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Abstract. New trends in consumer electronics have created a strong de-
mand for fast, reliable and user-friendly key agreement protocols. How-
ever, many key agreement protocols are secure only against passive
attacks. Therefore, message authentication is often unavoidable in order
to achieve security against active adversaries. Pasini and Vaudenay were
the first to propose a new compelling methodology for message authenti-
cation. Namely, their two-party protocol uses short authenticated strings
(SAS) instead of pre-shared secrets or public-key infrastructure that are
classical tools to achieve authenticity. In this article, we generalise this
methodology for multi-party settings. We give a new group message au-
thentication protocol that utilises only limited authenticated communica-
tion and show how to combine this protocol with classical key agreement
procedures. More precisely, we describe how to transform any group key
agreement protocol that is secure against passive attacks into a new pro-
tocol that is secure against active attacks.

Keywords: Groups, multi-party,message authentication, key agreement.

1 Introduction

Recently, Pasini and Vaudenay [18] analysed a peer-to-peer Voice over IP (VoIP)
protocol and deduced that two users starting an (insecure) call through the In-
ternet can build an authenticated channel thanks to their ability to recognise
the voice and behaviour of the other speaker. This channel can thus be used
to exchange authenticated data. In particular, exchanging Diffie-Hellman [10]
public values leads to a shared secret key. As such messages are very long, they
proposed to use a message cross-authentication (MCA) protocol instead of au-
thenticating them directly. Indeed, an MCA protocol sends messages through
an insecure channel and then authenticates them by using short authenticated
strings (SAS), e.g. 20 bits. Similar protocols are used in Bluetooth and WUSB
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standards for authentication [14]. Different from other approaches such as certifi-
cate chains and password-based authentication, the security can be introduced
as an afterthought—there is no need for a supporting infrastructure, the mere
presence of limited authentic communication is sufficient.

The main aim of this article is to extend the SAS-based methodology pre-
viously outlined in [21] from a two-party setting to a group setting. Namely,
manual authentication can be used to secure group key agreement protocols,
i.e., group members can establish a shared secret over an insecure network. Af-
terwards, the group can use standard cryptographic methods to establish secure
communication. The corresponding group formation protocol significantly sim-
plifies common key establishment and works even if the participants of the group
are not known ahead. Although the group structure is often predetermined, e.g.
participants of the conference calls know to whom they want to talk, ad hoc
group formation is quite common, too. The most obvious example is automatic
device detection in wireless networks. In particular, a user may form a secure
piconet from all accessible Bluetooth devices. Ad hoc formation of secure WLAN
groups is another natural example both in the military and civil context.

In principle, two party protocols are sufficient to establish message authenti-
cation for groups. On the other hand, such an approach requires a lot of user-
interaction that diminishes usability of the corresponding solutions in practical
applications. It is clearly more convenient to join 10 guest computers into a
WLAN network together, than repeat the same procedure over and over again.
Motivated by this concern, we propose a new SAS-based group authentication
protocol that significantly minimises the required user interaction, see Section 3.
Essentially, the amount of user interaction for the pairwise and group authen-
tication coincides—user has to remember only single test value. The latter is
significantly more convenient than operating with 10 different test values that
are needed when we iterate pairwise authentication protocol.

The security of our SAS-based protocol is based on the non-malleability of a
commitment scheme. Each user chooses a secret key, then commits to it while
revealing the input message to be authenticated. When all participants have
committed, then the secrets are opened. Next, each party uses an almost univer-
sal hash function to compute a test value from the received messages and secrets
and then compares it with the others using authenticated communication. Thus,
an adversary that wants to modify input messages has to find a “collision” on
the hash function or break the commitment scheme. The corresponding security
proof itself is straightforward but technical due to the complicated nature of
non-malleability. All definitions that are needed for the formal proof are given
in Sections 2 and 3 and the proof itself is presented in Section 4.

Section 6 provides a solution to the group key agreement problem. Shortly
put, we can achieve immunity against active attacks if we first run a standard
group key agreement protocol over the insecure channel and then authenticate
the corresponding protocol transcript. Moreover, if we additionally authenti-
cate some long term public keys, then we can form separate subgroups without
relying on authenticated communication. In other words, there is no need for
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additional user interaction when we decide to expel some group members. Such
an “authenticate once” philosophy is particularly useful in the context of wireless
home networks, as it provides a simple and provably secure method for hosting
guest computers in the network for limited time.

2 Cryptographic Preliminaries

All of our results are stated in the framework of exact security, i.e., our main
goal is to construct protocols that are secure against all t-time adversaries. In
particular, all security properties are formally specified by a game or a game pair
between an adversary A and a challenger C. For a single game G, the advantage
is defined by Adv(A) = Pr [GA = 1]. For a game pair G0, G1, the advantage is
defined Adv(A) = |Pr [GA

0 = 1] − Pr [GA
1 = 1]|. Typically, one requires that for

all t-time adversaries A the advantage Adv(A) is upper bounded by ε. Of course,
all results can be translated back to the non-uniform polynomial security model
by considering asymptotics.

Keyed Hash Functions. A keyed hash function h : M × R → T takes two
arguments: a message m ∈ M and a key r ∈ R, and outputs a digest t ∈ T . A
hash function h is εu-almost universal, if for any two inputs x0 �= x1,

Pr [r ∈u R : h(x0, r) = h(x1, r)] ≤ εu .

The notion can be extended to handle n sub-keys of the same domain, i.e.,
h : M × Rn → T . A hash function h is εu-almost universal w.r.t. the sub-key
pairs, if for any two inputs x0 �= x1, indices i, j and r1, . . . , rn, r̂1, . . . , r̂n ∈ R:

Pr [r∗ ∈u R : h(x0, r) = h(x1, r̂)] ≤ εu ,

where r = (r1, . . . , ri−1, r∗, ri+1, . . . , rn), r̂ = (r̂1, . . . , r̂j−1, r∗, r̂j+1, . . . , r̂n) and
i = j is allowed. That is, output values are likely to be different if the corre-
sponding hash functions share at least one correctly formed sub-key r∗ ∈u R. A
function h is εr-almost regular w.r.t. to the sub-key ri, if for any x, r̂1, . . . , r̂n, y:

Pr [ri ∈u Ri : h(x1, r̂1, . . . , r̂i−1, ri, r̂i+1, . . . , r̂n) = y] ≤ εr .

We need a hash function that is εu-almost universal and εr-almost regular
and could handle variable number of sub-keys at the same time. A priori it is
not clear that such hash functions exist. Therefore, we give one possible ex-
plicit construction. Let all sub-keys be from {0, 1}2s and messages from {0, 1}s

for a certain integer s which bound the message space. To hash a message
x, we first compute an intermediate key a ← r1 ⊕ · · · ⊕ rn; split a into two
halves a1, a2; interpret x, a1, a2 as elements of the Galois field GF(2s) and define
h(x, r1, . . . , rn) = a1x + a2 over GF(2s). If x0 �= x1 then it is straightforward to
verify that a pair h(x0, r), h(x1, r̂) is uniformly distributed over {0, 1}2s in the
universality experiment. To get shorter hash values, we can output � lowest bits.
Then the hash function has optimal bounds εr = εu = 2−�.
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Common Reference String Model. In the common reference string (CRS)
model, a trusted third party generates system wide initial parameters pk and
automatically transfers them to all participants. Most of the communication and
computation efficient commitment schemes are specified for the CRS model.

Although such a model seems quite restrictive at first glance, all communica-
tion standards provide system-wide public parameters such as specifications of
hash functions or a bit length of public keys. In other words, the CRS model
is not problem in practise. Nevertheless, one should make a trade-off between
computational efficiency and reusability and the size of system-wide public pa-
rameters pk. Also, there are theoretic constructions that allow generation of a
common reference string in the standard model.

Commitment Schemes. A commitment scheme Com is specified by a triple
(setup, commit, open). The setup algorithm setup generates public parameters pk
for the commitment scheme. The randomised commitment algorithm commitpk :
M → C × D maps messages m ∈ M into a commitment string c ∈ C of fixed
length and a decommitment value d ∈ D. Usually the decommitment value is a
pair d = (m, r), where r is the randomness used to compute c. A commitment
scheme is functional if for all (c, d) ← commitpk(m) the equality openpk(c, d) = m
holds. Incorrect decommitment values should yield a special abort value ⊥.

Proofs usually rely on three cryptographic properties of commitment schemes:
hiding, binding and non-malleability. Non-malleability is the strongest property,
as binding and hiding properties directly follow from non-malleability and not
vice versa. Many notions of non-malleable commitments have been proposed
in cryptographic literature [11,9,12,7,14]. All these definitions try to capture
requirements that are necessary to defeat man-in-the-middle attacks. We adopt
the modernised version of non-malleability w.r.t. opening. The corresponding
definition [14] mimics the framework of non-malleable encryption [5] and leads to
more natural security proofs compared to the simulation based definitions [9,7].

Non-malleability and security against chosen ciphertext attacks (CCA) are
known to be tightly coupled. In fact, these notions coincide if the adversary is al-
lowed to make decryption queries throughout the entire attack [1] and thus usage
of decryption oracles can simplify many proofs without significantly increasing
the security requirements. Unfortunately, a similar technique is not applicable
to commitment schemes as there can be several different valid decommitment
values di for a single commitment c. Thus, we must use explicit definitions of
binding and non-malleability properties in our proofs. A commitment scheme
Com is (t, εb)-binding if for any t-time adversary A :

Advbind
Com(A) = Pr

[
pk ← setup, (c, d0, d1) ← A(pk) :
⊥ �= openpk(c, d0) �= openpk(c, d1) �= ⊥

]
≤ εb ,

The non-malleability property is defined by complicated games, and thus we use
an illustrative pictorial style to specify security games, see Fig. 1. Intuitively, the
goal is: given a valid commitment c, it is infeasible to generate related commit-
ments ĉ1, . . . , ĉn that can be successfully opened after seeing a decommitment
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A
Gnm

0
C

A1(pk)
pk←−−−−−−−−−−

MGen−−−−−−−−−−→
pk ← setup
x0 ← MGen

A1(c)
c←−−−−−−−−−−

σ,ĉ1,...,ĉn−−−−−−−−−−→
(c, d)←commitpk(x0)
Abort if ĉj = c

A1(d)
d←−−−−−−−−−−

d̂1,...,d̂n−−−−−−−−−−→ ŷj ←openpk(ĉj , d̂j)

A2(·)
σ, x0 ,ŷ1,...,ŷn

←−−−−−−−−−−
out−−−−−−−−−−→ Return out

A
Gnm

1
C

A1(pk)
pk←−−−−−−−−−−

MGen−−−−−−−−−−→
pk ← setup
x0, x1 ← MGen

A1(c)
c←−−−−−−−−−−

σ,ĉ1,...,ĉn−−−−−−−−−−→
(c, d)←commitpk(x0)
Abort if ĉj = c

A1(d)
d←−−−−−−−−−−

d̂1,...,d̂n−−−−−−−−−−→ ŷj ←openpk(ĉj , d̂j)

A2(·)
σ, x1 ,ŷ1,...,ŷn

←−−−−−−−−−−
out−−−−−−−−−−→ Return out

Fig. 1. Non-malleability games Gnm
0 and Gnm

1

value d. More formally, the adversary A consists of two parts: A1 corresponds to
the active part of the adversary that tries to create and afterwards open com-
mitments related to c while A2 captures a desired target relation. Note that A1
is a stateful algorithm and can pass information from one stage to the other but
no information can be passed from A1 to A2 except σ. By convention, a game
is ended with the output ⊥ if any operation leads to ⊥.

Fig. 1 should be read as follows. In Gnm
0 , a challenger C first generates the pub-

lic parameters pk. Given pk, the adversary outputs a message generator MGen.
Next, the challenger C selects x0 ← MGen and computes (c, d). Given c, the
adversary outputs some commitment values ĉi and an advice σ for A2 and then,
given d he generates some decommitment values d̂i. Finally, C opens all com-
mitments ŷi ← openpk(ĉi, d̂i) and tests whether A1 won or not by computing
A2(σ, x0, ŷ1, . . . , ŷn). The condition ĉj �= c eliminates trivial attacks. The game
Gnm

1 is almost the same, except the challenger tests a relation A2(σ, x1, ŷ1, . . . , ŷn)
instead, where x1 ← MGen is chosen independently from the rest of the game. A
commitment scheme is (t, εnm)-non-malleable w.r.t. to opening if for any adver-
sary A such that the working times of Gnm

0 and Gnm
1 are less than t, the advantage

Advnm
Com(A) = |Pr [Gnm

0 = 1] − Pr [Gnm
1 = 1]| ≤ εnm .

Note that A2 can be any computable relation that is completely fixed after seeing
c. For instance, we can define A2(σ, x, y) = [x = y]. Hence, it must be infeasible
to construct a commitment ĉ that can be opened later to the same value as c.

Non-malleable commitments schemes can be easily constructed based on
simulation-sound trapdoor commitments from Mac-Kenzie and Yang [16] as de-
tailed by Vaudenay [21]. They can also be built using a CCA2 secure encryption
scheme, or by using a hash function as detailed by Laur and Nyberg [14].

3 Manual Group Message Authentication

Although our final goal is to establish a secure group key agreement protocol,
we start from the group message authentication. Since active attacks can be
detected by group authentication, any cryptographic key agreement protocol
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secure against passive attacks can be made fully-secure, see Theorem 1 in [18]
and Section 6.

Communication Model. As usual, the communication is asynchronous. Par-
ticipants can send two types of messages. Insecure in-band communication is
routed via an active adversary A who can drop, delay, modify and insert mes-
sages. But participants can also send short authenticated strings (SAS) aka out-
of-band messages. Out-of-band communication is authentic: the adversary can
only read and possibly delay SAS messages.

Note that there are no true broadcast channels in our model. Although sev-
eral networks such as WLAN in ad hoc mode offer physical broadcast channels,
there are no guarantees that the signal actually reaches all nodes. If we can
guarantee this by physical means, then the authentication task becomes triv-
ial. Otherwise, different recipients can receive different broadcast messages and
there is no difference between broadcasting and standard messaging except for
efficiency. Similarly, broadcasting authenticated messages does not change the
security analysis, although in practise, broadcasting can significantly reduce the
necessary human interaction and make the protocol more user-friendly. For in-
stance, considering the Bluetooth pairing, a human entering the same PIN on
each mobile device is considered a broadcast primitive. Considering a VoIP-based
conference, when participants are talking together, they use an (insecure) au-
thenticated channel that broadcasts messages. The authentication comes from
the ability of other users to recognise the speaker, e.g. by its voice and behaviour.

It is hard to formalise desired security properties for group authentication,
as there are many different attack scenarios and security goals. Hence, we first
consider a simple stand-alone security model and then gradually extend our
definitions to cover more complex settings including key agreement protocols.

Idealised Functionality. Consider a network P1, . . . , PN of N nodes. A node
name is a label id ∈ {1, . . . , N} that uniquely determines the corresponding node
Pid. In principle, node names can be non-consecutive such as hardware addresses,
i.e., {1, . . . , N} is only a set of potential group members. A group message au-
thentication (GMA) protocol for an n-element subgroup G = {id1, . . . , idn} works
as follows: each participant Pid, id ∈ G starts with inputs mid and ends with out-
puts G and m, where m = (mid1 , . . . , midn) is ordered w.r.t. the sender identities
id1 < id2 < · · · < idn. In other words, given G and m it is trivial to restore who
participated in the protocol and what was its input.

Stand-Alone Security. There are several important aspects to note. First, a
group may be dynamically formed based on the participation in a GMA protocol,
for example fast setup of ad hoc military networks. But then an adversary can
always split the group into several subgroups and block the traffic between the
subgroups. As a result, each subgroup agrees on a different output. Such attacks
cannot be defeated unless parties know the description of G in advance, i.e.,
there is some authenticated way to broadcast G. Second, an adversary may set
up several dummy network nodes in order to corrupt communication or secretly
shuffle different groups. Thus, we consider a scenario where a subset G of all



SAS-Based Group Authentication and Key Agreement Protocols 203

network nodes wants to establish a common message m. At the end of the
protocol, either all participants halt or each Pid, id ∈ G obtains values Ĝid and
m̂id. We allow adaptive malicious corruption1 of group participants, i.e., at any
time during the protocol execution A can take total control over any node Pid.

Let H ⊆ G be the set of uncorrupted participants at the end of the protocol.
Then the adversary A succeeds in deception if at least two uncorrupted group
members α, β ∈ H have different outputs (Ĝα, m̂α) �= (Ĝβ , m̂β) and the group
was not trivially split, i.e., G ⊆ Ĝγ for some γ ∈ H. In other words, at least one
honest participant gets messages from all members of G. Formally, it is impossible
to assure G = Ĝγ , as an honest party cannot distinguish whether a node freely
joined or was forced to join by A. If the question of free will is irrelevant, then
we can postulate that after the successful execution honest participants obtain
G. This is the maximum achievable security level, as honest members cannot
detect corruption and missing messages caused by the splitting of the network.
An alternative is to state correctness for each subgroup separately, but then
protocol instances are run in parallel and this is covered by Section 5.

Since commitment schemes are often defined only for common reference string
model, we give the security definition in the CRS model. To assure reusability
of public parameters, we must consider chosen input attacks. More precisely, an
adversary A can choose the group members G and their contributed messages
mid depending on the shared authentic common reference string pk ← setup.
The advantage of A against a protocol instance π is defined as

Advforge
π (A) = Pr [pk ← setup, (m, G) ← A(pk) : A succeeds in deception] .

A protocol instance π is (t, ε)-secure in the stand-alone model if for any t-time
adversary A, the corresponding advantage is bounded Advforge

π (A) ≤ ε.
Note that stand-alone security model covers only the case where no other

protocols are executed together with π. In particular, it is not clear whether
parallel execution of several different instances of π remains secure. We will
return to this issue in Section 5 and show that parallel composition remains
secure if some natural assumptions are satisfied. Still, for many cases where
GMA is used once, the stand-alone security is sufficient. For example, many ad
hoc groups use GMA to share a common secret to establish secure channels.

4 A SAS-Based Group Message Authentication Protocol

Our new group message authentication protocol SAS-GMA (See Fig. 2) borrows
ideas from Vaudenay’s cross-authentication protocol SAS-MCA [21, App. A] and
Mana IV [14,19]. Both aforementioned protocols use commitments to temporar-
ily hide certain keys. Similarly to SAS-MCA, all sub-keys are released after the
adversary has delivered all messages. And similarly to Mana IV, messages mi

are sent in the clear and authenticated test values are �-bit hash codes.
1 In many cases, adaptive corruption is impossible, but with our new protocol being

secure against adaptive corruption, it makes no sense to consider weaker models.



204 S. Laur and S. Pasini

As the SAS-GMA protocol is symmetric, Fig. 2 only specifies the behaviour of
a single party Pi who wants to participate in the protocol. Here Ĝi denotes the
group of participants who joined Pi during the first round before the timeout.
Of course, if the group Ĝi is known beforehand then Pi can wait until all other
group members have sent their first messages. For clarity, variables m̂ji, ĉji, d̂ji

denote the values from Pj that are received by Pi. The hats indicate a possible
modification by an adversary. The output vector m̂ = (m̂ji) and the sub-key
vector r̂i = (r̂ji) are ordered w.r.t. sender identities, see Section 3. To be exact,
m̂ii = mi, r̂ii = ri and j ranges over Ĝi. Also note that (i, ri) and (Ĝi, m̂i) are
shorthands for binary strings that uniquely encode the corresponding elements.

Pi with input mi j ∈ Ĝi \ {i}

R1: Pick ri ∈u R
(ci, di)←commitpk(i, ri)
Wait for (j, m̂ji, ĉji) until timeout

broadcast(i,mi,ci)−−−−−−−−−−−−−−−−−→
j,m̂ji,ĉji←−−−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−−−

R2: Save a description of Ĝi.
∀j : (j, r̂ji) ← openpk(ĉji, d̂ji)
Abort if abnormal behaviour

broadcast(di)−−−−−−−−−−−−−−−−−→
d̂ji←−−−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−−−

SAS: Form m̂i, r̂i from received m̂ji, r̂ji.
sasi ← h((Ĝi, m̂i), r̂i)
Abort if some sasj �= sasi

Output Ĝi, m̂i

auth-broadcast(sasi)−−−−−−−−−−−−−−−−−→
sasj←−−−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−−−

Fig. 2. The proposed SAS-GMA Protocol

Implementation Details. The cryptographic requirements for the hash func-
tion h and the commitment scheme Com are formally specified by Theorem 1,
but there are many other minor details that are not covered by Fig. 2.

Assume that the final output (Ĝi, m̂i) can be always encoded as s-bit string.
Then the hash function h : {0, 1}s × R∗ → T must support variable number of
sub-keys rj , since the size of the group can vary. For example, we can use a single
keyed hash function h1 and some sort of secure combiner to derive a new master
key from sub-keys, as described in Section 2. The restriction (Ĝi, m̂i) ∈ {0, 1}s

is not limiting in practise, as we can use collision resistant hash functions like
SHA-256 to compress an encoding of any length to 256-bit string.

Secondly, we assume that the description of h and the public parameters of
Com are fixed and distributed by a trusted authority. Thirdly, we assume that
a participant Pi halts if there is any hint of an attack: (a) some group member
halts; (b) there are duplicates (j, m̂ji, ĉji) �= (j, m̂′

ji, ĉ
′
ji); (c) a sub-key is in

invalid form (j, 	) �= openpk(ĉji, d̂ji); (d) some SAS messages do not match.
Another important aspect is secure comparison of SAS messages. In principle,

it is sufficient to deliver minimal amount of messages so that participants can
detect sasα �= sasβ for α, β ∈ G, where G is the set of all active participants
of the protocol. If it is possible to detect all these active nodes, then a single
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node can broadcast the SAS message so that the remaining nodes can compare
to their SAS messages. For many applications such as securing conference calls
over VoIP, forming Bluetooth piconets and other wireless device networks, the
group is known in advance and thus broadcast of a single SAS message is a
viable option. Also note that the group formation can be combined with node
detection in the Bluetooth networks and thus the timeout effect is marginal.

Stand-Alone Security. The security proof for SAS-GMA is straightforward
but quite technical. Hence, we present the proof of Theorem 1 in smaller chunks
to make it more comprehensible. Note that the security level depends linearly on
|G| but the constant term max {εu, εr} ≈ 1/ |T | ≈ 2−� dominates over the term
n · εnm + εb. Therefore, the deception probability asymptotically approaches the
theoretical lower bound 2−�.

Theorem 1. Let n be the maximal size of the group G and h be εu-almost
universal w.r.t. each sub-key pair and εr-almost regular w.r.t. each sub-key.
Then for any t there exists τ = t + O(1) such that if the commitment scheme
is (τ, εb)-binding and (τ, εnm)-non-malleable, then the SAS-GMA protocol is
(t, n · εnm + εb + max {εu, εr})-secure in the stand-alone model.

Proof. For a sake of contradiction, assume that t-time adversary B violates the
bound on the deception probability. Then we transform B to an adversary against
the non-malleability games Gnm

0 , Gnm
1 depicted in Fig. 1. The exact reduction is

depicted on Fig. 3 and explained further in Lemma 1 and 2. Here, we just note
that A1 simulates an instance π of the SAS-GMA protocol for B so that A2 can
compute the predicate ‘B succeeds in deception’ in the non-malleability game.

More precisely, A1 replaces the commitment ck of Pk by the challenge com-
mitment c ← commitpk(k, r) for r ∈u R. As A1 can pass information to A2 only
via the commitment vector ĉ and the advice σ, then the predicate ‘B succeeds
in deception’ must be computable from σ, ĉ and corresponding decommitment
vector d̂. The latter is possible only if Pk is the last honest party to release his
decommitment value dk, see Lemma 2. Thus, A1 must choose k randomly from
the group G provided by B after seeing pk. Lemma 1–3 establish

Advnm(A) = Pr [A1 �= ⊥] · |Pr [Gnm
0 = 1|A1 �= ⊥] − Pr [Gnm

1 = 1|A1 �= ⊥]|

≥ 1
n

(Advforge(B) − εb) − 1
n

· max {εu, εr} > εnm .

As the working time of (A1, A2) is τ = t+2tπ +O(n) = t+O(1) where tπ is the
working time of the honest parties, we have reached a desired contradiction. �


Lemma 1. The sub-adversary A1 described below satisfies Pr [A1 �= ⊥] ≥ 1
n ·

(Advforge(A) − εb) and the challenger C never halts unless A1 = ⊥.

Proof. The sub-adversary A1 sketched by Fig. 3 first forwards pk to B that
replies G and m. Hence, A1(pk) can choose k ∈u G and return a description
of the uniform distribution over {k} × R as MGen. Given c ← commitpk(k, rk),
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B A C
pk←−−−−−−−−−

G,m−−−−−−−−−→
Choose k ∈u G

MGen ← {k} ×R A1(pk)

pk←−−−−−−−−−
MGen−−−−−−−−−→

pk ← setup

(i,mi,ci)←−−−−−−−−−←−−−−−−−−−
(i,m̂ij ,ĉij)

−−−−−−−−−→−−−−−−−−−→
di←−−−−−−−−−←−−−−−−−−−
d̂ij−−−−−−−−−→−−−−−−−−−→

Simulate π for G:
� set inputs to m
� follow the specifications
� let ck ← c
If dk is required,

pass all variables to A2

through σ and ĉ A1(c)

c←−−−−−−−−−

σ, ĉ−−−−−−−−−→

x0, x1 ← {k} ×R
(c, d) ← commitpk(x0)

di←−−−−−−−−−←−−−−−−−−−
d̂ij−−−−−−−−−→−−−−−−−−−→

� let dk ← d and continue.
halt if F1 ∨ F2 ∨ F3 A1(d)

d←−−−−−−−−−
d̂−−−−−−−−−→

Compute Ĝi, r̂i, m̂i, sasi i ∈ H.
Output out = 0 if either:
� ∀γ ∈ H : G �⊆ Ĝγ

� ∃α, β ∈ H : sasα �= sasβ

� ∀α, β ∈ H : (Ĝα, r̂α)=(Ĝβ , r̂β)
else out = 1 A2(·)

σ, xb, ŷ←−−−−−−−−−

out−−−−−−−−−→

ŷji ← openpk(ĉji, d̂ji)

Output out

Fig. 3. Reduction to the NM game Gnm
b for b ∈ {0, 1}

the sub-adversary A1 can continue simulation of π so that ck ← c and collect
all messages received by all nodes in G. To be precise, the simulation follows
the specification of SAS-GMA except for computing ck, dk. In particular, if B
corrupts Pi, then A1 gives the control over Pi to B as in the real execution of π
(If Pk is corrupted then dk must be released). The simulation continues until Pk

must release dk. To proceed, A1 passes all variables that are needed to compute
the predicate ‘B succeeds in deception’ to C:

1. Compute sets I = {(j, i) : ĉji �= c} and J = {(j, i) : ĉji = c}.
2. Send sets I, J , G, all observed m̂ji, and current value of H as σ to C.
3. Send all plausible commitments ĉ = (ĉji) for (j, i) ∈ I to C.

Then the challenger C releases d, and A1 continues the simulation of π with
dk ← d until the end and halts if one of the following conditions is satisfied:

F1: The adversary B fails in deception.
F2: A double opening is revealed: openpk(c, d) �= openpk(c, d̂ji) �= ⊥.
F3: The node Pk is not the last honest node to reveal the decommitment.

By this construction, Pr [¬F1] = Advforge
π (B) and Pr [F2] ≤ εb or otherwise A1 can

be used to defeat the binding property of the commitment scheme. Note that
the simulation is perfect and thus Pk is the last honest node that releases dk

with probability2 1
|G| . The latter is true even if ¬F1 and ¬F2 and we obtain

Pr [A1 �= ⊥] = Pr [¬F3|¬F1 ∧ ¬F2] · Pr [¬F1 ∧ ¬F2] ≥ 1
n

· (Advforge
π (B) − εb) .

2 Note that B cannot succeed if it corrupts all nodes and thus w.l.o.g. that H �= ∅.
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Finally, note that C halts only if some d̂ji is an invalid decommitment value but
then B fails also in the simulation of π and A1 = ⊥. �


Lemma 2. If A1 �= ⊥ in the game Gnm
0 , then A2 described below correctly recov-

ers the end state of the simulation and thus Pr [Gnm
0 = 1|A1 �= ⊥] = 1.

Proof. Assuming that A1 �= ⊥, then the simulation conducted by A1 ended
with a successful deception. As Pk was indeed the last honest node to release dk,
then m̂ji, r̂ji for indices (j, i) ∈ I ∪ J are sufficient to recover all SAS messages
computed by H. By the construction, (j, r̂j) = openpk(ĉji, d̂ji) = ŷji for (j, i) ∈ I
and openpk(ĉji, d̂ji) = openpk(c, d) = x0 for (j, i) ∈ J since F2 cannot happen.
As a result, A2 can compute all m̂i and r̂i for i ∈ H by setting (k, rkk) ← xb

and replacing openpk(ĉji, d̂ji) calls with appropriate values specified above. Then
it remains to restore sasi ← h((Ĝi, m̂i), r̂i) for i ∈ H and test sasα = sasβ for
α, β ∈ H and output 1 in case of deception. Recall that deception happens only
if the test values sasα match but some (Ĝα, m̂α) �= (Ĝβ , m̂β) and G ⊆ Ĝα.

As A2 computes the predicate ‘B succeeds in deception’ and since A1 �= ⊥
implies ¬F1, we have Pr [Gnm

0 = 1|A1 �= ⊥] = 1. �


Lemma 3. Let A2 be as described in Lemma 2. Then we can bound the condi-
tional probability Pr [Gnm

1 = 1|A1 �= ⊥] ≤ max {εu, εr}.

Proof. Assuming that A1 �= ⊥, then the simulation conducted by A1 ended
with a successful deception. Consequently, c = commitpk(k, rk) could have been
broadcast only as ĉki, otherwise B would have failed in deception. Therefore,
I ⊆ {k} × H and Ĝi, m̂i and all components of r̂i except r̂ki for i ∈ H are fixed
when A2 starts. Next, we bound the probability sasα = sasβ for α, β ∈ H.

Consider the authentic broadcast of ck first, i.e., the case I = {k} × H. The
condition ¬F1 implies (Ĝα, m̂α) �= (Ĝβ , m̂β) for some α, β ∈ H. As x1 ∈u {k}×R
the universality of h w.r.t. to all sub-key pairs3 yields

Pr [r̂k ∈u R : h((Ĝα, m̂α), . . . , r̂k, . . .)=h((Ĝβ , m̂β), . . . , r̂k, . . .)] ≤ εu

where . . . denote the fixed components of r̂α and r̂β . So, we have obtained
Pr [A2 = 1|I = {k} × H] ≤ Pr [sasα = sasβ |I = {k} × H] ≤ εu.

In the remaining case, let H0 be the set of honest nodes that receive ck, i.e.,
I = {k} × H0. Since there is a compulsory node γ such H ⊆ G ⊆ Ĝγ there are
nodes α ∈ H0 and β ∈ H\H0 such that A2 compares sasα and sasβ . Moreover, α,
β and sasβ are fixed before x1 and almost regularity w.r.t. all sub-keys provides

Pr [r̂k ∈u R : h((Ĝα, m̂α), . . . , r̂k, . . .) = sasβ ] ≤ εr

where . . . denote the fixed components of r̂α. Therefore, we have proved the
desired claim, i.e. Pr [Gnm

1 = 1|A1 �= ⊥] ≤ max {εu, εr}. �


3 Note that the varying components r̂kα = r̂kβ can be in different locations of r̂α, r̂β.
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5 Security of Parallel Compositions

The parallel composition of message authentication protocols is often insecure
although a single instance of the protocol is secure in a stand-alone setting.
The phenomenon is caused by shared long term secrets. Bellare and Rogaway
formalised a corresponding security model [3,4] where an adversary can execute
several protocol instances concurrently and succeeds in deception if at least one
protocol reaches an accepting state with incorrect outputs. The model was later
extended to capture security of key agreement protocols [2] and then used in the
context of manual authentication [21,20,17,18].

The possible security drop emerges only if two protocol instances are not sta-
tistically independent, i.e., share long-term keys. Clearly, an independent pro-
tocol instance cannot help the adversary, as the adversary can generate the
protocol transcript himself. Therefore, the SAS-GMA protocol can be securely
composed with any other protocol, provided that the following restrictions hold:

R1: Randomness used in the SAS-GMA instance is freshly generated.
R2: The output (G, m) is never used before all parties reach accepting state.
R3: The SAS messages determine unique instance of SAS-GMA.
R4: All group members have different identities, i.e., G is indeed a set.

The claim itself is valid for any protocol but we prove only that the SAS-GMA
protocol is self-composable. The proof for the general case is analogous but
requires a very fine-grained formalism similar to [15, p. 394–396] and provides
no additional insight. Due to the space limitations, we omit such dubious details.

Bellare-Rogaway Model. Similarly to the stand-alone setting, an adversary
A has complete control over the protocol participants G and their inputs m and
in addition adaptive corruption is allowed. However, as opposed to the stand-
alone model, A can adaptively launch4 new instances π(i) of the protocol for
G(i) and m(i). The adversary A succeeds in deception if the end state of at least
one protocol instance π(i) is invalid, i.e., honest parties accept different outputs.
Since a single instance of SAS-GMA has non-negligible deception probability we
must bound the number of protocol instances that can be launched. A protocol
π is (t, q, ε)-self-composable if any t-time adversary A that can launch up to q
instances of π succeeds in deception with probability less than ε.

The SAS-GMA protocol in the original form is not suitable for parallel ex-
ecution, as a party Pi who receives two first round messages from Pj cannot
decide whether Pi invites him to participate in two separate group authentica-
tion protocols or an adversary tries to attack a single protocol instance. There
must be a legitimate way to divide message between several protocols. As a so-
lution, we assume that each protocol has an initiator Pi who first broadcasts or
sends directly to group members a unique tag tag for the GMA protocol and
tag is appended as an identifier to each protocol message. We emphasise that an
adversary can alter tag. To assure condition R3, no participant Pi can have two
parallel runs of SAS-GMA with the same set of participants Ĝi.
4 See [2] for the thorough formalisation of the Bellare-Rogaway model.
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Theorem 2. Let the parameters of SAS-GMA protocol be such that a SAS-GMA
instance is (t, ε)-secure in the stand-alone model. Then the protocol instances are
also (τ, q, qε)-self-composable for τ = t−O(1) if restrictions R1–R4 are satisfied.

Proof. Let B be such a τ -time adversary that contradicts the claim. W.l.o.g. we
can assume that an adversary launches the protocol instances in the following
way. First, it chooses the initiator Pi and then the set of participants that get
the introduction message tag from Pi and decide to reply. Second it provides
the corresponding inputs to the participants. For simplicity, assume that tag ∈
{1, . . . , q} and let εtag denote the probability that B succeeds in deception w.r.t.
the instance π(tag). By the assumption ε1 + · · · + εq > qε. Hence, we have the
following simple reduction strategy A. Given pk from C:

1. Choose a protocol instance k ∈u {1, . . . , q}.
2. Simulate the Bellare-Rogaway model until B specifies Gk and m̂k.
3. Send Gk and m̂k to the challenger C in the stand-alone model.
4. Continue the simulation by generating all messages tagged by tag �= k.
5. Obtain other messages with tag = k from the stand-alone environment.
6. If required by B, corrupt the true nodes in the stand-alone environment.

Clearly, A provides a perfect simulation of the Bellare-Rogaway model, thus

Pr [A succeeds in deception] =
ε1 + · · · + εq

q
> ε

and we have a desired contradiction. �


Note 1. Recall that we had a problem in the stand-alone model if an adversary
decided to split the group. The latter cannot happen anymore as the initiator is
always in Ĝi and thus all nodes in the group must have same SAS test values.

6 Manually Authenticated Group Key Agreements

The main application of manual group message authentication (MGMA) is to
establish a commonly shared secret key among the group members. We show
how to combine MGMA with any group key agreement (GKA) protocol so that
the resulting group key agreement protocol is secure against active attacks.

There is a trade-off between the security and the amount of authenticated
communication. For many practical applications, the SAS message consists of 6
digits and thus has only 20 bits of entropy. So, an adversary can always succeed in
deception with probability 2−20. On the other hand, 2−20 is also the probability
of not noticing an active attack. The latter is small enough to demotivate most
of the possible attackers. Consequently, the subjective security level can be much
higher, for example 2−40 if the probability of an active attack is below 10−6.

Of course, the cryptographic security levels can be achieved only with suffi-
ciently long SAS messages. Therefore, it is important to minimise the amount of
manually authenticated communication in scenarios where nodes can form many
subgroups. In particular, it should be easy to exclude corrupted nodes from the
group without transferring any additional SAS messages.



210 S. Laur and S. Pasini

Idealised Functionality. A group key agreement protocol π between n partic-
ipants G = {id1, . . . , idn} starts with no input, is independent from the current
state, and outputs G and a shared common secret key key ∈u K.

Immunity Against Active Attacks. A group key agreement protocol π is
(t, ε)-immune against active attacks if for any t-time adversary A that can choose
a group G = {id1, . . . , idn} then the probability that uncorrupted parties H do
not detect active attack is less than ε. Obviously, any GKA protocol that is
(t, ε1)-immune against active attacks and (t, ε2)-secure against passive attacks is
also (t, ε1 + ε2)-secure, as long as both definitions are given in the same attack
model. For many practical cases, stand-alone security is sufficient.

Burmester-Desmedt Key Agreement Protocol. The Burmester-Desmedt
(BD) key agreement protocol [8] is provably secure against passive attacks [6] and
thus is a perfect starting point for a manually authenticated GKA. Though the
Burmester-Desmedt GKA protocol is a generalisation of the Diffie-Hellman key
agreement protocol, it can also be generalised for other two-party key agreement
protocols, see the compiler of Just and Vaudenay [13]. For simplicity, consider
a group of n participants5 P0, . . . , Pn−1 arranged in a ring, see Fig. 4. The
protocol has two rounds over an authenticated channel, while most of the schemes
requires O(n) rounds. Here, let g be a generator of a q-element secure Diffie-
Hellman Decision Group G. At the end of the protocol, each participant Pi

obtains k̂eyi = gk1k2+k2k3+...+knk1 , see Appendix A.

Pi j ∈ G \ {i}
R1: Pick ki ∈u Zq and set zi ← gki

broadcast(zi)−−−−−−−−−−−−−−−→
zj←−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−

R2: Xi ←
(

zi+1
zi−1

)ki

keyi ← (zi−1)nki ·Xn−1
i ·Xn−2

i+1 · . . . ·Xi−2

Output keyi

broadcast(Xi)−−−−−−−−−−−−−−−→
Xj←−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−

Fig. 4. The BD Group Key Agreement Protocol

New Manually Authenticated Group Key Agreement. Ideally, group
members should run manually authenticated GKA only once to obtain a com-
mon group key key and long-term pairwise authentication keys, which provides
possibility to re-run ordinary GKA protocols without additional SAS messages.
The long-term pairwise authentication keys are formed based on Diffie-Hellman
key exchange and the group key key generated by the BD GKA, see Fig. 5.

As the transcript of the BD GKA is authenticated with the SAS-GMA, the
protocol is immune against active attacks with the same guarantees as Theorem 1
and Theorem 2 specify. Moreover, any two parties α, β ∈ H can establish a
pairwise secret key keyα,β = f(gxαxβ ), as they both know the corresponding

5 The protocol can be trivially generalised to any n-element group G.



SAS-Based Group Authentication and Key Agreement Protocols 211

Pi j ∈ Ĝi \ {i}

R1: Generate a Diffie-Hellman pair (xi, yi):
� xi ∈u Zq, yi ← gxi

Start the BD protocol:
� ki ∈u Zq , zi ← gki

broadcast(yi,zi)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−
R2-3:

SAS:

Continue with the BD protocol:
� Compute Xi.

Use the SAS-GMA protocol
� to authenticate mi ← (yi, zi, Xi).

broadcast(i,mi,ci)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−
broadcast(di)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−

auth-broadcast(sasi)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−
P0: If the SAS-GMA was accepting:

� Output key and G according BD.
� Store xi and yj , j ∈ G for later use.

Fig. 5. The final SAS-based AKA Protocol with simplified notations

long-term public keys yi = gxi for all group members i ∈ G. Hence, they can use
any classical authentication protocol to protect new instances of GKA against
active attacks. In particular, we can merge small groups G1, G2, if there is an
honest party Pi ∈ G1 ∩G2, by sending all intergroup communication through Pi.

Of course, if the formed group is known to have a static nature, then one can
skip the setup of long-term Diffie-Hellman keys keyα,β .

7 Applications and Conclusion

As shown in this article, our new SAS-based group message authentication pro-
tocol is provably secure in any computational context, provided that simple and
natural restrictions R1–R4 are fulfilled. We also provided proofs under the natu-
ral non-malleability requirement that must be satisfied for all protocols that use
commitments to temporarily hide sub-keys of hash function.

It allows building of secure SAS-based group key agreements, as presented in
the last section. Such a key agreement protocol has the advantage that it does
not require any trusted third party, any public-key infrastructure, nor any pre-
shared key. Security is ensured peer-to-peer by using an authentication primitive,
e.g. voice recognition for VoIP or string copy for devices. Therefore, consumers
can establish and reconfigure security associations for electronic devices with
minimal effort. In a certain sense, security can be provided as an add-on feature.
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A Burmester Desmedt Key Derivation Proof

keyi = (zi−1)nki · Xn−1
i · Xn−2

i+1 · . . . · Xi−2

=
[
zki

i−1

]
·
[
zki

i−1 · Xi

]
·
[
zki

i−1 · Xi · Xi+1

]
· . . . ·

[
zki

i−1 · Xi · Xi+1 · · · · Xi−2

]
=

[
gki−1ki

]
·
[
gkiki+1

]
·
[
gki+1ki+2

]
· . . . ·

[
gki−2ki−1

]
= gk1k2+k2k3+...+knk1
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