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Abstract. The layered games framework provides a solid foundation to
the accepted methodology of building complex distributed systems, as a
‘stack’ of independently-developed protocols. Each protocol in the stack,
realizes a corresponding ‘layer’ model, over the ‘lower layer’. We define
layers, protocols and related concepts. We then prove the fundamental
lemma of layering. The lemma shows that given a stack of protocols
{πi}u

i=1, s.t. for every i ∈ {1, . . . u}, protocol πi realizes layer Li over
layer Li−1, then the entire stack can be composed to a single protocol
πu||...||1, which realizes layer Lu over layer L0.

The fundamental lemma of layering allows precise specification, design
and analysis of each layer independently, and combining the results to
ensure properties of the complete system. This is especially useful when
considering (computationally-bounded) adversarial environments, as for
security and cryptographic protocols.

Our specifications are based on games, following many works in ap-
plied cryptography. This differs from existing frameworks allowing com-
positions of cryptographic protocols, which are based on simulatability
of ideal functionality.

1 Introduction

The design and analysis of complex distributed systems, such as the Internet and
applications using it, is an important and challenging goal. Such systems are de-
signed in modular fashion, typically by decomposing the system into multiple
layers (or modules-). Some of the well known layered network architectures in-
clude the ‘OSI 7-layers reference model’ and the ‘IETF 5-layers reference model’
(also referred to as the Internet or TCP/IP model); see e.g. [30]. The present
work is part of an effort, described in [25], to extend such layered networking
architectures, to support secure e-commerce applications. Figure 1 shows the five
IETF layers, together with two optional security sub-layers, and the four secure
e-commerce layers of [25].

Layered (or modular) architectures allow to specify, design, analyze, imple-
ment and test protocols for each layer, independently of protocols for other layers.
This is based on the paradigm of lower layers abstraction: when discussing and
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Fig. 1. IETF and e-commerce layers; (optional) security sub-layers marked with dotted
contour

analyzing a protocol πi for layer i, running in multiple nodes, we abstract the
satisfactory behaviors of the lower layers by a single abstract layer model Li−1,
and the satisfactory behaviors of layer i into abstract layer model Li. Protocol
πi realizes layer model Li over layer model Li−1, if the behavior of (multiple
instances of) πi running over layer model Li−1, satisfies layer model Li (except

with negligible probability). We write this as: Li �
[

πi

Li−1

]
.

A pair of protocols πi and πi−1, of layers i, i + 1, can be composed into a
single protocol, which we denote as πi||i−1. Our main result is the fundamental
lemma of layering, showing that by composing protocols of multiple layers, we
can implement a high-layer model directly over a low-layer model. Given layer

models {Li}l
i=0, and protocols π1, . . . , πl, where Li �

[
πi

Li−1

]
for i = 1, . . . , l,

their layered composition π1||...||l implements Ll over L0, i.e. Ll �
[π1||...||l

L0

]
. This

provides firm foundations to the security of modular and layered architectures,
as in Figure 1.

For example, in [27] we define the delivery evidences layer model LDE, and the
lower communication layer model LComm; and we show a protocol πDE s.t. LDE �[

πDE

LComm

]
. Similarly, in [26] we define the orders layer model LOrders, and show

protocol πOrder s.t. LOrders �
[

πOrder

LDE

]
. Using the fundamental lemma of layering,

the composite protocol πDE||O realizes the orders layer directly over the com-

munication layer, i.e. LOrders �
[ πDE||O

LComm

]
. This is illustrated in Figure 2, where

we outline the games each of the protocols (πDE, πOrder and their composition
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Fig. 2. Layering of realizations of the Order and Delivery Evidences (DE) layers

πDE||O, the two lower layers (Comm and DE), the two experiments protocols
(DE and Orders), and the adversary protocol.

The layered games framework provides solid foundations to the accepted
methodology, of using layered architectures (also called reference models), to
specify, design, analyze, implement and test each layer independently. In spite
of the extensive use of layered architectures, such foundations did exist prior
to this work. For example, the IP (Internet Protocol) layer is essentially only
required to provide a vaguely-described ‘best effort’ service. Existing propos-
als and standard of specifications of layers are only stated informally, often by
partial-specification for the operation of the protocols, rather than to the ser-
vice the higher layer can rely on. Composition of protocols is also used without
formal definition or proof.

A possible explanation for the fact that layering was not yet based on for-
mal foundations, in spite of its wide use, is the fact that similar compositions
work as expected for many models, often trivially. For example, the composi-
tion of two polynomial time algorithms is trivially also a polynomial time algo-
rithm. However, as [2] argue, composition properties require proof, and may not
hold for all (natural) models. For example, the composition of two polynomial
time interactive Turing machines (ITM), or of an (infinite) state machine with
polynomial-time transition function, may not be polynomial-time, in the natural
setting where the outputs of each machine is considered part of the inputs of
the other. Indeed, in developing the layered games framework, we found that
some definitional choices could have subtle but critical impact on composability.
Details within.

Precise specifications of models for network layers can be hard to write and
analyze, since they depend on many implementation and environment aspects.
However, such rigorous specifications, and analysis, are critical, at least for se-
curity and cryptographic protocols, which must resist adversarial attacks. The
layered games framework allows meaningful models, and analysis of implemen-
tations (protocols), using standard reduction techniques and composition of pro-
tocols (layers).
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Compositions and reductions are standard techniques in design and analysis
of cryptographic functions and protocols. As noted above, polynomial-time algo-
rithms trivially compose well. However, composition of cryptographic protocols is
more challenging. Several frameworks were shown to ensure secure composition,
including universal composability (UC) by [14], reactive simulatability by [5, 34],
observational equivalence by [32], and more. These frameworks all follow the
ideal functionality paradigm.

The ideal functionality paradigm is elegant and powerful, and resulted in many
significant results, including proofs that arbitrary functions and functionalities
can be computed securely, e.g. [21, 12, 14]. Grossly simplifying, an ‘ideal func-
tionality’ for layer i is a single program or ITM Fi, which has multiple copies
of the interfaces to layer i + 1. Protocol πi is considered secure, if executions of
multiple copies of it over Fi−1, are indistinguishable from executions of Fi.

However, it may not always be feasible to define an ideal functionality cap-
turing the possible behaviors of a realistic network layer. In fact, even defining
the behaviors of each layer is challenging; transforming this into a program,
would be impractical or impossible, and may result in over-specification. Note
that over-specification of layers (or protocols) is usually considered harmful by
practitioners, see e.g. [9].

This inability to use ideal functionalities as specifications for networking and
e-commerce layer models, is our motivation in developing the layered games
framework. The layered games framework allows protocol compositions with
realistic specifications for network and e-commerce layer models, and with
emphasis on simplicity and usability, even at some reduction in scope and
generality.

As the name implies, the layered games framework is based on the game
playing paradigm, instead of following the ideal functionality paradigm. The
game playing paradigm is central to the theory of cryptography, see e.g. [21, 20].
Game playing supports strong analytical tools, e.g. [8], and may facilitate the
use of (semi) automated proof-checking tools, see e.g. [24].

In the game-playing paradigm, one specifies an interactive game between a
component and an adversary, where security is defined by the probability of
the adversary winning in the game. With information-theoretic games the ad-
versarial entity is allowed unbounded computational resources, while concrete
and probabilistic polynomial time games assume certain limitations on adver-
sarial resources, e.g. available time. Game-based specifications are widely used,
and available for many cryptographic primitives such as digital signature and
encryption schemes, pseudo-random functions, and much more, e.g., [22, 23, 20].

Some primitives have secure implementations for game-based specifications,
where the corresponding ideal functionalities are not realizable, see [17, 11, 13].
This provides another motivation for investigating compositions of protocols
satisfying game-playing specifications. However, our focus is different: allow-
ing realistic models for network layers, without trying to define them as ‘ideal
functionality’.
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Further related works. Our execution model is closely related to the execution
models of I/O Automata of [33], especially the Probabilistic I/O Automata
model of Canetti et al. [15], and to the Reactive Simulatability framework
[5, 6, 35]. In an especially related work, Backes et al. [4] define a relaxed no-
tion of conditional reactive simulatability, where simulation is required only if
the environment fulfills some constraints; however, there are significant differ-
ences between the works, most notably their constraints are on the environment
and not on the lower layers.

The layered games framework follows the computational approach to cryptog-
raphy, which treats protocols and cryptographic schemes as programs/machines,
operating on arbitrary stings (bits). This is in contrast to the symbolic approach,
where cryptographic operations are seen as functions on a space of symbolic (for-
mal) expressions, and security properties are stated as symbolic expressions; see
[18, 10]. Several works investigate compositions of cryptographic protocols with
the symbolic approach, e.g. Datta et al. [16] and Backes at al. [3]. We believe
that it may be possible and beneficial, to extend the layered games framework
to support symbolic/formal analysis, possibly building on recent results on the
relationships between the two approaches, such as [1]. This may facilitate the
use of verification tools; notice also that we use state machines as the basic
computational model, which can also be helpful in applying verification tools.

Organization. In Section 2 we define protocols, configurations (of protocols),
and executions (of configurations). In Section 3 we define layer games, models
and realizations. In Section 4 we present and prove the fundamental lemma of
layering. We conclude and discuss future work in Section 5.

For space limitations, the proof and detailed examples of applications of the
framework are deferred to the full version of this paper [28]; see also [27, 26].

2 Protocols, Configurations and Executions

2.1 Protocols

Our basic element of computation is a protocol. We use protocols to model all
the entities compromising the systems we investigate, including even adversarial
entities (‘the adversary’). Protocols are state machines1 that accept input on one
of few input interfaces, and produce output on one or more output interfaces.
The transition function δ maps the input (interface and value), current state and
random bits, to a new state and to outputs on the different output interfaces.
We use ⊥ to denote a special value which is not a binary string (⊥ �∈ {0, 1}∗); a
protocol outputs ⊥ on some output interface to signal ‘no output’.
1 We use state machines, rather than e.g. ITM as in Universal Composability [14],

since we found it simpler, and easier to ensure that an execution involving multi-
ple protocols, some of which are adversarial, will have well-defined scheduling and
distribution of events. Also, in many cases protocols may be represented by finite
state machines, which may have advantages including possible use of automated
verification tools.
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The transition function δ can depend on two additional inputs: random bits
and a security parameter. The random bits may be ignored to define determin-
istic protocols, including analysis of protocols using pseudo-random bits. The
(unary) security parameter, allows to define computational properties of the pro-
tocol and of specifications, such as security against computationally-bounded
adversary. Specifically, we use the security parameter to define a polynomial
protocol.

Definition 1 (Protocol). A protocol π is a tuple 〈S, IIN , IOUT , δ〉 where:

1. S is a set of states, where ⊥ ∈ S is the initial state,
2. IIN is a set of input interface identifiers,
3. IOUT is a set of output interface identifiers,
4. δ : IN → OUT is a transition function, with:

– Domain IN = 1∗×S×IIN ×{0, 1}∗×{0, 1}∗ (security parameter, current
state, input interface, input value, random bits).

– Range OUT = S ×
∏

i∈IOUT
({0, 1}∗ ∪ {⊥}). The outputs consist of a

new state, denoted δ.S ∈ S, and output values δ.ov[ι] ∈ {0, 1}∗ ∪ {⊥} for
each interface ι ∈ IOUT .

The protocol is polynomial if δ is polynomial-time computable, and if the length
of the outputs is the same as the length of the inputs2, plus a polynomial in
the security parameter, i.e. ∃c ∈ N s.t. ∀(1k, s, ιi, x, r) ∈ IN, ιo ∈ IOUT :
|δ.ov[ιo](k, s, ιi, x, r)| ≤ |x| + |k|c.

Notations

Π, Πpoly: Let Π denote the set of all protocols, and Πpoly denote the set of
polynomial protocols.

Dot notation: the range of δ is a set of pairs (s, ov[ι]), where s ∈ S is the
new state and ov[ι] ∈ {0, 1}∗ ∪ {⊥} is the output on each output interface
ι ∈ IOUT . To refer directly to the state or the outputs, we use dot notation
as in δ.s(·) and δ.ov[ι](·) respectively. We similarly use dot notation in other
places, i.e. α.β refers to element β of a record or tuple α.

We can connect protocols, via their interfaces, in different configurations, as
we define next. We can also connect from an output interface of a protocol, to
an input interface of the same protocol; this makes it trivial to compose several
protocols into a single protocol, which is useful (see Section 4). Note that if we
2 This restriction of the output length to be the same as input length, plus some ‘over-

head’ which depends only on the security parameter, is a simple method to prevent
exponential blow-up in input and output lengths, as outputs of one protocol become
inputs to another protocol during execution. This restriction is reasonable in prac-
tice, and sufficient for our needs; for example, it allows a protocol to ‘duplicate’ input
from one interface, to multiple output interfaces, but maintains a polynomial bound
on the length of the inputs and outputs on each interface during the execution. More
elaborate ways to to prevent exponential blow-up were presented by [31] describing
a general model for systems which satisfy certain acyclic conditions, [14] and [29] for
UC, and [6] for reactive simulatability.
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compose several polynomial protocols in this manner, then the resulting protocol
is also polynomial.

2.2 Configuration

We study interactions of multiple protocols, connected via their interfaces; we
call the set of interconnected protocols a configuration. Configuration are a di-
rected graph, whose nodes P are identifiers for protocols, and whose edges are
defined by mappings p′ = nP(p, ι) (for ‘next protocol’) and ι′ = nI(p, ι) (for
‘next interface’), mapping output interface ι ∈ oI(p) of node p, to input interface
ι′ ∈ iI(p) of node p′. Identification of the input and output interfaces, corre-
sponds to the awareness of the network-layer, e.g. of router or firewall, to the
identification of the network interface card on which a packet was received. For
example, Figure 2, shows three (homomorphic) configurations. The definition
follows.

Definition 2 (Configuration). A configuration is a tuple C =〈P, iI, oI, nP, nI〉,
where:

P is a set of protocol instance identifiers,
iI, oI map identifiers in P to input and output interfaces, respectively,
nP maps from instance identifier p ∈ P and an output interface ι ∈ oI(p), to

p′ = nP(p, ι), where either p′ = ⊥ or p′ ∈ P (another instance),
nI maps from instance identifier p ∈ P and an output interface ι ∈ oI(p), to

input interface ι′, where if nP(p, ι) ∈ P then ι′ ∈ iI(nP(p, ι)),

Above, we defined configurations without any ‘size’ parameter, as required e.g.
to analyze protocols and distributed algorithms designed for networks with a
variable number of parties (and where complexities may depend on the number
of parties). This is for simplicity and to avoid clutter; the extensions to (uniform
or non-uniform) ‘configuration families’ seem quite obvious. Notice that for many
applications, e.g. in [27, 26], it may be sufficient to consider a small fixed set of
parties.

Still, configurations as defined above, are quite general. In particular, we inten-
tionally avoided assuming any specific communication or synchronization mecha-
nisms. This allows use of the framework in diverse scenarios, e.g. with or without
assumptions on synchronization, communication and failures.

2.3 Executions

An execution is a sequence of events, each event corresponding to one transi-
tion of a protocol π running in one node p ∈ P inside a configuration C =
〈P, iI, oI, nP, nI〉; to define the execution, we use a mapping π = Γ (p) from the
protocol identifiers P to the protocols realizing each node.

An important design goal, is that the set of executions of a given configura-
tion C, with a specific mapping to protocols Γ , would be a well-defined random
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variable. This makes it easier to use an execution as a ‘subroutine’, to facilitate
reduction-based reasoning and proofs. To further simplify such reductions, we
require that executions be a deterministic function of explicit random-tape in-
puts. Specifically, the ith event in the execution, denoted ξi, is defined by the
(deterministic) transition function of the protocol Γ (pi) invoked at this event
(where pi is the identifier of that node). We allow the protocol to make random
choices, but only using uniformly-selected random bits Ri ∈R {0, 1}∗, provided
as input to the transition function. Let R = {Ri ≡ {0, 1}∗}i=1,2,... be the se-
quence whose elements are the sets of all binary strings {0, 1}∗; each execution
is a deterministic function of the specific sequence R ∈ R used in that execution
(i.e. R = {Ri}i=1,2,... s.t. (∀i)Ri = {0, 1}∗).

Each protocol instance has its own state, and in each round may decide to
invoke interfaces of multiple other protocol instances; see for example the configu-
rations in Figure 2. Therefore, some scheduling mechanism for events is required.
To ensure well-defined executions, without any non-deterministic choice (except
for the explicit use of the random input strings R ∈ R), we use a deterministic
schedule S (cf. [15]).

A schedule S of configuration C = 〈P, iI, oI, nP, nI〉, is a sequence of pairs
S = {〈pi, ιi〉}i∈N where pi ∈ P. We (later) require protocols to perform cor-
rectly for any schedule, therefore, the schedule can be considered as adversar-
ial (and not even limited by computational assumptions). On the other hand,
the schedule, is defined in advance and cannot depend on the execution (or on
the random bits R ∈ R); in a sense, we separated the adversarial mechanisms
into a non-adaptive, computationally-unlimited element (the schedule), and an
adaptive, usually computationally-limited element (modeled as a protocol, or
multiple protocols, in the configuration, and aware of only inputs on its inter-
faces). A schedule could, of course, prevent events from happening; to prevent
this from being a trivial method to cause executions where the adversary wins,
our definitions of games (later) consider the adversary as winning only if some
event happens, rather than by the absence of some event.

A similar issue, where we tried to avoid non-determinism, involves how we
handle multiple pending inputs, submitted on the same input interface. Our def-
inition delivers inputs on an interface, in the order in which they were submitted.
We do this by keeping a FIFO queue Q[p, ι], for protocol instance p and input
interface ι, with regular semantics for the enqueue, dequeue, and is non empty
operations. Other choices may be possible.

Definition 3 (Execution). Let C = 〈P, iI, oI, nP, nI〉 be a configuration. Let
S = {〈pi ∈ P, ιi ∈ iI(pi)〉}i∈N be a schedule of C. Let Γ : P → Π be a mapping
of the protocol identifiers P to specific protocols.

The execution Xk(C, Γ, S; R) of security parameter k ∈ 1∗, configuration C,
protocol mapping Γ , schedule S and sequence (of random bits) R = {Ri} ∈ R, is
the sequence of execution events {ξi} = {〈pi ∈ P, ιi ∈ iI(pi), ivi, ovi[·]〉 resulting
from the following process:
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For all p ∈ P: s[p] := ⊥;

Q[p1,ι1].enqueue(0); X := {}
For i := 1 to ∞ do:

if (pi ∈ P, ιi ∈ IIN (pi) and Q[pi, ιi].is non empty()) then:

1. ivi := Q[pi, ιi].dequeue();

2. 〈S, IIN , IOUT , δ〉 := Γ (pi).
3. 〈s[pi], ovi[ι ∈ IOUT ]〉 := δ(k, s[pi], ιi, ivi; Ri);
4. ∀ ι ∈ IOUT : if ovi[ι] �= ⊥

then: Q[nP(pi, ι), nI(pi, ι].enqueue(ovi[ι]);

Let Xk(C, Γ, S) be the random variable Xk(C, Γ, S; R) for R ∈R R.
If all protocols in the range of Γ are polynomial, we say that Γ is polyno-

mial. If Γ is polynomial, then Xk(C, Γ, S)[l] is sampleable in time polynomial
in k and l, where Xk(C, Γ, S)[l] denotes the l first events of Xk(C, Γ, S). This
allows a polynomial protocol to run polynomial number of steps of an execution
containing polynomial protocols, as part of its computational process (e.g. for
reduction proofs). We restate this observation in the following proposition.

Proposition 1 (Executions of polynomial protocols are efficiently sam-
pleable). Let C = 〈P, iI, oI, nP, nI〉 be a configuration and Γ : P → Πpoly be a map-
ping of the protocol identifiers P to specific polynomial protocols. Then Xk(C, Γ,
S)[l] is sampleable in probabilistic polynomial time (as a function of k and l).

3 Layer Games, Models and Realizations

From this section, our discussion is focused, for simplicity, on layered architec-
tures, as in Figure 1. We believe that it is not too difficult to generalize our
concepts and results, but that this will cause (mostly technical) complexities,
that may make the resulting definitions less easy to understand and use.

The basic idea of layered architectures, is abstraction. Namely, the designer
of protocol πi for layer i, is oblivious to details of lower layers, and only cares
about the layer model of layer i − 1, denoted Li−1. The layer model Li−1 defines
all possible behaviors observable to layer i, resulting from the operation of layer
i − 1 protocols and of all lower layers. The goal of the designer of protocol πi,
for layer i, is to ensure that when instances of πi operate over any instantiation
of Γi−1 of layer model Li−1, the resulting operation satisfies layer model Li.

In the first subsection below, we give a game-based definition of a layer model,
with conditions on the outcomes of the game, defining when a protocol ΓL is
considered to satisfy layer model L; we denote this by L |= ΓL. In the second

subsection, we define the realization relation, denoted LU �
[

πU

LL

]
, indicating that

protocol πU , when running over lower layer LL, realizes layer model LU .
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3.1 Layer Models

We define the layer model L, by a simple zero-sum (win-lose) game between
an adversary protocol, with identifier A, and a layer protocol, with identifier IL.
These protocols interact only via a third protocol, the experiment protocol, with
identifier Exp, as shown in Figure 3. The experiment protocol defines the ‘rules
of the game’, and in particular the outcome, which Exp produces on a designated
output interface outcome. Specifically, in every execution, Exp outputs a value
on outcome (at most) once, and this value is a single bit: 1 if the adversary wins
(protocol failed the game), and 0 if the adversary losses (protocol passed the
game). The game includes an expected winning rate α ∈ [0, 1] (typically α = 0
or α = 1

2 ), defining the expected (or permitted) probability that the adversary
will win, i.e. eventually have 1 on outcome.

Fig. 3. Layer Model Configuration. If for every ΓA holds Pr(outcome = 1) ≤ α +
+negl(k), then the layer protocol ΓL satisfies L = (ΓExp, α), or: L |= ΓL.

We later implement layer i over layer i − 1, by multiple instances of protocol
πi, one in each processor in the network. For simplicity, we assume a constant
number of instances n; it seems straightforward to extend the results to allow
n to be a parameter. It is convenient to define a separate input and output
interfaces between the experiment and each instance. Namely, for j ∈ {1, . . . , n},
the configuration includes interface E2Lj from Exp to IL, and interface L2Ej from
IL to Exp. Finally, we use a single interface E2A from Exp to A, and a single
interface A2E from A to Exp. This completes the definition of the layer modeling
game configuration CLM (for some constant number n of instances).

For φ ∈ {Exp, A}, let Γ (φ) = Γφ be the protocol instantiating node φ;
similarly, let Γ (IL) = ΓL be a protocol realizing IL. Given schedule S, let
ExpΓExp

ΓA,ΓL,S(k, l; R) denote the output of outcome after l events in the execution
Xk(CLM , Γ, S; R), for R ∈ R, or ⊥ if there was no such output.

Definition 4 (Layer model). A (polynomial) layer model is a pair L=(ΓExp,α),
where ΓExp is a (polynomial) protocol and α ∈ [0, 1]. We say that protocol ΓL ∈
Πpoly computationally satisfies layer model L, and write L |=poly ΓL, if for every
ΓA ∈ Πpoly, schedule S, polynomial l and large enough k, holds:

Pr
R∈R

(
ExpΓExp

ΓA,ΓL,S(k, l(k); R) = 1
)

≤ α + negl(k)
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where negl is some negligible function (asymptotically smaller than any strictly
positive polynomial), and ExpΓExp

ΓA,ΓL,S(k, l; R) is defined as above.
Protocol ΓL statistically satisfies L, if the above holds when protocols are not

required to be polynomial, and perfectly satisfies L if this holds even when we
remove the negl(k) term. These notions are denoted L |=stat ΓL and L |=perf ΓL,
respectively.

We observe the trivial relation among the three notions of satisfaction.

Proposition 2. For any layer model L and any protocol ΓL holds:

L |=perf ΓL ⇒ L |=stat ΓL ⇒ L |=poly ΓL

Notation: we may write L |= ΓL, when it is obvious that we refer to |=poly.

3.2 Layer Realization Indistinguishability Game

We now define and investigate another game, which we call indistinguishable
layer realization games, which is similar to indistinguishability games used in
many cryptographic definitions, e.g. pseudo-random functions [19], and espe-
cially to the ‘left-or-right indistinguishability’ (LOR) of [7]. Layer realization
games are convenient for the common layered and modular (‘top-down’) design
methodologies. As in previous sections, we had to tradeoff generality for simplic-
ity and ease-of-use.

The configuration of layer realization indistinguishability games is illustrated
in Figure 4. Like in layer model games, the configuration contains nodes A, Exp
and IL, where A and IL are connected only via Exp. There are n + 1 additional
nodes, where n is the (constant) number of instances: n realization nodes (in-
stances) {Rj}j=1,...,n, and one lower layer node ILL.

As in the layer model games, without loss of generality, we use a single input
and output interface from the experiment (or ‘higher layer’) to each instance
in IL, and therefore we will have the interfaces E2Lj , L2Ej , E2A and A2E as
before. The configuration also includes interfaces E2Rj , R2Ej , R2Lj and L2Rj ,
connecting between Exp and R, and between R and ILL. This completes the
definition of the layer realization configuration CLR (for a fixed number n of
instances).

All the realization nodes are instantiated by (mapped to) the same protocol
π, which is tested for realization of layer L over lower layer LL. Namely, (∀j ∈
{1, . . . , n})Γ (Rj) = π, where Γ is the mapping we will use in the execution of
the game (with n instances).

In layer realization indistinguishability games, we use a specific experiment
protocol ExpIND, which we define below, i.e. Γ (Exp) = ExpIND. Here are some ba-
sic details about ExpIND. Upon initialization, ExpINDflips a fair coin b ∈R {L, R},
where L stands for either Layer or Left, and R stands for either Realization or
Right. The game ends when ExpIND receives a guess b′ of either L or R from the
adversary A, which arrives on a dedicated Guess input interface. Upon receiving
the guess b′, ExpINDoutputs on its outcome output interface 1 if b = b′, and 0
otherwise.



136 A. Herzberg and I. Yoffe

Given adversary protocol Γ (A) = ΓA, protocols for the two layers Γ (IL) = ΓL,
Γ (ILL) = ΓLL, sequence of random bit sequences R ∈ R and schedule S, let
ExpIND

ΓA,ΓL,ΓLL,π,S(k, l; R) denote the output of outcome after l events in the
execution Xk(CLR, Γ, S; R), or ⊥ if there was no such output.

Definition 5 (Layer realization). Let L, LL be two polynomial layer models.
Protocol π computationally realizes layer model L over layer model LL, which we

denote by L �poly

[
π

LL
]
, if for every polynomial algorithm ΓLL s.t. LL |= ΓLL, there

exists a polynomial algorithm ΓL s.t. L |= ΓL, s.t. every polynomial algorithm ΓA

and for every schedule S and every polynomial l, for sufficiently large k holds

Pr
R∈R

(
ExpIND

ΓA,ΓL,ΓLL,π,S(k, l(k); R) = 1
)

≤ 1
2

+ negl(k)

Protocol π statistically realizes layer model L over layer model LL, which we

denote by L �stat

[
π

LL
]
, if the above holds when protocols are not required to be

polynomial, and perfectly realizes L over LL, which we denote by L �perf

[
π

LL
]

if

this holds even when we remove the negl(k) term.

Fig. 4. The Layer Realization Indistinguishability game. Protocol π realizes layer L over
layer LL, if for every adversary ΓA and every lower-layer protocol ΓLL, there is some
protocol ΓL satisfying layer model L, s.t. the adversary cannot distinguish between ΓL

and between the composition of n instances of π over ΓLL.

In summary, protocol π realizes layer model Lover layer model LL, if for every
adversary protocol ΓA and every lower-layer protocol ΓLL, there is some protocol
ΓL satisfying layer L, s.t. the ΓA cannot distinguish between interacting with ΓL

and interacting with π operating over ΓLL, where ΓA interacts only via ExpIND.

Intuitively,
[

π

ΓLL

]
is a good implementation of L, if the adversary A cannot
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distinguish between it and between some protocol ΓL which satisfies L, when
interacting via ExpIND, better than the trivial winning rate of 1

2 . To complete
the description, we now present the indistinguishability experiment ExpIND.

Definition 6 (Layer realization indistinguishability experiment). Let
ExpIND= 〈S, IIN , IOUT , δ〉 be the following protocol:

S = {⊥, testing, done}
IIN = {Init, Guess} ∪ {A2Ej}j=1,...,n ∪ {L2Ej}j=1,...,n ∪ {R2Ej}j=1,...,n

IOUT = {outcome} ∪ {E2Aj}j=1,...,n ∪ {E2Lj}j=1,...,n ∪ {E2Rj}j=1,...,n

δ:
1. In initialization state ⊥, upon any input, select randomly b ∈R {L, R}, and
move to testing state.
2. In testing state, pass all input events on interface A2Ei, for i ∈ {1, . . . , n},
to corresponding output event on output interface E2Li (if b = L) or E2Ri (if
b = R), and all input events on interfaces L2Ei (if b = L) or R2Ei (if b = R),
to corresponding output events on interface E2Ai.
3. When, in testing state, the guess input interface Guess is invoked with
input (guess) b′ ∈ {L, R}, output on outcome the value 1 if b = b′, and 0
otherwise (b �= b′). Move to the done state (and ignores all further inputs).

4 The Fundamental Lemma of Layering

We now show the fundamental lemma of layering, allowing compositions of
protocols of multiple layers. This provides firm foundations to the accepted
methodology of designing, implementing, analyzing and testing of each layer
independently, yet relying on their composition to ensure expected properties.

We first need to define layering of protocols. We actually consider two different
variants of protocol layering:

– Layering of two realization protocols πL, πLL. As discussed, we assumed (for
simplicity) that there are n instantiations of the realization protocol of each
layer; each of these has two input interfaces and two output interfaces, one
for the higher layer and one for the lower layer. We define πLL||L =

[
πL
πLL

]
in

the obvious way.
– Layering of the n instances of the realization protocol πL, on top of a protocol

realizing the lower-layer model ΓLL. We define ΓLL||L =
[

πL

ΓLL

]
in the obvious

way.

Note our convention of using πx for protocols instantiating realizations (of n
instances), and Λx for instantiations of a (lower) layer model. Also, note that if
πL and πLL (or ΓLL) are polynomial, then ΓLL||L is also polynomial.

We first present the ‘composition preserves satisfaction’ lemma, which justifies
considering abstraction of all lower layers, into a single ‘virtual protocol’. For
both this and the fundamental lemma of layering (below), we present only the
computational version (the statistical and perfect versions are similar).
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Lemma 1 (Composition preserves satisfaction). Let L, LL be two polyno-
mial layer models, and πL, ΓLL be polynomial protocols, such that πL computa-

tionally realizes L over LL, namely L �poly

[
πL

LL
]
, and and ΓLL computationally

satisfies LL, namely LL |=poly ΓLL. Then the composite protocol ΓLL||L satisfies L,
namely L |=poly ΓLL||L. Or, as a formula:(

L �poly

[
πL

LL
]) ∧

(LL |=poly ΓLL) ⇒
(
L |=poly ΓLL||L

)

The composite realization lemma shows that we can prove realization of each
layer separately, and the composition of the realizations will be a realization of
the highest layer over the lowest layer. We state the lemma for only three layers
- generalization for an arbitrary stack is immediate.

Lemma 2 (The Fundamental Lemma of Layering). Let L3, L2, L1 be three
polynomial layer models, and π2, π3 be polynomial protocols, such that π3 compu-
tationally realizes L3 over L2, and π2 computationally realizes L2 over L1. Then
π2||3 =

[
π3
π2

]
computationally realizes L3 over L1.

Furthermore, let ΓL1 be a polynomial protocol that computationally satisfies

L1, namely L1 |=poly ΓL1 . Then Γ1||2||3 =
[

π2||3

Γ1

]
satisfies L3, i.e. L3 |=poly Γ1||2||3.

5 Conclusions and Research Directions

In this work, we try to lay solid, rigorous foundations, to the important method-
ology of layered decomposition of distributed systems and network protocols,
particularly concerning security in adversarial settings. The framework is built
on previous works on modeling and analysis of (secure) distributed systems, as
described in the introduction, but it is clearly a very ambitious goal, possibly
overambitious, and certainly beyond the reach of a single publication. There are
many directions that require further research. Here are some:

– The best way to test and improve such a framework, is simply by using
it to analyze different problems and protocols; there are many interesting
and important problems, that can benefit from such analysis. As one impor-
tant example, consider the secure channel layer problem. Many protocols
and applications assume they operate over ‘secure, reliable connections’. In
practice, this is often done using the standard layers in Figure 1, in one of
two methods. In the first method, we use TLS (for security) over TCP (for
reliability) over the ‘best effort’ service of IP. In the second method, we use
TCP (for reliability) over IP-Sec (for security), again over ‘best effort’ (IP).
It would be interesting to define a ‘secure, reliable connection’ layer, and to
analyze these two methods with respect to it.

– There are many desirable extensions to the framework, including: support for
corruptions of nodes, including adaptive and/or mobile corruptions (proac-
tive security and forward security); adaptive control of the number of nodes;
support for side channels such as timing and power.
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– In this work, we focused on layered configurations. These are sufficient for
many scenarios. However, there are other scenarios. It would be interesting
to identify important non-layered scenarios, and find appropriate games,
specifications and composition properties, which will support them, possibly
as generalizations of our definitions and results.

– It would be interested to explore the relationships between the layered games
framework, and other formal frameworks for study of distributed algorithms
and protocols (see introdcution).

– The framework is based on the computational approach to security, where
attackers can compute arbitrary functions on information available to it
(e.g. ciphertext). Many results and tools are based on symbolic analysis, see
introduction (and [18, 10, 1]). It can be very useful to find how to apply such
techniques and tools, within the framework.
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latability. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 424–443. Springer, Heidelberg (2006)

[5] Backes, M., Pfitzmann, B., Waidner, M.: A General Composition Theorem for
Secure Reactive Systems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
336–354. Springer, Heidelberg (2004)

[6] Backes, M., Pfitzmann, B., Waidner, M.: Secure Asynchronous Reactive Systems.
Cryptology ePrint Archive, Report, 2004/082 (2004), http://eprint.iacr.org/

[7] Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: Proceedings of the 38th Annual Symposium on Founda-
tions of Computer Science (FOCS 1997), October 20–22, IEEE Computer Society
Press, Los Alamitos (1997)

[8] Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 3–540. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11761679 25

[9] Bradner, S.: Key words for use in RFCs to Indicate Requirement Levels. RFC
(Best Current Practice) (March 1997), http://www.ietf.org/rfc/rfc2119.txt

http://eprint.iacr.org/
http://dx.doi.org/10.1007/11761679_25
http://www.ietf.org/rfc/rfc2119.txt


140 A. Herzberg and I. Yoffe

[10] Burrows, Abadi, Needham: A logic of authentication. ACMTCS: ACM Transac-
tions on Computer Systems 8 (1990)

[11] Canetti, Kushilevitz, Lindell: On the limitations of universally composable two-
party computation without set-up assumptions. In: JCRYPTOL: Journal of Cryp-
tology, 19th edn. (2006)

[12] Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13(1), 143–202 (2000)

[13] Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

[14] Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: IEEE Symposium on Foundations of Computer Science, pp. 136–145
(2001) updated version: Cryptology ePrint Archive, Report 2000/067

[15] Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Time-bounded task-PIOAs: A framework for analyzing security pro-
tocols. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 3–540. Springer, Hei-
delberg (2006), http://dx.doi.org/10.1007/11864219 17

[16] Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and com-
positional logic for security protocols. J. Comput. Secur. 13(3), 423–482 (2005)

[17] Datta, A., Derek, A., Mitchell, J.C., Ramanathan, A., Scedrov, A.: Games and
the impossibility of realizable ideal functionality. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 360–379. Springer, Heidelberg (2006)

[18] Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

[19] Goldreich, Goldwasser, Micali: How to construct random functions. JACM: Jour-
nal of the ACM 33 (1986)

[20] Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cam-
bridge University Press, New York (2004)

[21] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC, pp. 218–
229. ACM, New York (1987)

[22] Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: STOC 1982: Proceedings of the four-
teenth annual ACM symposium on Theory of computing, pp. 365–377. ACM
Press, New York, USA (1982)

[23] Goldwasser, S., Micali, S., Yao, A.: Strong signature schemes. In: STOC 1983:
Proceedings of the fifteenth annual ACM symposium on Theory of computing,
pp. 431–439. ACM Press, New York, USA (1983)

[24] Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Report,
2005/181, Cryptology ePrint Archive (June 2005),
http://eprint.iacr.org/2005/181.pdf

[25] Herzberg, A., Yoffe, I.: Layered Architecture for Secure E-Commerce Applications.
In: SECRYPT 2006 - International Conference on Security and Cryptography, pp.
118–125. INSTICC Press (2006)

[26] Herzberg, A., Yoffe, I.: On Secure Orders in the Presence of Faults. In: De Prisco,
R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 126–140. Springer, Heidelberg
(2006) New version: Foundations of Secure E-Commerce: The Order Layer, in
Cryptology ePrint Archive, Report 2006/352.

[27] Herzberg, A., Yoffe, I.: The delivery and evidences layer. Cryptology ePrint
Archive, Report 2007/139 (2007), http://eprint.iacr.org/

[28] Herzberg, A., Yoffe, I.: Layered specifications, design and analysis of security
protocols. Cryptology ePrint Archive, Report 2006/398 (2006)

http://dx.doi.org/10.1007/11864219_17
http://eprint.iacr.org/2005/181.pdf
http://eprint.iacr.org/


The Layered Games Framework 141

[29] Hofheinz, D., Müller-Quade, J., Unruh, D.: Polynomial Runtime in Simulatability
Definitions. In: CSFW 2005: Proceedings of the 18th IEEE Computer Security
Foundations Workshop (CSFW 2005), Washington, DC, USA, pp. 156–169. IEEE
Computer Society, Los Alamitos (2005)

[30] Kurose, J.F., Ross, K.W.: Computer networking: a top-down approach featuring
the Internet. Addison-Wesley, Reading (2003)
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