Skip to main content

Quantum Intelligent Mobile System

  • Chapter
Quantum Inspired Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 121))

A brand-new paradigm of intelligent systems–quantum intelligent mobile system–is proposed through the fusion of quantum technology with mobile system. A quantum intelligent mobile system (QIMS) is essentially a complex quantum-classical hybrid autonomous system which generally consists of four fundamental components: quantum information processing units (QIPU), multi-sensor system, controller/actuator, and quantum/classical information convertors. A hybrid architecture based on multi-quantum-agent system is proposed for specific requirements of this intelligent mobile system, and a multi-sensor system is designed with SQUID sensor and quantum well Hall sensor, where quantum sensors coexist with traditional sensors. According to the requirements of certain tasks and hardware performance, Grover algorithm is presented for searching problem in path planning, and the theoretic result shows that it can reduce the problem complexity of O(N 2) in traditional intelligent mobile system to O(N 3/2). Then a novel quantum reinforcement learning (QRL) algorithm is proposed for the quantum intelligent mobile system and a learning example demonstrates the validity and superiority of QRL. This quantum intelligent mobile system has many potential applications in various areas and also offers a platform for the research on quantum or quantum-inspired technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen MA, Chuang IL (2000) Quantum Computation and Quantum Information. Cambridge, England, Cambridge University Press

    MATH  Google Scholar 

  2. Preskill J (1998) Physics 229: Advanced Mathematical Methods of Physics–Quantum Information and Computation. California Institute of Technology. Available electronically via http://www.theory.caltech.edu/people/preskill/ph229/

  3. Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature, 299: 802-803

    Article  Google Scholar 

  4. Benioff P (1980) The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 22: 563-591

    Article  MathSciNet  Google Scholar 

  5. Feynman RP (1982) Simulating physics with computers. International Journal of Theoretical Physics, 21: 467-488

    Article  MathSciNet  Google Scholar 

  6. Feynman RP (1986) Quantum mechanical computers. Foundations of Physics, 16: 507-531

    Article  MathSciNet  Google Scholar 

  7. Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of The Royal Society of London Series A, 400: 97-117

    Article  MATH  MathSciNet  Google Scholar 

  8. Bennett CH, Brassard G (1984) Quantum cryptography: Public key distribution and coin tossing. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp.175-179, IEEE Press, New York

    Google Scholar 

  9. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp.124-134, IEEE Press, Los Alamitos, CA

    Chapter  Google Scholar 

  10. Ekert A, Jozsa R (1996) Quantum computation and Shor’s factoring algorithm. Reviews of Modern Physics, 68: 733-753

    Article  MathSciNet  Google Scholar 

  11. Grover LK (1996) A fast quantum mechanical algorithm for database search. in Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, pp.212-219, ACM Press, New York

    Google Scholar 

  12. Grover LK (1997) Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79: 325-327

    Article  Google Scholar 

  13. Vandersypen LMK, Steffen M, Breyta G, Yannoni CS, Sherwood MH, Chuang IL (2001) Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 414: 883-887

    Article  Google Scholar 

  14. Chuang IL, Gershenfeld N, Kubinec M (1998) Experimental implementation of fast quantum searching. Physical Review Letters, 80: 3408-3411

    Article  Google Scholar 

  15. Jones JA (1998) Fast searches with nuclear magnetic resonance computers. Science, 280: 229-229

    Article  Google Scholar 

  16. Jones JA, Mosca M, Hansen RH (1998) Implementation of a quantum Search algorithm on a quantum computer. Nature, 393: 344-346

    Article  Google Scholar 

  17. Kwiat PG, Mitchell JR, Schwindt PDD, White AG (200) Grover’s search algorithm: an optical approach. Journal of Modern Optics, 47: 257-266

    Google Scholar 

  18. Scully MO, Zubairy MS (2001) Quantum optical implementation of Grover’s algorithm. Proceedings of the National Academy of Sciences of the United States of America, 98: 9490-9493

    Article  MATH  MathSciNet  Google Scholar 

  19. Meyer DA (1999) Quantum strategies. Physical Review Letters, 82: 1052-1055

    Article  MATH  MathSciNet  Google Scholar 

  20. Eisert J, Wilkens M, Lewenstein M (1999) Quantum games and quantum strategies. Physical Review Letters, 83: 3077-3080

    Article  MATH  MathSciNet  Google Scholar 

  21. Du JF, Li H, Xu XD, Shi MJ, Wu JH, Zhou XY, Han RD (2002) Experimental realization of quantum games on a quantum computer. Physical Review Letters, 88: 137902

    Article  Google Scholar 

  22. Vala J, Amitay Z, Zhang B, Leone SR, Kosloff R (2002) Experimental implementation of the Deutsch-Jozsa algorithm for three-qubit functions using pure coherent molecular superpositions. Physical Review A, 66: 062316

    Article  MathSciNet  Google Scholar 

  23. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70: 1895-1899

    Article  MATH  MathSciNet  Google Scholar 

  24. Bouwmeester D, Pan JW, Mattle K, Eibl M, Weinfurter H, Zeilinger A (1997) Experimental quantum teleportation. Nature, 390: 575-579

    Article  Google Scholar 

  25. Furusawa A, Sørensen JL, Braunstein SL, Fuchs CA, Kimble HJ, Polzik ES (1998) Unconditional quantum teleportation. Science, 282: 706-709

    Article  Google Scholar 

  26. Nielsen MA, Knill E, Laflamme R (1998) Complete quantum teleportation using nuclear magnetic resonance. Nature, 396: 52-55

    Article  Google Scholar 

  27. Pan JW, Bouwmeester D, Weinfurter H, Zeilinger A (1998) Experimental entanglement swapping: Entangling photons that never interacted. Physical Review Letters, 80: 3891-3894

    Article  MATH  MathSciNet  Google Scholar 

  28. Pan JW, Gasparoni S, Ursin R, Weihs G, Zeilinger A (2003) Experimental entanglement purification of arbitrary unknown states. Nature, 423: 417-422

    Article  Google Scholar 

  29. Zhao Z, Chen YA, Zhang AN, Yang T, Briegel HJ, Pan JW (2004) Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature, 430: 54-58

    Article  Google Scholar 

  30. Lu CY, Zhou XQ, ühne OG, Gao WB, Zhang J, Yuan ZS, Goebel A, Yang T, Pan JW (2007) Experimental entanglement of six photons in graph states. Nature Physics, doi:10.1038/nphys507, Published online: 14 January 2007

    Google Scholar 

  31. Benioff P (1998) Quantum Robots and Environments. Physical Review A, 58: 893-904

    Article  MathSciNet  Google Scholar 

  32. Dong DY, Chen CL, Zhang CB, Chen ZH (2006) Quantum robot: structure, algorithms and applications. Robotica, 24: 513-521

    Article  Google Scholar 

  33. Kak S (1995) On quantum neural computing. Information Sciences, 83: 143-160

    Article  Google Scholar 

  34. Ventura D, Martinez T (2000) Quantum associative memory. Information Sciences, 124: 273-296

    Article  MathSciNet  Google Scholar 

  35. Narayanan A, Menneer T (2000) Quantum artificial neural network architectures and components. Information Sciences, 128: 231-255

    Article  MATH  MathSciNet  Google Scholar 

  36. Behrman EC, Nash LR, Steck JE, Chandrashekar VG, Skinner SR (2000) Simulations of quantum neural networks. Information Sciences, 128: 257-269

    Article  MATH  MathSciNet  Google Scholar 

  37. Rigatos GG, Tzafestas SG (2002) Parallelization of a fuzzy control algorithm using quantum computation. IEEE Transactions on Fuzzy Systems, 10(4): 451-460

    Article  MathSciNet  Google Scholar 

  38. Venayagamoorthy GK, Singhal G (2005) Quantum-inspired evolutionary algorithms and binary particle swarm optimization for training MLP and SRN neural networks. Journal of Computational and Theoretical Nanoscience, 2(4): 561-568

    Article  Google Scholar 

  39. Sahin M, Atav U, Tomak M (2005) Quantum genetic algorithm method in self-consistent electronic structure calculations of a quantum dot with many electrons. International Journal of Modern Physics C, 16(9): 1379-1393

    Article  MATH  Google Scholar 

  40. Dong DY, Chen CL, Chen ZH (2005) Quantum reinforcement learning. in Proceedings of First International Conference on Natural Computation, Lecture Notes in Computer Science, 3611: 686-689

    Article  Google Scholar 

  41. Dong DY, Chen CL, Chen ZH, Zhang CB (2006) Quantum mechanics helps in learning for more intelligent robots. Chinese Physics Letters, 23: 1691-1694

    Article  Google Scholar 

  42. Chen CL, Dong DY, Chen ZH (2006) Quantum computation for action selection using reinforcement learning. International Journal of Quantum Information, 4: 1071-1083

    Article  MATH  Google Scholar 

  43. Brennen GK, Song D, Williams CJ (2003) Quantum-Computer Architecture Using Nonlocal Interactions. Physical Review A, 67: 050302

    Article  Google Scholar 

  44. Brooks RA (1986) A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2: 14-23

    MathSciNet  Google Scholar 

  45. Barberá HM (2001) A distributed architecture for intelligent control in autonomous mobile robots. Doctor thesis, University of Murcia, Spain

    Google Scholar 

  46. Barto AG, Mahanevan S (2003) Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems: Theory and Applications, 13: 41-77

    Article  MATH  MathSciNet  Google Scholar 

  47. Behet M, Bekaert J, De Boeck J, Borghs G (2000) InAs/Al0.2Ga0.8Sb quantum well Hall effect sensors. Sensors and Actuators, 81: 13-17

    Article  Google Scholar 

  48. Behet M, Das J, De Boeck J, Borghs G (1998) InAs/(Al, Ga)Sb quantum well structure for magnetic sensors. IEEE Transactions on Magnetics, 34: 1300-1302

    Article  Google Scholar 

  49. Kallias G, Devlin E, Christides C, Niarchos D (2002) High T c SQUID sensor system for nondestructive evaluation. Sensors and Actuators, 85: 239-243

    Article  Google Scholar 

  50. Mahdi AE, Mapps DJ (2000) High-T c SQUIDs: the ultra sensitive sensors for nondestructive testing and biomagnetism. Sensors and Actuators, 81: 367-370

    Article  Google Scholar 

  51. Morisawa J, Otaka M, Kodama M, Kato T, Suzuki S (2002) Detection of intergranular cracking susceptibility due to hydrogen in irradiated austenitic stainless steel with s superconducting quantum interference device (SQUID) sensor. Journal of Nuclear Materials, 302: 66-71

    Article  Google Scholar 

  52. Boyer M, Brassard G, Høyer P (1998) Tight bounds on quantum searching. Fortschritte Der Physik-Progress of Physics, 46: 493-506

    Article  Google Scholar 

  53. Sutton R, Barto AG (1998) Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press

    Google Scholar 

  54. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4: 237-287

    Google Scholar 

  55. Sutton R (1988) Learning to predict by the methods of temporal difference. Machine Learning, 3: 9-44

    Google Scholar 

  56. Watkins C, Dayan P (1992) Q-learning. Machine Learning, 8: 279-292

    MATH  Google Scholar 

  57. Kaya M, Alhajj A (2005) A novel approach to multiagent reinforcement learning: Utilizing OLAP mining in the learning process. IEEE Transactions on Systems Man and Cybernetics C, 35: 582-590

    Article  Google Scholar 

  58. Even-Dar E, Mansour Y (2003) Learning rates for Q-learning. Journal of Machine Learning Research, 5: 1-25

    MathSciNet  Google Scholar 

  59. Whiteson S, Stone P (2006) Evolutionary function approximation for reinforcement learning. Journal of Machine Learning Research, 7: 877-917

    MathSciNet  Google Scholar 

  60. Chen ZH, Dong DY, Zhang CB (2005) Quantum Control Theory: An Introduction. Hefei, China: University of Science and Technology of China Press (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, C., Dong, D. (2008). Quantum Intelligent Mobile System. In: Nedjah, N., Coelho, L.d.S., Mourelle, L.d.M. (eds) Quantum Inspired Intelligent Systems. Studies in Computational Intelligence, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78532-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78532-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78531-6

  • Online ISBN: 978-3-540-78532-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics