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Abstract. A probabilistically checkable proof (PCP) system enables
proofs to be verified in time polylogarithmic in the length of a classi-
cal proof. Computationally sound (CS) proofs improve upon PCPs by
additionally shortening the length of the transmitted proof to be poly-
logarithmic in the length of the classical proof.

In this paper we explore the ultimate limits of non-interactive proof
systems with respect to time and space efficiency. We present a proof
system where the prover uses space polynomial in the space of a classical
prover and time essentially linear in the time of a classical prover, while
the verifier uses time and space that are essentially constant. Further,
this proof system is composable: there is an algorithm for merging two
proofs of length k into a proof of the conjunction of the original two
theorems in time polynomial in k, yielding a proof of length exactly k.

We deduce the existence of our proposed proof system by way of
a natural new assumption about proofs of knowledge. In fact, a main
contribution of our result is showing that knowledge can be “traded” for
time and space efficiency in noninteractive proof systems. We motivate
this result with an explicit construction of noninteractive CS proofs of
knowledge in the random oracle model.

1 Introduction

Perhaps the simplest way to introduce the computational problem we address is
by means of the following.

Human motivation. Suppose humanity needs to conduct a very long computa-
tion which will span super-polynomially many generations. Each generation runs
the computation until their deaths when they pass on the computational config-
uration to the next generation. This computation is so important that they also
pass on a proof that the current configuration is correct, for fear that the fol-
lowing generations, without such a guarantee, might abandon the project. Can
this be done?

Computational setting. In a more computational context, this problem becomes:
How can we compile a machine M into a new machine M ′ that frequentlyoutputs
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pairs (ci, πi) where the ith output consists of the ith memory state ci of machine
M , and a proof πi of its correctness, while keeping the resources of M intact?1

1.1 A New Problem

We motivate our problem by way of a few examples of how current techniques
fail to achieve our goal. Suppose we are given a computation M that takes time
t and space k � t.

A natural approach is have the compiled machine M ′ keep a complete record
of all the memory states of M it has simulated so far; every time it simulates
a new state of M , it uses this record to output a proof that its simulation of
M is thus far correct. However, this approach has the clear drawbacks that the
compiled machine M ′ uses space tk to store the records, and the proofs it outputs
consist simply of this record of size tk; this requires the verifier of the proofs to
also use time tk and space tk to verify each proof. If t is polynomial in k, then all
these parameters are polynomial in k and this simple system is in fact “optimal
up to polynomial factors in k.” We concern ourselves here with the much more
interesting case where the running time t is much larger than k —exponentially
larger, even— in which case this naive system is not at all efficient. What we
need is a more efficient proof system.

We note that the problems of improving the efficiency of the construction,
transmission, and verification of proofs have been important themes in our field,
and have fueled a long line of research. One major milestone on this path was
the discovery of probabilistically checkable proofs (PCPs) (see [1,2,5,10] and the
references therein). Under a PCP proof system statements with classical proofs
of exponential length could now be verified in polynomial time, via randomized
sampling of an encoded version of the classical proof. A PCP system still uses
exponential resources to construct and transmit the proof, but verification is
now polynomial time.

The second milestone we note is the theory of computationally sound (CS)
proofs as formalized by Kilian and Micali [12,13]. This notion improves on the
PCP system by keeping verification polynomial time while shortening the length
of the transmitted proof from exponential to polynomial in k. If we instruct the
compiled machine M ′ to output (noninteractive) CS proofs, then the length of
the transmitted proofs, and the time and space required by the verifier are now
polynomial in k, but the compiler still requires memory at least t, and a time
interval of at least t between consecutive proofs.2

1 More generally one might consider a machine that, instead of outputting proofs πi,
engages in some interactive proof protocol.

2 A third major approach for improving the efficiency of proofs, arguably the
most historically successful, is that of adding interaction between the prover and
verifier[11,15,3]. Unfortunately, this approach does not help us here: our prover has
only k memory so he may transfer his entire knowledge to the verifier at the start
of their interaction; any further correspondence between the prover and verifier may
be simulated by the verifier with no loss of efficiency.
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1.2 Intuitive Idea of Our Solution

The ideal way to achieve incrementally verifiable computation consists of effi-
ciently merging two CS proofs of equal length into a single CS proof which is
as short and easy to verify as each of the original ones. Letting c0, c1, . . . be
the sequence of configurations of machine M , and for i < j, intuitively denote
by (M : ci

t→ cj) the assertion that configuration cj is correctly obtained from
configuration ci by running M for t steps. After running M for 1 step from the
initial configuration c0 so as to reach configuration c1 one could easily produce
a CS proof of (M : c0

1→ c1). Running M for another step from configuration c1,
one can easily produce a CS proof that (M : c1

1→ c2). At this point, if CS proofs
can be easily merged as hypothesized above, one could obtain a CS proof that
(M : c0

2→ c2). And so on, until a final configuration cf is obtained, together
with a CS proof that (M : c0

t→ cf )
Unfortunately, we have no idea of how to achieve such efficient and length

preserving merging of CS proofs. However, if a variant of CS proofs —which we
call CS proofs of knowledge— exist, we show a sufficient approximation of this
ideal strategy. The main idea is to construct recursively embedded CS proofs:
to merge proofs π1 and π2 I prove that “I have seen convincing π1 and π2.” In a
nutshell, the CS proof methodology enables us to work with very short proofs,
and proofs of knowledge enable the soundness of the proof system to persist
across many levels of recursion.

1.3 A New Role for a New Type of Proof of Knowledge

Proofs of knowledge may be seen as a restricted form of classical proofs. While
classically, proofs of a statement “There exists w such that R(x, w) = 1”3 can
take a wide variety of non-constructive forms, the proof of knowledge form as-
serts essentially “I have seen a w such that R(x, w) = 1.” We note here that the
inapplicability of classical proofs to our setting results from the combination of
two circumstances: we require our proofs to be embeddable in other proofs, and
we must work in merely computationally sound proof systems where deceptive
proofs— while almost impossible to find— exist in abundance. We see the prob-
lem, intuitively, if we try to embed two computationally sound proof systems.
The result would be a (computationally sound) proof that “There exists a com-
putationally sound proof π of x.” The problem is that of course there exists a
computationally sound proof of x, even when x is false. So a proof that there
exists a computationally sound proof of x implies nothing about the truth or
falsehood of x.

Significantly, however, proofs of knowledge can be combined in this way: the re-
sult is a (computationally sound) proof that “ProverA has seen a computationally
3 We remind the reader that since classical proofs are verifiable in polynomial time,

we may consider any classical theorem as being a statement of membership in an
NP -language of the form “There exists a proof w such that the verifier R accepts
the pair consisting of the theorem x and proof w.”
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sound proof that Prover B has seen a witness w of x.” Intuitively, this is the differ-
ence between saying “A is convinced that B is convinced ofx” and saying “A is con-
vincedthatBcouldbe convincedofx”—thefirst statement is reasonable evidenceof
xwhenbothAandBare reasonable, but the second statementholdsnoweight since
even a reasonable person could be mislead. In essence, the proof of knowledge prop-
erty lets “reasonableness” be transferred down a sequence of provers. The formal
statement of this assertion is that by sufficient repeated application of the knowl-
edge extractor E associated with the proof system one can extract a valid witness
w from any procedure that returns embedded proofs.

Remark 1: This simple intuition unfortunately translates into neither simple
definitions nor simple proofs. Because this work seeks to optimize both prover
and verifier time and space as well as the overall soundness of the proofs, we need
to keep track everywhere not only of who is proving who’s knowledge of what
to whom, but also the time and space bounds of all involved parties, along with
the security parameters. Nevertheless, it is our hope that the simple intuition
underlying the constructions here will make the technical details less opaque.

Remark 2: We note that embedding proof systems deprives us of another prin-
cipal tool: the use of random oracles. Specifically, suppose we have an oracle-
based prover-verifier system (PO, V O) that can prove statements about the re-
sults of computation like “Machine M accepts the following string within t time
steps. . . .” When we try to recursively embed this system the recursion breaks
down because, even at the first level of recursion, we are no longer trying to
prove statements about classical computation but rather statements of the form
“M with oracle access to O accepts the following string....” Thus standard ap-
plications of random oracles do not appear to help. It remains an interesting
question whether the goals of this paper may be attained in some other way
using random oracles.

The Noninteractive CS Knowledge Assumption. Random oracles are intricately
tied to CS proofs, in that the only known constructions of noninteractive CS
proofs make use of random oracles (see [13]). Nevertheless, as with most random
oracle constructions, the hope is that in practice the random oracle may be
replaced by a suitably strong hash function plus access to a common random
string.

In Section 4 we extend Micali’s construction of CS proofs to a construction
of CS proofs of knowledge: there exists an efficient extractor E that, given a
statement X , a CS proof π, and access to the CS prover that produced π, outputs
in quasilinear time a (classical) proof Π of X . We highlight this construction as
a motivation for our assumption that oracle-less CS proofs of knowledge exist.

In essence, our assumption states that, in a specific construction of non-
interactive CS proofs (Constructions 4 and 5), it is possible to replace the random
oracle with a random string and still preserve the strength of the proofs. (That
is, we do not invoke the random-oracle hypothesis in its general form. As shown
by Canetti, Goldreich, and Halevi [8] and others in different contexts, we expect
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that there may be other non-interactive CS proof constructions for which no way
to replace the oracle exists.)

We note that, while the Fiat-Shamir heuristic of replacing random oracle
calls with a deterministic hash function yields feasible proposals for how to
remove the oracle calls from the prover and verifier, it says nothing about how
to translate the knowledge extractor into this new setting. For this reason we
cannot explicitly conjecture a noninteractive CS proof of knowledge. However,
in the context of this paper, the knowledge extractor component of the CS
proof system serves only as a technique to argue security and is not invoked in
our construction of incrementally verifiable computation. Thus we may propose
the following much more explicit conjecture: our construction of incrementally
verifiable computation (Theorem 1) works when using the prover-verifier pair
(P, U) from Construction 4, modified by replacing the random oracle with a
suitably strong hash function plus access to a common random string.

Knowledge ⇒ Time/Space Efficiency. In this work we start with an unusual
and very strong assumption about (proofs of) knowledge and conclude with a
proof system of unprecedented time and space efficiency. In this paragraph we
wish to draw the reader’s attention not to the assumption or the conclusion,
but to the nature of the relationship between them. On the left we make an
assumption about knowledge in CS proofs: we take a restricted system that only
deals with witnesses of length 3k and compresses them to proofs of length k, the
security parameter, and assume that there is a linear-time knowledge extractor
that can extract the witness given access to the prover. On the right we conclude
with a proof system that compresses any proof to length poly(k), uses space
polynomial in the space needed to classically accept the language, and is time-
efficient in the tightest possible sense, using only poly(k) time to process each
step of the classical acceptance algorithm. We note that current constructions
of non-interactive CS proofs based on random oracles need time polynomial in
the time to classically accept, and space of the same order as their time[13]. Our
results constitute a new technique to leverage knowledge to gain time and space
efficiency, and is in a sense a completeness result for CS proof systems.

2 Definitions

2.1 Noninteractive Proofs and the Common Random String Model

It is a well-known aphorism in cryptography that “security requires random-
ness”. In many standard settings, a participant in a protocol injects randomness
into his responses to protect him from some pre-prepared deviousness on the
part of the other participant.

In the noninteractive proof setting such an approach is inadequate: the verifier
is unable to protect himself with randomized messages to the prover, since he
cannot even communicate with the prover. To address these issues, the common
random string (CRS) model was introduced [7,6].
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The CRS model —sometimes called the common reference string model—
assumes that all parties have access to the same random string, and further that
each can be confident that this string is truly random and not under the influence
of the other parties. Potential examples of such a string are measurements of
cosmic background radiation or, for a string that will appear in the future,
tomorrow’s weather.

In the analysis of the security of a CRS protocol leeway must be given for
“unlucky” choices of strings, since if every choice of string worked in the protocol
we would not need a random one. Thus even if a CRS protocol has a chance of
failing, we still consider it secure if this chance is negligible as a function of the
size of the random string.

2.2 Incremental Computation

Basic notation. We denote a Turing machine M with no inputs by M(), a
Turing machine with one input by M(·), a Turing machine with two inputs by
M(·, ·), etc. We assume a standard encoding, and denote by |M | the length of
the description of M . For a Turing machine M running on input s, we denote
by timeM (s) the time M takes on input s, and by spaceM(s) the space M takes
on input s; we denote the empty input by ε, so that spaceM (ε) is the space of
Turing machine M when run on no input.

Incremental outputs. Commonly, Turing machines make an output only once,
and making this output ends the computation. Instead, we interpret Turing
machines as being able to output their current memory state at certain times
in their operation: explicitly, consider a Turing machine with a special state
“Output” where whenever the machine is in state “Output” the entire contents
of its tape are outputted. 4 This captures our intuitive notion of an “incremental
computation,” namely one divided into “generations” where at the end of each
generation the entire memory configuration is output so that the next generation
may resume the computation from the current configuration.

2.3 Incrementally Verifiable Computation

We formally define incrementally verifiable computation here. We consider a
Turing machine M() that we wish to simulate for t time steps using k memory,
where k ≥ log t. We consider a fixed compiler C(·, ·) that produces from (M, k)
an incrementally verifiable version of M , namely a machine C(M, k) = T (·) that
takes as input the common random string, runs in time t · kO(1), uses memory
kO(1), and every kO(1) time steps outputs its memory configuration. The jth
4 We note that this is a slightly unusual model of output, as the machine would be

unable to output a string such as “Hello World” without first deleting all other
memory locations on the tape. In the context of this paper, we expect machines to
not delete this other information: since we consider only poly(k)-space machines, it
imposes no undue burden on the prover to output this information, and no undue
burden on the verifier to ignore it.
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memory configuration output should be interpreted as a pair consisting of a
claim about the memory configuration of M at time j, and a CS proof of its
correctness. There is a fixed machine V , the verifier, that will accept all pairs
of configurations and proofs generated in this way, and will reject other pairs,
subject to the usual condition of the CRS model that the verifier may be fooled
with negligible probability, and the computational soundness caveat that an
adversary with enormous computational resources may also fool the verifier.

Definition 1. An increasing sequence of integers {tj} is an α-incremental time-
line if for any j, tj − tj−1 ≤ α.

Definition 2. A Turing machine that makes outputs at every time on an α–
incremental timeline is called an α–incremental output Turing machine.

Definition 3 (Feasible Compiler). Let C(·, ·) be a polynomial time Turing
machine. We say that C is a feasible compiler if there exists a constant c such
that for all k > 0 and all M() such that |M | ≤ k, C(M, k) is a Turing machine
T (·) taking as input the common random string, such that

1. T is a kc-incremental output Turing machine.
2. spaceT (r) = kc for all inputs r.

In other words, properties 1 and 2 guarantee that each compiled machine T
outputs its internal configuration “efficiently often” while working in “efficient
space.”

Definition 4 (Incrementally Verifiable Computation). The pair (C, V )
is an incrementally verifiable computation scheme (in the CRS model) with
security K if C is a feasible compiler, V is a polynomial-time Turing machine
(“the verifier”) and K(k) : Z

+ → Z
+, such that the following properties hold:

For any Turing machine M with |M | ≤ k let the jth output of the compiled
machine C(M, k) be parsed as an ordered pair (mj , π

r
j ), representing a claim

about the jth memory configuration of M , and its proof; and let r denote the
common random string of length k2. We require:

1. (Correctness) The compiled machine accurately simulates M , in that mj is
indeed the jth memory configuration of M(ε) for all j, independent of r.

2. (Completeness) The verifier V accepts the proofs πr
j : ∀r, V (M, j, mj , π

r
j , r) =

1.
3. (Computational soundness) For any constant c and for any machine P ′ that

for any length k2 input r outputs a triple (j, m′r
j , π′r

j ) in time K, we have for
large enough k that

Probr[m′r
j �= mj ∧ V (M, j, m′r

j , π′r
j , r) = 1] < k−c.

We note that for the incrementally verifiable computation scheme to be secure
against polynomial-time adversaries we must have K super-polynomial.
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2.4 Noninteractive CS Proofs of Knowledge

We now specify the assumption we make: the existence of noninteractive CS
proofs of knowledge.

We note that proofs of knowledge are typically studied in the form of zero
knowledge proofs of knowledge. In this setting, one party wants to convince an-
other party that he possesses certain knowledge without revealing this knowl-
edge. The reason why he does not simply transmit all his evidence to the other
party is that he wishes to maintain his privacy.

In our setting the reason one generation does not just transmit all its evidence
to the next generation is not a privacy concern, but rather the concern that the
following generation will not have the time to listen to all this evidence.

In both settings, the “knowledge” that must be proven may be considered to
be a witness for a member of an NP-complete language: one party proves to the
other that he knows, for example, a three-coloring of a certain graph.

In the zero-knowledge setting, our prover does not wish for the verifier to
learn a three-coloring of the graph. In the incremental computation setting, our
prover is worried that the verifier may not want to spare the resources to learn
a three-coloring of the graph.

Related issues were considered in a paper of Barak and Goldreich where they
investigated efficient (interactive) ways of providing proofs and proofs of knowl-
edge [4]. Our definition of a noninteractive CS proof of knowledge contains ele-
ments from their definition of a universal argument.

For the sake of concreteness, we work with a specific NP-complete language,
which has the property that for any k the strings in the language of length
4k have witnesses of length 3k. We will require of our CS proof system that
instead of returning proofs of length 3k (for example, the witnesses) the proofs
are shortened to be of length k.

Definition 5. Let c be a constant. The language Lc consists of the ordered pairs
(M, x) where M is a Turing machine and x is a string such that, letting k = |M |
we have:

1. |x| = 3k.
2. There exists a string w of length 3k such that M when run on the concate-

nation (x, w) accepts within time kc.

We note that the string w may be thought of as the NP witness for (M, x)’s
membership in the language. Further, since M may express any polynomial-time
computation (for large enough k), the language Lc is NP complete.5

Definition 6 (Noninteractive CS proof of knowledge). The pair (P, U)
is a noninteractive CS proof of knowledge (in the CRS model) with parameters
K ′(k) : Z

+ → Z
+, c, c1, c2 if P and U are Turing machines such that for all

machines M , defining k = |M |, and all strings x of length 3k the following
properties hold:
5 One can easily manipulate any NP language into one whose members and witnesses

have lengths in the 4:3 ratio by appropriate padding.
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1. (Efficient prover) For any (CRS) string r of length k, timeP (M, x, w, r) =
kO(1)

2. (Length shrinking) For any (CRS) string r of length k, |P (M, x, w, r)| = k.
3. (Efficient verification) For any (CRS) string r of length k,

timeU (P (M, x, w, r), M, x, r) ≤ kc−1

4. (Completeness) For any (CRS) string r of length k, U(P (M, x, w, r),
M, x, r) = 1

5. (Knowledge extraction) There exists a constant c2 such that for any Turing
machine P ′ there exists a randomized Turing machine EP ′ , the extractor,
such that for any input (M, x) of length 4k such that for all r of length k,
timeP ′(M, x, r) ≤ K ′(k) and Prr[U(P ′(M, x, r), M, x, r) = 1] = α > 1/K ′

we have
Prob[w ← EP ′(M, x) : M(x, w) = 1] > 1/2

and the running time of EP ′(M, x) is at most kc2/α times the expected run-
ning time (over choices of r) of P ′(M, x, r).

3 Constructing Incrementally Verifiable Computation

3.1 Merging Proofs

We aim here to reexpress claims of the form M : s1
t→ s2 as claims of membership

in the language Lc. The equivalence will not be exact but instead, in light of the
goals of this paper, computationally sound. We define this relation inductively,
for t that are powers of 2. The base case, when t = 1, is an exact relation.

Construction 1 (Base Case). Let T0 be the machine that interprets its input
as a pair of length 3k strings (x, w) where x is interpreted as a triple of length
k strings x = (M, s1, s2), and checks that M when simulated for one step on
configuration s1 ends up in configuration s2, ignoring the auxiliary input w.

We note that for strings M, s1, s2 of length k, the pair (T0, (M, s1, s2)) is in Lc

if and only if M : s1
1→ s2. The language Lc is crucial here, because this is the

language which (by assumption) we may find CS proofs for.
We extend this construction, defining machines Ti such that (Ti, (M, s1, s2)) ∈

Lc is equivalent ina computationally soundsense toM : s1
2i

→ s2. Inparticular,Ti is
suchthat, givenCSproofs of theclaims (Ti, (M, s1, s2)) ∈ Lc and(Ti, (M, s2, s3)) ∈
Lc we can construct a CS proof of the claim (Ti+1, (M, s1, s3)) ∈ Lc. Reexpressing

these three statements, we see that given aCS proof that “(M : s1
2i

→ s2)” and a CS

proof that “(M : s2
2i

→ s3)” we may construct a CS proof that “(M : s1
2i+1

→ s3).”
Since the lengths of each of these CS proofs is (by definition) k, this is our desired
notion of merging proofs.

Construction 2. Define Ti+1 as a machine that interprets its input as the pair
(x, w) where x is interpreted as (M, s1, s3) and w is interpreted as (p1, p2, s2),
and does the following:
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Check if p1, p2 are CS proofs of knowledge respectively that (Ti, (M, s1, s2)) ∈
Lc and (Ti, (M, s2, s3)) ∈ Lc.

Given x, w, i such that w witnesses the fact that (Ti+1, x) ∈ Lc, we can efficiently
construct a CS proof of this fact as P (Ti+1, x, w, ri+1) by assumption. (We note
that we take the common random string ri+1 to be dependent on i.) We prove
that this construction is computationally sound. In the following, we call a pair
(x = (M, s1, s2), p) deceptive if p proves to the verifier that (Ti, x) ∈ Lc but it is
not the case that running M for 2i steps from memory state s1 reaches memory
state s2. The proof is by induction; the base case of T0, as observed above, is
trivial.

Lemma 1. For α ∈ ( 1
K′ , 1) and b ∈ (2(2i + k), K ′), if T i has the property

that no machine running in time b, outputs a deceptive pair ((M, s1, s2), p) with
probability 1

2 over the random strings r0, . . . , ri, then no machine running in
time α

2 b/kc2 outputs a deceptive pair for the machine Ti+1 with probability α,
over the random strings r0, . . . , ri+1.

Proof. This result is a straightforward consequence of the knowledge extraction
property of the proofs in Definition 6. Assume we have a machine P ′ that outputs
deceptive pairs (x = (M, s1, s3), p′) for Ti+1 with probability α (over r) in time
α
2 b/kc2. We apply the extractor EP ′ , and have by definition that EP ′(Ti+1, x)
returns a classical witness w (relative to ri+1) with probability at least 1/2 in
time at most b/2. The witness w is a classical witness for (Ti+1, x) in the language
L, and thus (by the definition of Ti+1) w may be interpreted as w = (p1, p2, s2).
Further, since w is a classical witness, both the proofs p1 and p2 are accepted by
the verifier. However, since p′ is deceptive, at least one of p1, p2 must be deceptive
(with respect to T, ri). In time 2i + k ≤ b/2 we can classically check which one
of p1, p2 is deceptive, by simply simulating M for 2i steps on s1 comparing the
current state against s2, and reporting “p1” if they agree, “p2” if they do not.
Thus using b/2 + b/2 = b time we have recovered a deceptive pair for Ti with
probability at least 1/2, contradicting our assumption. �


Applying Lemma 1 inductively starting from b = K ′, letting α = 1
2 for the first

i − 1 iterations and α = ε for the last yields:

Lemma 2. No machine running in time 2εK ′/(4kc2)i outputs a deceptive pair
for the machine Ti with probability ε, over the random strings r0, . . . , ri.

3.2 The Main Result

Theorem 1. Given a noninteractive CS proof of knowledge (P, U, K ′, c, c1, c2),
there exists an incrementally verifiable computation scheme (C, V, K) provided
Kk2 log k+c2 log K ≤ K ′.

Proof. Making use of the CS proof of knowledge, Construction 2 describes a
recursive procedure for generating a proof for 2i steps of the computation using
i levels of a binary recursion. Consider the tree that such a recursion would
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induce. The leaves of the recursive tree are the memory configurations of M , and
the internal nodes j levels above the leaves are proofs of knowledge of recursive
depth j (by way of machine Tj) asserting the results of simulating M for 2j

steps. Each node is computable in time polynomial in k from its two children,
as this requires just one application of the polynomial-time prover P .

Let C(M) be a machine that performs a depth-first traversal of the binary
tree, starting at the leaf corresponding to time 0, visiting each leaf in order, and
computing the value of every node it visits. At any moment in such a traversal
the “stack” consists of the values of nodes on a path from a leaf to the root.
Every time a leaf is visited, let C(M) output the values of all the nodes along
this path as a proof of incremental correctness. We note that processing any
node takes time polynomial in k, and the depth of the recursion is less than k,
and so a leaf is visited every kO(1) time. Thus this procedure uses the desired
time and space.

We now show that these “stack dumps” in fact constitute computationally-
sound proofs.

Consider a subtree whose leaves consist of a range [t1, t2]. (If the subtree has
depth j then t1 and t2 will be consecutive multiples of 2j .) When the recursion
finishes processing this subtree, it will store in the parent node parameters x =
(M, s1, s2) and a proof of knowledge that M when starting in configuration s1
reaches configuration s2 in time t2 − t1.

We note that when the recursion processes leaf t′ it must have finished pro-
cessing all the leaves before t′, and thus the leaves spanned by those subtrees in
the “stack” must constitute all the leaves before t′. Thus these proofs of knowl-
edge, when considered together, assert the complete result of simulating M from
time 0 to time t′.

To check such a sequence of proofs, V verifies their individual correctness,
and checks that the start and end memory states for each of the corresponding
“theorems” match up.

We note, as above, that if such a sequence of proofs is deceptive, then we can
(classically) isolate the deceptive proof using O(t) additional time by simulating
M . From Lemma 2 with ε = k− log k, the probability that this incrementally
verifiable computation scheme fools the verifier is negligible in k provided the
time to execute of C(M) plus the additional O(t) classical verification time is
at most 2k− log kK ′/(4kc2)log t. We note that C(M) consists essentially of con-
structing t CS proofs, each of which takes time kO(1) < klog k. Thus (C, V, K)
is an incrementally verifiable computation scheme for computations of length
t ≤ K provided Kklog k ≤ k−(log k)−c2 log KK ′. Rearranging terms yields the de-
sired result. �


4 CS Proofs of Knowledge in the Random Oracle Model

To explicitly introduce CS proofs of knowledge, and support our hypothesis
that there exist noninteractive CS proofs of knowledge in the common reference
string model we provide details of such proofs in the random oracle model.
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Specifically, our construction will satisfy Definition 6 modified by replacing the
string r everywhere with access to an oracle R.

The construction of the proofs is based closely on the constructions of Kilian
and Micali[12,13]. The construction of the witness extractor is inspired by a
construction of Pass[14].

4.1 Witness-Extractable PCPs

One of the Principal tools in the construction of CS proofs is the probabilistically
checkable proof (PCP)[1,2]. The PCP theorem states that any witness w for a
string x in a language in NP can be encoded into a probabilistically checkable
witness, specifically, a witness of length n can be encoded into a PCP of length
n · (log n)O(1) with an induced probabilistic scheme (based on x) for testing O(1)
bits of the encoding such that:

– For any proof generated from a valid witness the test succeeds.
– For any x for which no witness exists the test fails with probability at

least 2
3 .

In practice, the test is run repeatedly to reduce the error probability from 1
3

to something negligible in n. In addition to the above properties of PCPs, we
require one additional property that is part of the folklore of PCPs but rarely
appears explicitly:

Definition 7 (Witness Extracting PCP). A PCP is witness-extracting with
radius γ if there exists a polynomial time algorithm W that, given any string s
on which the PCP test succeeds with probability at least 1 − γ, extracts an NP
witness w for x.

We sketch briefly how this additional property can be attained. Consider the
related notion of a PCP of proximity (PCPP)[5]:

Definition 8 (Probabilistically checkable proof of proximity). A pair of
machines (P, V ) are a PCPP for the NP relation L = {(x, w)} with proximity
parameter ε if

– When (x, w) ∈ L the verifier accepts the proof output by the prover:

Prob[V (P (x, w), (x, w)) = 1] = 1.

– If for some x, w is ε-far from any w′ such that (x, w′) ∈ L, then the verifier
will reject any proof π with high probability:

Prob[V (π, (x, w)) = 1] <
1
3
.

We note that this property is stronger than the standard PCP property since
in addition to rejecting if no witness exists, the verifier also rejects if the prover
tries to significantly deceive him about the witness. Ben-Sasson et al. showed
the existence of PCPPs with O(1) queries and length n · (log n)O(1)[5]. We use
these PCPPs to construct witness-extractable PCPs:
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Construction 3. Let R be an error-correcting code of constant rate that can
correct ε fraction of errors, with ε the PCPP parameter as above. Let L =
{(x, w)} be the NP relation for which we wish to find a witness-extractable PCP.
Modify L using the code R to obtain a relation

L′ = {(x, R(w)) : (x, w) ∈ L}.

Let P be a PCPP prover for this relation. The verifier for this proof
system is just the PCPP verifier for L′, which expects inputs of the form
(P (x, R(w)), (x, R(w))). Let the witness extractor W for the proof system run
the decoding algorithm on the portion of its input corresponding to R(w) and
report the result.

Claim. Construction 3 is a witness-extractable PCP with quasilinear expansion,
where the verifier reads only a constant number of bits from the proof.

Proof. We note that since R is a constant-rate code and P expands input lengths
quasilinearly, this scheme also has quasilinear expansion. Since the PCPP system
reads only O(1) bits of the proof, this new system does too.

For any pair (x, w) ∈ L the proof generated will be accepted by the verifier,
so this scheme satisfies the first property of PCPs. If x is such that no valid w
exists for the L relation, then no valid R(w) exists under the L′ relation and the
verifier will fail with probability at least 2

3 , as required by the second property
of PCPs.

Finally, to show the witness extractability property we note that by definition
of a PCPP, if the verifier succeeds with probability greater than 1

3 on (π, (x, s))
then s is within relative distance ε from the encoding of a valid witness R(w).
Since the code R can correct ε fraction errors, we apply the decoding algorithm
to s to recover a fully correct witness w. We have thus constructed a witness-
extractable PCP for γ = 2

3 . �


4.2 CS Proof Construction

We now outline the construction of noninteractive CS proofs of knowledge, which
is essentially the CS proof construction of Kilian and Micali[12,13]. We present
the knowledge extraction construction in the next section.

The main idea of this CS proof construction is for the prover to construct
a (witness-extractable) PCP, choose random queries, simulate the verifier on
this PCP and queries, and send only the results of these queries to the real
verifier, along with convincing evidence that the queries were chosen randomly
and independent of the chosen PCP. For security parameter k′ (we differentiate
from the parameter k used in the non-oracle-based definitions.) the prover sends
only data related to k′ runs of the PCP verifier, and thus the length of the proof
essentially depends only on the security parameter k′.
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The technical challenge in the construction is to convince the verifier that the
queries to the PCP are independent of the PCP. To accomplish this we use a
random oracle. Let � denote the set of functions

R : {0, 1}2k′
→ {0, 1}k′

.

By a random oracle we mean a function R drawn uniformly at random from the
set �. The machines in our construction will have oracle access to such an R.

We start by defining a Merkle hash:

Definition 9 (Merkle hash). Given a string s and a function R : {0, 1}2k′ →
{0, 1}k′

, do the following:

– Partition s into chunks of length k′, padding out the last chunk with zeros.
– Let each chunk be a leaf of a full binary tree of minimum depth.
– Filling up from the leaves, for each pair of siblings s0, s1, assign to their

parent the string R(s0, s1).

To aid in the notation we define a verification path in a tree:

Definition 10 (Verification path). For any leaf in a full binary tree, its ver-
ification path consists of all the nodes on the path from this node to the root,
along with each such node’s sibling.

The construction of CS proofs is as follows:

Construction 4. Given a security parameter k′, a polynomial-time relation L =
{(x, w)} with |w| < 2k′

and a corresponding witness-extractable PCP with prover
and verifier PP, PV respectively, we construct a CS prover P and verifier U .

P on input (x, w) and a function R : {0, 1}2k′ → {0, 1}k′
does the following:

1. Run the PCP prover to produce s = PP (x, w).
2. Compute the Merkle hash tree of s, letting sr denote the root.
3. Using R and sr as a seed, compute enough random bits to run the PCP

verifier PV k′ times.
4. Run PV k′ times with these random strings; let the CS proof PR(x, w) con-

sist of the k′ ·O(1) leaves accessed here, along with their complete verification
pathways.

U on input x, a purported proof π and a function R does the following:

1. Check for consistency of the verification pathways, i.e. for each pair of
claimed children (s0, s1) verify that R(s0, s1) equals the claimed parent.

2. From the claimed root sr run the procedure in steps 3 and 4 of the construc-
tion of P , failing if the procedure asks for a leaf from the tree that does not
have a verification pathway.

3. Accept if both steps succeed, otherwise reject.

These are essentially the CS proofs of Killian and Micali. In the next section
we exhibit the knowledge extraction property of these proofs, and thereby infer
their soundness; further properties and applications may be found in the original
papers.
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4.3 Knowledge Extraction

We now turn to new part of this construction, the knowledge extractor from
part 5 of Definition 6. We construct a black-box extractor, that is, a fixed E that
takes a description of the machine P ′ as an input argument, instead of depending
arbitrarily on P ′.

Recall that we want to construct a machine E that when given a (possibly
deceptive) prover P ′ will efficiently extract a witness w for any x on which

Pr[UR(P ′R(x), x) = 1] > 1/K ′.

In other words, if P ′ reliably constructs a proof for a given x, then there is
a witness “hidden” inside P ′, and E can extract one. The general idea of our
construction is to simulate P ′R(x) while noting each oracle call and response,
construct all possible Merkle trees that P ′ could have “in mind”, figure out based
on the output of P ′ which Merkle tree it finally chose, read off the PCP at the
leaves of the tree, and use the PCP’s witness extraction property to reveal a
witness.

We note that this extractor is slightly unusual in that it does not “rewind”
the computation at any stage, but merely examines the oracle calls P ′ makes;
such extractors have been recently brought to light in other contexts under the
names straight-line extractors [14] or online extractors [9]. The principal reason
we need such an extractor is that we require the extractor to run in time linear
in the time of P ′, up to multiplicative constant kc2 , and we cannot afford the
time needed to match up data from multiple runs.

We show that the following extractor fails with negligible probability on the
set of R where P ′R(x) is accepted by the verifier; to obtain an extractor that
never fails, we re-run the extractor until it succeeds.

Construction 5 (CS extractor). Simulate P ′R(x), and let q1, ..., qt be the
queries P ′ makes to R, in the order in which they are made, duplicates omitted.
Assemble {qi} and separately {R(qi)} into data structures that can be queried in
time logarithmic in their sizes, log t in this case. If for some i �= j R(qi) = R(qj),
or if for some i ≤ j qi = R(qj), then abort.

Consider {qi} as the nodes of a graph, initially with no edges. For any qi

whose first k′ bits equal some R(qj) and whose second k′ bits equal some R(ql),
draw the directed edges from qi to both qj and ql.

In the proof output by P ′R(x) find the string at the root, sr. If sr does not
equal R(qr) for some r, then abort. If the verification paths from the proof are
not embedded in the tree rooted at qr, abort.

Compute from x the depth of the Merkle tree one would obtain from a PCP
derived from a witness for x. (Recall that for the language Lc in Definition 5,
witnesses have length identical to that of x; in general we could pad witnesses to
a prescribed length.) Read off from the tree rooted at qr all strings of this depth
from the root; where strings are missing fill in 02k′

instead. Denote this string
by pcp.

Apply the PCP witness extractor to pcp, and output the result.
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Lemma 3. Construction 5 when given (P ′, x) such that P ′R(x) always
runs in time at most 2k′/4 and that convinces the verifier with probability
PrR[UR(P ′R(x), x) = 1] = α > 2−k′/8, will return a witness w for x on all
but a negligible fraction of those R on which P ′ convinces the verifier in time
O(k/α) times the expected running time of P ′.

Proof. We show that this construction fails with negligible probability. We begin
by showing that the probability of aborting is negligible.

Suppose P ′ has already made i − 1 queries to the oracle, and is just about to
query R(qi). This value is uniformly random and independent of the view of P ′

at this point, so thus the probability that R(qi) equals any of qj or R(qj) for
j < i is at most 2i · 2−k′

. The probability that this occurs for any i ≤ t is thus
at most t22−k′

, which bounds the probability that the extractor aborts in the
first half of the extractor.

We note that since no two qi’s hash to the same value, the trees will be
constructed without collisions, and since qi �= R(qj) for i ≤ j, the graph will be
acyclic and thus a valid binary tree. We may now bound the probability that
some node on a verification path (including possibly the root) does not lie in
the graph we have constructed. Let s0, s1 be a pair of siblings on a verification
pathway for which the concatenation (R(s0), R(s1)) is not in the graph. Thus P ′

does not ever query R(R(s0), R(s1)). Since the proof P ′ generates is accepted
by the verifier, the value of R(R(s0), R(s1)) must be on the verification path
output by P ′. Thus P ′ must have guessed this value without evaluating it, and
further, the guess must have been right. This occurs with probability at most
2−k′

. Thus the total probability of aborting is at most (t2 + 1)2−k′
.

We now show that if the extractor does not abort, it extracts a valid witness
on all but a negligible fraction of R’s. Recall that the CS verifier makes k′ calls
to the PCP verifier, each of which, if seeded randomly, fails with probability 2

3
whenever the string pcp does not encode a valid witness w.

Consider for some non-aborting R and some i ≤ t the distribution ρ on R
obtained by fixing those values of R that P ′R(x) learns in its first i oracle calls,
and letting the values of R on the remaining inputs be distributed independently
at random. Consider an R drawn from the distribution ρ. Construct a Merkle
tree from the values {(qj , R(qj)) : j ≤ i} rooted at qi, i.e., pretending that P ′,
when it finishes, will output R(qi) as the root, and let pcp be the string read off
from the leaves, as in the construction of the extractor. Compute from R and
R(qi) as in step 3 of the construction of the CS prover P the k′ sets of queries
to the PCP verifier. Unless the oracle calls generated here collide with the i
previous calls, the PCP queries will be independent and uniformly generated; if
witness extraction fails on pcp then by definition, these PCP tests will succeed
with probability at most 1

3
k′

. Adding in the at most t22−k′
chance that, under

this distribution, one of the new oracle calls will collide with one of the old calls,
the total probability that pcp is not witness-extractable, yet the tests succeed,
is at most (t2 + 1)2−k′

.
Consider all distributions ρ with i fixed values as above. We note that the dis-

tributions have disjoint support, since no fixed R could give rise to two different
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initial sequences of oracle calls. We note also that any R either aborts or induces
such a distribution ρ with i fixed values. We now vary i from 1 to t. Consider
the set of non-aborting R for which there is some i such that the string pcpRi is
not witness-extractable yet the PCP tests generated by R all succeed. By the
above arguments and the union bound this set has density at most

t(t2 + 1)2−k′
.

By assumption the set of R for which the verifier accepts P ′R(x) has density
at least 2−k′/8. Thus for all but a negligible fraction of these R, the string pcp
is witness-extractable, and we may recover a witness w as desired. �


We note that our extractor runs logarithmic factor slower than P ′. Since the
running time of P ′ is subexponential in k, the extractor takes time o(k) more
than P ′. As noted above, if P ′ returns an acceptable proof with probability α
we may have to run the extractor 1/α times (in expectation) before it returns
a witness. Since by the above construction α ∼ 1, our extractor runs k times
slower than P ′ and always returns acceptable proofs, as desired.
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