a nonparametric method [28], which directly iterates
the two steps of the above definition. It is similar to the standard LGB VQ
algorithm [63], combined with some smoothing techniques.

Algorithm 2 The Hastie and Stuetzle (HS) algorithm
Initialization: choose the first linear principal component as the initial curve,
f (0)(x).
repeat

Projection: project the data points onto the current curve and calculate the
projections index – that is ρ(t)(x) = ρf(t)(x).
Expectation: for each index, take the mean of the data points projected onto it
as the new curve point – in other words, f t+1(ρ) = E[X | ρf(t)X = ρ].

until a convergence criterion is met (for example, when the change of the curve
between iterations falls below a threshold).

For a finite data set, the density p is often unknown, and the above expecta-
tion is replaced by a smoothing method such as the locally weighted running-
line smoother or smoothing splines. For kernel regression, the smoother is,

f(ρ) =
∑N

i=1 xiK(ρ, ρi)∑N
i=1K(ρ, ρi)

(33)

The arc length is simply computed from the line segments. There are no
proofs of convergence for the algorithm, but no convergence problems have
been reported, although the algorithm is biased in some cases [28]. Banfield
and Reftery have modified the HS algorithm by taking the expectation of the
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residual of the projections in order to reduce the bias [5]. [42] have proposed an
incremental – for example, segment-by-segment – and arc length constrained
method for practical construction of principal curves.

Tibshirani has introduced a semi-parametric model for the principal curve
[103]. A mixture model was used to estimate the noise along the curve; and the
expectation-maximization (EM) method was employed to estimate the param-
eters. Other options for finding the nonlinear manifold include the Generic
Topographic Map [8] and probabilistic principal surfaces [10]. These methods
model the data by a means of a latent space. They belong to the semi-
parameterized mixture model, although types and orientations of the local
distributions vary from method to method.

Visualization induced SOM (ViSOM)

For scaling and data visualization, a direct and faithful display of data struc-
ture and distribution is highly desirable. ViSOM has been proposed to extend
the SOM for direct distance preservation on the map [118, 119], instead of
using a colouring scheme such as U-matrix [105], which imprints qualitatively
the inter-neuron distances as colours or grey levels on the map. For the map
to capture the data structure naturally and directly, (local) distance quanti-
ties must be preserved on the map, along with the topology. The map can
be seen as a smooth and graded mesh, or manifold embedded into the data
space onto which the data points are mapped and the inter-point distances
are approximately preserved.

In order to achieve that, the updating force, x(t)−wk(t), of the SOM algo-
rithm is decomposed into two elements [x(t)−wν(t)] + [wν(t)−wk(t)]. The
first term represents the updating force from the winner ν to the input x(t),
and is the same to the updating force used by the winner. The second force is
a lateral contraction force bringing neighbouring neuron k to the winner ν. In
the ViSOM, this lateral contraction force is constrained or regulated in order
to help maintain unified local inter-neuron distances ‖ wν(t)−wk(t) ‖ on the
map.

wk(t + 1) = wk(t) + α(t)η(v, k, t)[x(t) −wν(t)] + β[wν(t)−wk(t)] (34)

where the simplest constraint can be β = dνk

(Dνkλ)−1 , with dνk being the dis-
tance of neuron weights in the input space, Dνk the distance of neuron indexes
on the map, and λ a (required) resolution constant.

ViSOM regularizes the contraction force so that the distances between
nodes on the map are analogous to the distances of their weights in the data
space. The aim is to adjust inter-neuron distances on the map in proportion
to those in the data space, in other words Dvk ∝ dvk. When the data points
are eventually projected onto a trained map, the distance between point i
and j on the map is proportional to that of the original space, subject to the
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quantization error (the distance between a data point and its neural represen-
tative). This has a similar effect to MDS, which also aims at achieving this
proportionality, Dij ∝ dij .

The SOM is shown to be a qualitative scaling, while the ViSOM is a met-
ric scaling [124]. The key feature of ViSOM is that the distances between the
neurons (which data are mapped to) on the map (in a neighbourhood) reflect
the corresponding distances in the data space. When the map is trained and
data points mapped, the distances between mapped data points will resem-
ble approximately those in the original space (subject to the resolution of
the map). This makes visualization more direct, quantitatively measurable,
and visually appealing. The map resolution can be enhanced (and the compu-
tational cost reduced) by interpolating a trained map or incorporating local
linear projections [122]. The size or covering range of the neighbourhood func-
tion can also be decreased from an initially large value to a final smaller one.
The final neighbourhood, however, should not contain just the winner. The
rigidity or curvature of the map is controlled by the ultimate size of the neigh-
bourhood. The larger this size, the flatter the final map is in the data space.
Guidelines for setting these parameters have been given in [120]. An example
on data visualization will be shown in the next Section.

Several authors have since introduced improvements and extensions to
ViSOM. For example, in [116], a probabilistic data assignment [26] is used in
both the input assignment and the neighbourhood function; also an improved
second order constraint is adopted. The resulting SOM has a clearer connec-
tion to an MDS cost function. Estévez and Figueora extend the ViSOM to
an arbitrary, neural gas type of map structure [21]. Various other variants of
SOM, such as hierarchical, growing, and hierarchical and growing structures
are readily extendable to the ViSOM for various application needs.

The SOM has been related to the discrete principal curve/surface algo-
rithm [91]. However differences remain in both the projection and smoothing
processes. In the SOM the data are projected onto the nodes rather than
onto the curve. The principal curves perform the smoothing entirely in the
data space – see Eqn. (33). The smoothing process in SOM and ViSOM, as a
convergence criterion, is [120],

wk =
∑L

i=1 xiη(ν, k, i)∑L
i=1 η(ν, k, i)

(35)

Smoothing is governed by the indexes of the neurons in the map space.
The kernel regression uses the arc length parameters (ρ, ρi) or ‖ ρ − ρi ‖
exactly, while the neighbourhood function uses the node indexes (ν, k) or
‖ rν − rk ‖. Arc lengths reflect the curve distances between the data points.
However, node indexes are integer numbers denoting the nodes or positions
on the map grid, not the positions in the input space. So ‖ rν − rk ‖ does
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not resemble ‖ wν − wk ‖ in the common SOM. In the ViSOM, however,
as the local inter-neuron distances on the map represent those in the data
space (subject to the map resolution), the distances of nodes on the map are
in proportion to the difference of their positions in the data space, that is
‖ rν − rk ‖ ∼ ‖ wν −wk ‖. The smoothing process in the ViSOM resembles
that of the principal curves as shown below,

wk =
∑L

i=1 xiη(ν, k, i)∑L
i=1 η(ν, k, i)

≈
∑L

i=1 xiη(wν ,wk, i)∑L
i=1 η(wν ,wk, i)

(36)

This shows that ViSOM is a better approximation to the principal curves/
surfaces than the SOM. SOM and ViSOM are similar only when the data
are uniformly distributed, or when the number of nodes becomes very large,
in which case both SOM and ViSOM will closely approximate the principal
curves/surfaces.

4.2 SOM and Mixture Models

The SOM has been linked with density matching models and the point density
that the SOM produces is related to the density of the data. However the SOM
does not exactly follow the data density. Such properties have been studied
and treated under the VQ framework [17, 54, 67, 89, 117].

The self-organizing mixture network (SOMN) [128] extends and adapts
the SOM to a mixture density model, in which each node characterizes a
conditional probability distribution. The joint probability density of the data
or the network output is described by a mixture distribution,

p(x | Θ) =
K∑

i=1

pi(x | θi)Pi (37)

where pi(x | θi) is the ith component-conditional density, and θi is the parame-
ter for the ith conditional density, i = 1, 2, · · · , K; Θ = (θ1, θ2, · · · , θK)T , and
Pi is the prior probability of the ith component or node and is also called
the mixing weights. For example, a Gaussian mixture has the following the
conditional densities respectively,

pi(x | θi) =
1

(2π)d/2 |
∑

i |1/2
exp

[
−1

2
(x−mi)T

∑
i

−1
(x−mi)

]
(38)

where θi = {mi,
∑

i} are the mean vector and covariance matrix, respectively.

Suppose that the true environmental data density function and the esti-
mated one are p(x) and p̂(x), respectively. The Kullback-Leibler information
distance measures the divergence between these two, and is defined as,
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I = −
∫

log
p̂(x)
p(x)

p(x)dx (39)

It is always positive and is equal to zero only when two densities are
identical.

When the estimated density is modelled as a mixture distribution, one
can seek the optimal estimate of the parameters by minimizing the Kullback-
Leibler divergence via its partial differentials in respect to model parameters,
more specifically,

∂I
∂θi

= −
∫ [

1
p̂(x | Θ̂)

∂p̂(x | Θ̂)
∂θi

]
p(x)dx, i = 1, 2, · · · , K (40)

As the true data density is not known, the stochastic gradient is used
for solving these non-directly solvable equations. This results in the following
adaptive update rules for the parameters and priors [129],2

θ̂i(t + 1) = θ̂i(t) + α(t)η(ν(x), i)

[
1

p̂(x | Θ̂)
∂p̂(x | Θ̂)

∂θi

]

= θ̂i(t) + α(t)η(ν(x), i)

[
P̂i(t)∑

j P̂i(t)p̂j(x | θj)
∂p̂i(x | Θ̂i)

∂θi

]
(41)

and

P̂i(t + 1) = P̂i(t) + α(t)

[
p̂i(x | θ̂i)P̂i(t)

p̂(x | Θ̂)
− P̂i(t)

]

= P̂i(t)− α(t)η(ν(x), i)
[
P̂ (i | x)− P̂i(t)

]
(42)

where α(t) is the learning coefficient or rate at time step t (0 < α(t) < 1),
and decreases monotonically. The winner is found via the maximum posterior
probability of the node,

P̂ (i | x) =
P̂ip̂i(x | θ̂i)∑

j p̂(x | Θ̂)
(43)

When the SOMN is limited to the homoscedastic case – namely equal
variances and equal priors (non-informative priors) for all components – only
the means are the learning variables. The above winner rule becomes,

v = argmax
i

p̂i(x | θ̂i)∑
j p̂j(x | θ̂j)

(44)

2 A common neighbourhood function, η(ν(x), i), can be added as in the SOM, but
is optional.
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When the conditional density function is isotropic or symmetric or is a
function of ‖ x−m ‖, the above winning rule is a function of commonly used
Euclidean norm ‖ x−m ‖. The corresponding weight updating rule is,

mi(t + 1) = mi(t) + α(t)η(ν(x), i)
1∑

j pj(x | θj)
∂pi(x | θi)

∂mi
(45)

For example, for a Gaussian mixture with equal variance and prior for all
nodes, it is easy to show that the winning and mean update rules become,

v = arg max
i

[
exp

(
−‖ x−mi ‖2

2σ2

)]
(46)

and

mi(t + 1)

= mi(t) + α(t)η(ν(x), i)
1

2σ2

1∑
j pj(x | θj)

exp

(
−‖ x−mi ‖2

2σ2

)
(x−mi)

(47)

The winning rule becomes equivalent to the simple distance measure. The
update formula bear a similarity to that of the original SOM. The term
exp
(
− ‖x−mi‖2

2σ2

)
is playing a similar role as the neighbourhood function,

defined by the distances between weights and input instead of node indexes.
The SOM approximates it by quantizing it using node indexes. The SOMN
is also termed a ‘Bayesian SOM’, as it applies the Bayesian learning principle
to the SOM learning rule [129].

4.3 SOM and Kernel Method

A kernel is a function K : X × X → R, where X is the input space. This
function is a dot product of the mapping function φ(x) – in other words
K(x;y) = [φ(x), φ(y)], where φ : X → F, F being a high dimensional inner
product feature space. The mapping function φ(x) is often nonlinear and
not known. All the operations are defined in terms of the kernel function
instead of the mapping function. The kernel methodology has become increas-
ingly popular within supervised learning paradigms, with the Support Vector
Machine (SVM) being a widely known example. When nonlinearly mapping
data or patterns to high dimensional space, the patterns often become linearly
separable.

The kernel method has also been applied to the SOM. Following the kernel
PCA [97], a k-means based kernel SOM has been proposed [69]. Each data
point x is mapped to the feature space via a (unknown or imaginary) nonlinear
function φ(x). In principle each mean can be described as a weighted sum of
the observations in the feature space mi =

∑
n γi,nφ(xn), where {γi,n} are
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the constructing coefficients. The algorithm then selects a mean or assigns a
data point with the minimum distance between the mapped point and the
mean,

‖ φ(x−mi ‖2 = ‖ φ(x −
∑

n

γi,nφ(xn) ‖2

= K(x,x) − 2
∑

n

γi,nK(x,xn) +
∑
n,m

γm,nK(xn,xm) (48)

The update of the mean is based on a soft learning algorithm,

mi(t + 1) = mi(t) + Λ[φ(x −mi(t)] (49)

where Λ is the normalized winning frequency of the ith mean and is defined as,

Λ =
ζi(x),j∑t+1
n=1 ζi,n

(50)

where ζ is the winning counter and is often defined as a Gaussian function
between the indexes of the two neurons.

As the mapping function φ(x) is not known, the update rule (Eqn. (49))
is further elaborated and leads to the following updating rules for the
constructing coefficients of the means [69],

γi,n(t + 1) =
{

γi,n(t)(1 − ζ), for n 
= t + 1
ζ, for n = t + 1 (51)

Note that these constructing coefficients, {γi,n}, together with the ker-
nel function, effectively define the kernel SOM in feature space. The winner
selection – that is, Eqn. (48) – operates on these coefficients and the kernel
function. No explicit mapping function φ(x) is required. The exact means or
neurons’ weights – {mi} – are not required.

There is another, direct way to kernelize the SOM by mapping the data
points and neuron weights, both defined in the input space, to a feature space,
then applying the SOM in the mapped dot product space. The winning rules
of this second type of kernel SOM have been proposed as follows, either in
the input space [85],

v = arg min
i
‖ x−mi ‖ (52)

or in the feature space [4],

v = arg min
i
‖ φ(x)− φ(mi) ‖ (53)

It will soon become clear that these two rules are equivalent for certain
kernels, such as the Gaussian. The weight update rule proposed by [4] is,
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mi(t + 1) = mi(t) + α(t)η(v(x), i)∆J(x,mi) (54)

where J(x,mi) = ‖ φ(x) − φ(mi) ‖2 is the distance function in the feature
space or the proposed instantaneous or sample objective function. and are the
learning rate and neighbourhood function, respectively.

Note that,

J(x,mi) = ‖ φ(x) − φ(mi) ‖2 = K(x,x) +K(mi,mi)− 2K(x,mi) (55)

and,

∇J(x,mi) =
∂K(mi,mi)

∂mi
− 2

∂K(x,mi)
∂mi

(56)

Therefore this kernel SOM can also be operated entirely in the feature
space with the kernel function. As the weights of the neurons are defined in
the input space, they can be explicitly resolved.

These two kernel SOMs have been proved equivalent ([59], [123]); they can
all be derived from applying the energy function (Eqn. (18)) on the mapped
feature space,

EF =
∑

i

∫
vi

∑
j

η(i, j) ‖ φ(x) − φ(mj) ‖2 p(x)dx (57)

The kernel SOM can be seen as a result of directly minimizing this trans-
formed energy stochastically, in other words, by using the sample gradient on∑

j η(v(x), j) ‖ φ(x) − φ(mj) ‖2,

∂ÊF

mi
=

∂

mi

∑
j

η(ν(x), j) ‖ φ(x) − φ(mj) ‖2 = −2η(ν(x), i)∇J(x,mj) (58)

This leads to the same weight update rule of the kernel SOM as Eqn. (54).

Various kernel functions such as Gaussian (or radial basis function),
Cauchy and polynomial, are readily applicable to the kernel SOM [59]. For
example, for Gaussian kernel, the winning and weight update rules are,

v = argmin
i

J(x,mi) = arg min
i

[−2K(x−mi)] (59)

= argmin
i

[
−exp

(
−‖ x−mi ‖2

2σ2

)]
and,

mi(t + 1) = mi(t) + α(t)η(ν(x), i)
1

2σ2
exp

(
−‖ x−mi ‖2

2σ2

)
(x−mi) (60)

respectively. Please note for Gaussian kernel functions, although the winning
rule (Eqn. (59)) is derived from the feature space, it is equivalent to that of
the original SOM and is conducted in the input space.
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Comparing the kernel SOM algorithm (Eqns. (59) and (60)) with those of
the SOMN (Eqns. (46) and (47)), it can be easily seen that the two methods are
the same [123]. That is, the kernel SOM (with Gaussian kernels) is implicitly
applying a Gaussian mixture to model the data. In other words, the SOMN is
a kind of kernel method. As the SOM is seen as a special case of the SOMN,
the original SOM has a certain effect of the kernel method.

5 Applications and Case Studies

Thousands of applications of the SOM and its variants have been reported
since its introduction [40,53,83] – too many to list here. There is a dedicated
international Workshop on SOMs (WSOM), as well as focused sessions in
many neural network conferences. There have also been several special journal
issues dedicated to advances in SOM and related topics [1, 13, 38]. Moreover,
many new applications are being reported in many relevant journals today.
SOMs will remain an active topic in their continued extension, combination
and applications in the years to come.

In this Section, several typical applications are provided as case stud-
ies. They include image and video processing; density or spectrum profile
modeling; text/document mining and management systems; gene expres-
sion data analysis and discovery; and high dimensional data visualizations.
Other typical applications not discussed here include image/video retrieval
systems – for instance, PicSOM [57]; nonlinear ICA (Nonlinear PCA and
ICA) [27,31,37,82,84]; classification (LVQ) [53]; cross-modal information pro-
cessing and associations [76,77]; novelty detection [73]; robotics [6]; hardware
implementation [98]; and computer animation [113].

5.1 Vector Quantization and Image Compression

The SOM is an optimal VQ when the neighbourhood eventually shrinks to
just the winner, as it will satisfy the two necessary conditions for VQ (Voronoi
partition and centroid condition). The use of the neighbourhood function
makes the SOM superior to common VQs in two main respects. Firstly, the
SOM is better at overcoming the under- or over-utilization and local minima
problem. The second is that the SOM will produce a map (codebook) with
some ordering (even when the neighbourhood eventually vanishes) among the
code vectors, and this gives the map an ability to tolerate noise in the input
or retrieval patterns. An example is provided in Fig. 6, in which (b) shows the
16× 16 codebook trained on the Lena test image of 512× 512 pixels by SOM
with distinctive ordering found among the code vectors; and (a) shows the
quantized Lena image by the trained codebook. The code vectors are of 4× 4
pixel blocks.
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(a) (b)

Fig. 6. (a) Quantized Lena image; (b) the SOM codebook (map)

It has been found that SOMs generally perform better than other VQs
especially in situations where local optima are present [117]. The robustness
of SOM has been further improved by introducing a constraint on the learning
extent of a neuron based on the input space variance it covers. The algorithm
is aiming to achieve global optimal VQ by limiting and unifying the distortions
from all nodes to approximately equal amounts – the asymptotic property of
the global optimal VQ (in other words, for a smooth underlying probability
density and large number of code vectors as all regions in an optimal Voronoi
partition have the same within region variance). The constraint is applied to
the scope of the neighbourhood function so that the node covering a large
region (thus having a large variance) has a large neighbourhood. The results
show that the resulting quantization error is smaller. Such a SOM-based VQ
has also been applied to video compression [2, 22] for improved performance
at low bit rates.

5.2 Image Segmentation

The SOM has been used in a hierarchical structure, together with the Markov
random field (MRF) model, for the unsupervised segmentation of textured
images [125]. The MRF is used as a measure of homogeneous texture features
from a randomly placed local region window on the image. Such features
are noisy and poorly known. They are input to a first SOM layer, which
learns to classify and filter them. The second local-voting layer – a simplified
SOM – produces an estimate of the texture type or label for the region. The
hierarchical network learns to progressively estimate the texture model, and
classify the various textured regions of similar type. Randomly positioning
the local window at each iteration ensures that the consecutive inputs to the
SOMs are uncorrelated. The size of the window is large at the beginning to
capture patch-like texture homogeneities and shrinks with time to reduce the
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(a) (b)

Fig. 7. (a) An aerial image; (b) segmented image using the SOM and Markov
random field

estimation parameter noise at texture boundaries. The weights of the neurons
in the first layer will converge to the MRF model parameters of various texture
types, whilst the weights of the second layer will be the prototypes of these
types – that is, the segmented image. The computational form of the entire
algorithm is simple and efficient. The theoretical analysis of the algorithm
shows that it will converge to the maximum likelihood segmentation. Figure 7
shows a typical example of such applications. The number of texture types was
subjectively assumed as four. Interestingly, the algorithm has segmented the
image into four meaningful categories: ‘trees’, ‘grass’, ‘buildings’, and ‘roads’.

5.3 Density Modeling

Some function profiles (such as spectra) can be considered as density
histograms. If a spectrum consists of many components, then the SOMN
described in Sect. 4.2 can be used to estimate the component profiles of the
spectrum [128, 129]. Re-sampling the observed spectrum will provide distri-
bution data for training. The x-ray diffraction patterns of crystalline complex
organic molecules (such as proteins) consist of a large number of Bragg diffrac-
tion spots. These patterns represent the intensity Fourier transform of the
molecular structure (actually the electron density maps); the crystallogra-
phers need to determine the precise position of each spot together with its
magnitude (namely, integrated spot intensity). The patterns exhibit relatively
high background noise together with spot spreading (due to shortcomings in
the experiments or limitations in the detection processes), which results in
overlapping spots. Automatic analysis of these patterns is a non-trivial task.
An example of such a pattern image is shown in Fig. 8(a), which is an 8-bit
greyscale and of size 88×71 pixels. In order for the SOMN to learn the profiles
of these diffraction spots, the image (diffraction intensity function) has to be
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Fig. 8. (a) X-ray diffraction pattern (part); (b) modelled profiles by a 20 × 20
SOMN (from [129])

re-sampled to provide distribution data. A set of training data (10,647 points
in total) was obtained by double sampling this image. A 400-neuron SOMN,
arranged in a 20 × 20 grid, was used to learn this density. In this case, the
number of spots (peaks or components) in a pattern (a mixture) will not gen-
erally be known a priori. The initial positions of the neurons were regularly
placed inside the data space – in other words, a [1, 88] × [1, 71] rectangular
grid. The initial variances were assigned equally to a diagonal matrix with the
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diagonal values equal to a fraction of the grid size, and the initial mixing priors
were assigned equally to 1/400. The grid was pre-ordered to save unnecessary
computational cost as this is a mapping with the same dimension.

After a few learning cycles, the SOMN allocated the spots to the Gaus-
sian kernels and decomposed the overlapping ones. Individual neurons and
their parameters provide centre (mean vectors) and width (covariance matri-
ces) information for relevant spots. The total intensity of each peak is readily
obtainable and is simply related to its mixing weight. The result of the esti-
mation after five epochs is shown in Fig. 8(b). The number of active nodes
(that is, surviving ones) is much less than the initial guess of 400. The SOMN
has dynamically fitted to the correct mixture number and suppressed others.
As the updating at each input was limited to a small area (3× 3 – the winner
and its first order neighbourhood, in this example), the SOMN required a
much lighter computational effort than updating the entire network at each
input (as the EM algorithm would). This becomes particularly advantageous
when the number of the nodes is large. In this example, The EM algorithm
of the same size would require approximately 400/(3 × 3) ≈ 44 times more
computing effort than the SOMN.

5.4 Gene Expression Analysis

The SOM has been applied as a valid and useful tool for clustering gene expres-
sions [80,104]. Several attempts have been made to deal with ordered sequence
or temporal sequences using SOM. A common approach is to use the trajec-
tories of consecutive winning nodes on the SOM. Other methods are based on
modification of the learning topology by introducing recurrent connections,
for example the Temporal Kohonen Maps (TKM) or Recurrent SOM (RSOM)
mentioned in Sect. 4. In TKM the participation of earlier input vectors in each
unit is represented by using a recursive difference equation which defines the
current unit activity as a function of the previous activations and the current
input vector. In the RSOM, which is a modification of the TKM, the scalar
node activities of the TKM are replaced by difference vectors defined as a
recursive difference equation of the new input, the previous difference vectors,
and the weight vectors of the units. One potential problem with recurrent
models is stability. In the case of temporal gene expression clustering, the
data items presented to the map are not a spatial vector, but a sequence with
time order in itself. They are time-series corresponding to the expression levels
over time of a particular gene. Therefore, if a common 2-D SOM is used, the
trained map can then be used to mark the trajectories of the expressions of
the genes for comparison purposes.

We approach the temporal extension of SOM from another perspective,
this being the similarity metric. If the similarity metric takes into account tem-
poral properties, then the neurons in the resultant map will exhibit temporal
relationships. As time is one dimensional, a 1-D SOM is more appropriate.
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In addition, a circular (that is, a closed 1-D SOM), can further detect
cyclic temporal characteristics [80]. A novel temporal metric termed the
co-expression coefficient has been defined as [79],

ce(x, y) =
∫

x′y′dt√∫
x′2dt

∫
y′2dt

(61)

where x and y are two (often modelled, thus smoothed) gene expression pro-
files; x′ and y′ are their derivatives. It can be seen that the co-expression
coefficient is the correlation coefficient of the derivatives of the profiles. Com-
paring the derivatives of the two better profiles rather than directly on the
two profiles captures their temporal properties.

Two yeast cell cycle datasets (208 and 511 genes) were modelled using
RBFs and then the modelled profiles were differentiated [80]. The Bayesian
information criterion was used to validate the number of clusters obtained by
the circular SOM. Each node presents the smaller distance only to its two
neighbouring nodes in a chain-ordered fashion, this implies that characteristic
traits are split or merged with larger or fewer number of clusters without
changing the order or relation between them. Figure 9 presents the resulting
SOMs and prototype profiles of the clusters. It can be easily seen that topology
exists among the profiles. The topological order here refers to the time shift.
This demonstrates that the proposed method is able to group profiles based on
their temporal characteristics and can automatically order the groups based
on their periodical properties.

Genes identified as cell-cycle-regulated by traditional biological methods
have been used to evaluate the performance of the proposed technique. The
result shows that the obtained clusters have high relevance to the distribution
of these genes among the cell cycle phases identified by biological methods,
compared with other clustering methods [80].

Neuron 8
G2

43.5 min,
107 min.

Neuron 6
M/G1

11.4 min,
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Fig. 9. Circular SOMs for clustering temporal gene expressions (yeast cell cycle
dataset): (a) 208-gene dataset; (b) 511-gene dataset (from [80])
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5.5 Data Visualization

Data projection and visualization has become a major application area for
neural networks, in particular for the SOMs [53], as its topology preserving
property is unique among other neural models. Good projection and visual-
ization methods help to identify clustering tendency, to reveal the underlying
functions and patterns, and to facilitate decision support. A great deal of
research has been devoted to this subject, and a number of methods have
been proposed. A recent review on this subject can be found in [121].

The SOM has been widely used as a visualization tool for dimensionality
reduction (for instance, [34,41,53,105]). The SOM’s unique topology preserv-
ing property can be used to visualize the relative mutual relationships among
the data. However, the SOM does not directly apply to scaling, which aims to
reproduce proximity in (Euclidean) distance on a low visualization space, as it
has to rely on a colouring scheme (for example, the U-matrix method [105]) to
imprint the distances crudely on the map. Often the distributions of the data
points are distorted on the map. The recently proposed ViSOM [118–120],
described in Sect. 4.1, constrains the lateral contraction force between the
neurons in the SOM and hence regularizes the inter-neuron distances with
respect to a scalable parameter that defines and controls the resolution of
the map. It preserves the data structure as well as the topology as faithfully
as possible. ViSOM provides a direct visualization of both the structure and
distribution of the data. An example is shown in Fig. 10, where a 100 × 100

Fig. 10. Mapping and visualization of the iris data set: (top left) PCA, (top right)
Sammon mapping; (bottom left) SOM with U matrix Colouring, (bottom right)
ViSOM
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Fig. 11. Manifold mapping by various methods: (top left) original S-shape data
and ViSOM embedding, (top right) Isomap projection; (bottom left) LLE projection,
(bottom right) ViSOM projection

(hexagonal) ViSOM was used to map the 4-D Iris data set; it gives direct
visualization of data distribution, similar to Sammon mapping. Although, the
SOM with colouring can show the gap between iris setosa and the rest, it is
impossible to capture the data structure and represent the data proximity on
the map.

Usually for a fine mapping, the resolution parameter needs to be set to a
small value. Moreover, a large number of nodes, that is a large map, is required,
as for all discrete mappings. However such a computational burden can be
greatly reduced by interpolating a trained map [127], or by incorporating a
local linear projection on the trained low resolution map [122].

A comparison with other mapping methods, such as PCA, Sammon map-
ping, Isomap and Local Linear Embedding (LLE) [93] on a highly nonlinear
‘S’ shape manifold is also shown in Fig. 11. In this example, the resolution of
the ViSOM is enhanced [122].

5.6 Text Mining and Information Management

With drastically increasing amounts of unstructured content available elec-
tronically within an enterprise or on the web, it is becoming inefficient if
not impossible to rely on human operators to manually annotate electronic
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documents. (Web) content management systems have become an important
area of research for many applications, such as e-libraries, enterprise por-
tals, e-commerce, software content management, document management, and
knowledge discovery. The documents, generated in an enterprise either cen-
trally or locally by employees, are often unstructured or arranged in ad hoc
manner (for example, emails, reports, web pages, presentations). Document
management addresses many issues, such as storage, indexing, security, revi-
sion control, retrieval and organization of documents. Many existing full-text
search engines return a large ranked list of documents, many of which are irrel-
evant. This is especially true when queries are short and very general words
are used. Hence document organization has become important in information
retrieval and content management.

The SOM has been applied to organize and visualize vast amounts of tex-
tual information. Typical examples include the Welfaremap [41] and WEBSOM
[34]. Many SOM variants have been proposed and applied to document
organization, for instance, TreeGCS [33] and the growing hierarchical-SOM
(GH-SOM) [88]. The main advantage of SOM is the topology preservation
of input space, which makes similar topics appear closely on the map. Most
of these applications however are based on 2-D maps and grids, which are
intuitive for the concept of a digital library. However such a presentation of
information (mainly document files) is counter to all existing computer file
organizers and explorers, such as MS Windows Explorer.

We present a new way of utilizing the SOM as a topology-preserving man-
ifold tree-structure for content management and knowledge discovery [23].
The method can generate a taxonomy of topics from a set of unannotated,
unstructured documents. It consists of a hierarchy of self-organizing grow-
ing chains, each of which can develop independently in terms of size and
topics. The dynamic development process is validated continuously using a
proposed entropy-based Bayesian information criterion. Each chain meeting
the criterion spawns child chains, with reduced vocabularies and increased spe-
cializations. This results in a topological tree hierarchy, which can be browsed
like a table of contents directory or web portal. A typical tree is shown in
Fig. 12. The approach has been tested and compared with several existing
methods on real world web page datasets. The results have clearly demon-
strated the advantages and efficiency in content organization of the proposed
method in terms of computational cost and representation. The preserved
topology provides a unique, additional feature for retrieving related topics
and confining the search space.

An application prototype developed based this method is shown in Fig. 13.
The left panel displays the generated content tree with various levels and
preserved topology on these levels. The right panel shows the details of a
selected level or branch or a particular document. The method bears a similar
interface to many computer file managers, especially the most popular MS
Windows Explorer style.
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Fig. 12. A typical result of using a topological tree structure for organizing
documents
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Fig. 13. Screen shot of a document management system developed using a
topological tree structure

6 Summary and Future Directions

This Chapter provides an overview and review on the self-organizing map
(SOM). First, it reviewed the biological background of SOM and showed that
it is a simplified and abstract mathematical model of the retina-cortex map-
ping based on Hebbian learning and the lateral inhibition phenomena. Then
from the mathematics of the algorithm, we discussed and explained its under-
lying cost function and various measures for mapping quality. Then its variant,
the visualization induced SOM (ViSOM), was proposed for preserving local
metrics on the map, and reviewed for use in data visualization and nonlinear
manifold mapping. The relationships between SOM, ViSOM, multidimen-
sional scaling, principal curve/surface, kernel PCA and several other nonlinear
projection methods were analyzed and discussed. Both the SOM and ViSOM
are multidimensional scaling methods and produce nonlinear dimension-
reduction mapping or manifold of the input space. The SOM was shown to
be a qualitative scaling method, while the ViSOM is a metric scaling method
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and approximates a discrete principal curve/surface. The SOM has also been
extended to a probabilistic model and the resulting self-organizing mixture
model also reveals that self-organization is an entropy-related optimization
process. Furthermore, such a self-organizing model naturally approximates
the kernel method. Examples and typical applications of SOM and ViSOM in
the context of pattern recognition, clustering, classification, data visualization
and mining, and nonlinear manifolds were presented.

Future challenges lie in several areas. First, although the SOM-related
methods are finding wide application in more and more fields, to make the
methods more efficient, robust and consistent is a key challenge, especially for
large-scale, real-world applications. To adapt the methods for various input
formats and conditions, such as temporal sequences and qualitative inputs, is
also an on-going research focus. For general pattern recognition, the SOM may
have more potential than implied by current practice, which often limits the
SOM to a 2-D map and empirically chosen model parameters. Ways of apply-
ing and extending SOM for optimal clustering and classification also need to be
investigated further. Last but not the least, to make this biologically inspired
model more biologically relevant is also a key challenge. The model may have
to be further extended in order to deal with complex biological signals and
networks, for example in handling spikes and more importantly multiple,
perhaps inhomogeneous and population spike trains. A synergy with other
biologically relevant models seems necessary for modeling large-scale complex
biological systems, especially the brain. Neural coding is widely studied under
information theory. Probabilistic extensions of the SOM may provide useful
tools in deciphering and interpreting the information content and relationships
conveyed among stimuli and responses.
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