
Bulk-Loading the ND-Tree in Non-ordered
Discrete Data Spaces�

Hyun-Jeong Seok1, Gang Qian2, Qiang Zhu1,
Alexander R. Oswald2, and Sakti Pramanik3

1 Department of Computer and Information Science,
The University of Michigan - Dearborn, Dearborn, MI 48128, USA

{hseok,qzhu}@umich.edu
2 Department of Computer Science,

University of Central Oklahoma, Edmond, OK 73034, USA
{gqian,aoswald}@ucok.edu

3 Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824, USA

pramanik@cse.msu.edu

Abstract. Applications demanding multidimensional index structures
for performing efficient similarity queries often involve a large amount of
data. The conventional tuple-loading approach to building such an index
structure for a large data set is inefficient. To overcome the problem,
a number of algorithms to bulk-load the index structures, like the R-
tree, from scratch for large data sets in continuous data spaces have
been proposed. However, many of them cannot be directly applied to
a non-ordered discrete data space (NDDS) where data values on each
dimension are discrete and have no natural ordering. No bulk-loading
algorithm has been developed specifically for an index structure, such
as the ND-tree, in an NDDS. In this paper, we present a bulk-loading
algorithm, called the NDTBL, for the ND-tree in NDDSs. It adopts a
special in-memory structure to efficiently construct the target ND-tree.
It utilizes and extends some operations in the original ND-tree tuple-
loading algorithm to exploit the properties of an NDDS in choosing and
splitting data sets/nodes during the bulk-loading process. It also employs
some strategies such as multi-way splitting and memory buffering to
enhance efficiency. Our experimental studies show that the presented
algorithm is quite promising in bulk-loading the ND-tree for large data
sets in NDDSs.

Keywords: Multidimensional indexing, bulk-loading, non-ordered dis-
crete data space, algorithm, similarity search.

� Research supported by the US National Science Foundation (under grants # IIS-
0414576 and # IIS-0414594), the US National Institute of Health (under OK-
INBRE Grant # 5P20-RR-016478), The University of Michigan, and Michigan State
University.

J.R. Haritsa, R. Kotagiri, and V. Pudi (Eds.): DASFAA 2008, LNCS 4947, pp. 156–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Bulk-Loading the ND-Tree in Non-ordered Discrete Data Spaces 157

1 Introduction

Multidimensional index structures such as the R-trees [3,4,12] and the K-D-
B-tree [19] are vital to efficient evaluation of similarity queries in multidimen-
sional data spaces. Applications requiring similarity queries often involve a large
amount of data. As a result, how to rapidly bulk-load an index structure for
a large data set from scratch has become an important research topic recently.
Most research efforts done so far are for bulk-loading index structures in contin-
uous data spaces (CDS). In this paper, our discussion focuses on bulk-loading
an index tree for non-ordered discrete data spaces (NDDS).

An NDDS contains multidimensional vectors whose component values are
discrete and have no natural ordering. Non-ordered discrete data domains such
as gender and profession are very common in database applications. Lack of
essential geometric concepts such as (hyper-)rectangle, edge length and region
area raises challenges for developing an efficient index structure in an NDDS. An
ND-tree, which utilizes special properties of an NDDS, was proposed recently
to support efficient similarity queries in NDDSs [16,18]. A conventional tuple-
loading (TL) algorithm was introduced to load vectors/tuples into the tree one
by one. However, such a TL method may take too long when building an index
for a large data set in an NDDS. In fact, many contemporary applications need
to handle an increasingly large amount of data in NDDSs. For example, genome
sequence databases (with non-ordered discrete letters ‘a’, ‘g’, ‘t’, ‘c’) have been
growing rapidly in size in the past decade. The size of the GenBank, a popular
collection of all publicly available genome sequences, increased from 71 million
residues (base pairs) and 55 thousand sequences in 1991, to more than 65 billion
residues and 61 million sequences in 2006 [11]. Note that a genome sequence
is typically broken into multiple fixed-length q-grams (vectors) in an NDDS
when similarity searches are performed. Clearly, an efficient bulk-loading (BL)
technique is required to effectively utilize the ND-tree in such applications.

A number of bulk-loading algorithms have been proposed for multidimensional
index structures such as the R-tree and its variants in CDSs. The majority
of them are sorting-based bulk-loading [5,9,10,14,15,20]. Some of these adopt
the bottom-up approach, while the others employ the top-down approach. The
former algorithms [9,14,20] typically sort all input vectors according to a chosen
one-dimensional criterion first, place them into the leaves of the target tree in
that order, and then build the tree level by level in the bottom-up fashion via
recursively sorting the relevant MBRs at each level. The latter algorithms [10,15]
typically partition the set of input vectors into K subsets of roughly equal size
(where K ≤ the non-leaf node fan-out) based on one or more one-dimensional
orderings of the input vectors, create a root to store the MBRs of the subsets,
and then recursively construct subtrees for the subsets until each subset can
fit in one leaf node. Unfortunately, these algorithms cannot be directly applied
to an index structure in NDDSs where ordering as well as relevant geometric
concepts such as centers and corners are lacking.

Another type of bulk-loading algorithms, termed the generic bulk-loading,
has also been suggested [5,7,6,8]. The main characteristic of such algorithms is

158 H.-J. Seok et al.

to bulk-load a target index structure T by utilizing some operations/interfaces
(e.g., ChooseSubtree and Split) provided by the conventional TL (tuple-loading)
algorithm for T . Hence, the generic bulk-loading algorithms can be used for a
broad range of index structures that support the required operations. A promi-
nent generic bulk-loading algorithm [6], denoted as GBLA in this paper, adopts
a buffer-based approach. It employs external queues (buffers) associated with
the internal nodes of a tree to temporarily block an inserted vector. Only when
a buffer is full will its blocked vectors be forwarded to the buffer of a next-level
node. It builds the target index tree level by level from the bottom up. The
buffer-based bulk-loading approach is also used in the techniques presented in
[1,13]. Some other generic bulk-loading algorithms employ a sample-based ap-
proach [7,8]. Vectors are randomly sampled from the input data set to build a
seed index structure in the memory. The remaining vectors are then assigned
to individual leaves of the seed structure. The leaves are processed in the same
way recursively until the whole target structure is constructed. The effectiveness
and efficiency of such sample-based bulk-loading techniques typically rely on the
chosen samples. Generic bulk-loading algorithms are generally applicable to the
ND-tree since the conventional TL algorithm for the ND-tree provides necessary
operations.

In this paper, we propose a new algorithm, called NDTBL (the ND-Tree Bulk
Loading), for bulk-loading the ND-tree in an NDDS. It was inspired by the above
GBLA [7]. Although it also employs an intermediate tree structure and buffering
strategies to speed up the bulk-loading process, it is significantly different from
the GBLA in several ways: (1) a new in-memory buffer tree structure is adopted
to more effectively utilize the available memory in guiding input vectors into
their desired leaf nodes; (2) the non-leaf nodes of the in-memory buffer tree can
be directly used in the target index tree to reduce node construction time; (3)
a multi-way splitting based on the auxiliary tree technique for sorting discrete
minimum bounding rectangles (DMBR) in an NDDS is employed to improve
efficiency over the traditional two-way split; and (4) a unique adjusting process
to ensure the target tree meeting all the ND-tree properties is applied when
needed. Our experiments demonstrate that our algorithm is promising in bulk-
loading the ND-tree in NDDSs, comparing to the conventional TL algorithm
and the representative generic bulk-loading algorithm GBLA.

The rest of this paper is organized as follows. Section 2 introduces the essential
concepts and notation. Section 3 discusses the details of NDTBL. Section 4
presents our experimental results. Section 5 concludes the paper.

2 Preliminaries

To understand our bulk-loading algorithm for the ND-tree in an NDDS, it is
necessary to know the relevant concepts about an NDDS and the structure of
the ND-tree, which were introduced in [16,17,18]. For completion, we briefly
describe them in this section.

Bulk-Loading the ND-Tree in Non-ordered Discrete Data Spaces 159

A d-dimensional NDDS Ωd is defined as the Cartesian product of d alphabets:
Ωd = A1 × A2 × ... × Ad, where Ai(1 ≤ i ≤ d) is the alphabet of the i-th
dimension of Ωd, consisting of a finite set of letters. There is no natural ordering
among the letters. For simplicity, we assume Ai’s are the same in this paper. As
shown in [17], the discussion can be readily extended to NDDSs with different
alphabets. α = (a1, a2, ..., ad) (or ’a1a2...ad’) is a vector in Ωd, where ai ∈ Ai

(1 ≤ i ≤ d). A discrete rectangle R in Ωd is defined as R = S1 × S2 × ... × Sd,
where Si ⊆ Ai(1 ≤ i ≤ d) is called the i-th component set of R. The area of
R is defined as |S1| ∗ |S2| ∗ ... ∗ |Sd|. The overlap of two discrete rectangles R
and R′ is R ∩ R′ = (S1 ∩ S′

1) × (S2 ∩ S′
2) × ... × (Sd ∩ S′

d). For a given set SV
of vectors, the discrete minimum bounding rectangle (DMBR) of SV is defined
as the discrete rectangle whose i-th component set (1 ≤ i ≤ d) consists of all
letters appearing on the i-th dimension of the given vectors. The DMBR of a set
of discrete rectangles can be defined similarly.

As discussed in [16,18], the Hamming distance is a suitable distance measure
for NDDSs. The Hamming distance between two vectors gives the number of
mismatching dimensions between them. Using the Hamming distance, a simi-
larity (range) query is defined as follows: given a query vector αq and a query
range of Hamming distance rq, find all the vectors whose Hamming distance to
αq is less than or equal to rq.

The ND-tree based on the NDDS concepts was introduced in [16,18] to support
efficient similarity queries in NDDSs. Its structure is outlined as follows.

The ND-tree is a disk-based balanced tree, whose structure has some sim-
ilarities to that of the R-tree [12] in continuous data spaces. Let M and m
(2 ≤ m ≤ �M/2�) be the maximum number and the minimum number of entries
allowed in each node of an ND-tree, respectively. An ND-tree satisfies the fol-
lowing two requirements: (1) every non-leaf node has between m and M children
unless it is the root (which may have a minimum of two children in this case); (2)
every leaf node contains between m and M entries unless it is the root (which
may have a minimum of one entry/vector in this case).

A leaf node in an ND-tree contains an array of entries of the form (op, key),
where key is a vector in an NDDS Ωd and op is a pointer to the object represented
by key in the database. A non-leaf node N in an ND-tree contains an array of
entries of the form (cp, DMBR), where cp is a pointer to a child node N ′ of N
in the tree and DMBR is the discrete minimum bounding rectangle of N ′. Since
each leaf or non-leaf node is saved in one disk block, while their entry sizes are

{a,g}x{a,t}x... {c}x{a,c,g}x...

{t,c}x{a,c,g,t}x...{a,g}x{a,c,g,t}x...

{a,g}x{g,c}x... {t}x{c,g,t}x...

"ga...""at..." "tc..." "tt..."

......

......

......

Level 1 (root):

Level 2:

Level 3 (leaves):

Fig. 1. An example of the ND-tree

160 H.-J. Seok et al.

different, M and m for a leaf node are usually different from those for a non-leaf
node.

Figure 1 shows an example of the ND-tree for a genome sequence database
with alphabet {a, g, t, c} [16].

3 Bulk-Loading the ND-Tree

In this section, we introduce a bulk-loading algorithm for the ND-tree, which
is inspired by the generic bulk-loading algorithm (GBLA) suggested by Bercken
et al. in [6]. Although the two algorithms have some common ideas, they are
significantly different in several ways including the intermediate tree structure,
the memory utilization strategy, the target tree construction process, and the
overflow node splitting approach.

3.1 GBLA and Shortcomings

Although no bulk-loading algorithm has been proposed specifically for the ND-
tree so far, Bercken et al.’s GBLA can be applied to bulk-load the ND-tree due to
its generic nature. GBLA can load any multidimensional index tree that provides
the following operations: (1) InsertIntoNode to insert a vector/entry into a node
of the tree, (2) Split to split an overflow node into two, and (3) ChooseSubtree
to choose a subtree of a given tree node to accommodate an input vector/region,
which are all provided by the conventional TL (tuple-loading) algorithm for the
ND-tree [16,18].

The key idea of GBLA is to use an intermediate structure, called the buffer-
tree (see Figure 2), to guide the input vectors to the desired leaf nodes of the
target (index) tree that is being constructed. Once all the input vectors are
loaded in their leaf nodes, GBLA starts to build another buffer-tree to insert the
bounding rectangles/regions of these leaf nodes into their desired parent (non-
leaf) nodes in the target tree. This process continues until the root of the target
tree is generated.

Fig. 2. Bulk-loading process of GBLA

Bulk-Loading the ND-Tree in Non-ordered Discrete Data Spaces 161

Each node in the buffer-tree is called an index node. Each index node is as-
sociated with a buffer. Each buffer may consist of several pages. When input
vectors/regions come to an index node N , they are accumulated in the buffer
of N first. When the buffer is full, its stored vectors/regions are then pushed
(cleared) into the desired child nodes determined by ChooseSubtree. This pro-
cess is repeated until all stored vectors/regions reach their desired data pages
(i.e., the nodes of the target tree). Splits are necessary when a data page or an
index node is full. Since input vectors/regions are pushed into a data page or an
index node in batches, the number of I/Os required for the same node/page is
reduced during the bulk-loading.

During a bulk-loading, GBLA only keeps the following in memory: (1) the
current index node N ; (2) the last page of the buffer associated with N ; and (3)
the last pages of the buffers associated the child nodes of N if N is a non-leaf
node of the buffer-tree, or the data pages pointed to by N if N is a leaf. All the
other index nodes, buffer pages and data pages are kept on disk.

The way that GBLA makes use of all given memory space is to maximize
the fan-out of each index node. A main drawback of this approach is following.
Although an index node N in the buffer-tree is similar to a non-leaf node N ′ of
the target tree, N cannot be directly used in the target tree since N and N ′ may
have different fan-outs. This forces GBLA to generate the nodes of the target
tree level by level, wasting much work done for constructing the buffer-tree. In
addition, reading a large index node of the buffer-tree from disk to memory
requires multiple I/Os.

3.2 Key Idea of a New Algorithm

To overcome the shortcomings of GBLA, we introduce a new bulk-loading algo-
rithm NDTBL. The basic idea is following. Instead of using a separate buffer-
tree, we directly buffer the non-leaf nodes of a target ND-tree T in memory (see
Figure 3). In other words, the top portion (above the leaves) of T serves as an
in-memory buffer tree BT during our bulk-loading. However, we only associate
an auxiliary buffer (page) to each non-leaf node of T that is directly above the
leaf nodes of T . This is because a non-leaf node needs a buffer only if its child
nodes need to be read from disk so that multiple input vectors in the buffer can
be pushed into a child node N when N is read in memory. We call an ND-tree
with their non-leaf nodes buffered in memory a buffered ND-tree. Note that,
when NDTBL splits an overflow node, it may split the node into more than two
nodes to achieve high efficiency. Like the conventional TL algorithm of the ND-
tree, NDTBL splits an overflow node by grouping/partitioning its data. Hence,
it is a data-partitioning-based approach. Note that, when memory space is more
than enough to keep all non-leaf nodes, the remaining memory space is used to
cache as many leaf nodes as possible on the first-come first-served (FCFS) basis.
Some cached leaf nodes are output to disk when memory space is needed for new
non-leaf nodes. Hence only non-leaf nodes are guaranteed to be in memory.

When available memory is not enough to keep more non-leaf nodes dur-
ing bulk-loading, NDTBL stops splitting the overflow leaf nodes, i.e., allowing

162 H.-J. Seok et al.

Fig. 3. Structure of a buffered ND-tree

Fig. 4. An intermediate ND-tree resulting from linking subtrees

oversized leaf nodes. Once all input vectors are loaded in the tree, it then recur-
sively builds a buffered ND-subtree for each oversized leaf node (see Figure 4).
Since the subtrees may not have the same height and their root nodes may have
less than m subtrees/children, some adjustments may be needed to make the
final integrated tree meet all properties of an ND-tree.

Since the structure of a node in the in-memory buffer tree BT is the same
as that of a non-leaf node in the target ND-tree T , BT can be directly output
to disk as part of T (after appropriately mapping the memory pointers to the
disk block pointers/numbers). If available memory is sufficiently large, causing
no oversized leaf nodes, the target tree can be obtained by simply dumping the
in-memory buffer tree into disk. Otherwise, the target ND-tree is built by parts
with some possible adjustments done at the end. Since we keep the fan-out of a
non-leaf node small, comparing to GBLA, we can better narrow down the set of
useful child nodes for a given group of input vectors.

The following subsections describe the details of NDTBL.

3.3 Main Procedure

The main control procedure of algorithm NDTBL is given as follows. It recur-
sively calls itself to build the target ND-tree by parts when memory is insufficient.

Bulk-Loading the ND-Tree in Non-ordered Discrete Data Spaces 163

Algorithm 1 : NDTBL
Input: a set SV of input vectors in a d-dimensional NDDS.
Output: an ND-tree for SV on disk.
Method:
1. BufTree = BuildBufferedNDtree(SV);
2. if no leaf node of BufTree is oversized then
3. output the target ND-tree TgtT ree represented by BufTree to disk;
4. else
5. output the buffered non-leaf nodes to disk as the top

part TopTree of the target ND-tree;
6. for each oversized leaf node N of BufTree do
7. let SV1 be the set of input vectors in N ;
8. ND-subtree = NDTBL(SV1);
9. replace N by ND-sutree in its parent node in TopTree;
10. end for;
11. let TgtT ree be the intermediate ND-tree obtained by

linking all ND-subtrees to TopTree;
12. if heights of the ND-subtrees are different then
13. find the smallest height h for all ND-subtrees;
14. for each parent P of an ND-subtree with height > h

in TopTree do
15. TgtT ree = CutTree(TgtT ree, P , h);
16. end for;
17. end if;
18. if exists an ND-subtree ST having < m subtrees then
19. let h = height(ST) − 1;
20. for each parent P of an ND-subtree in TopTree do
21. TgtT ree = CutTree(TgtT ree, P , h);
22. end for;
23. end if;
24. end if;
25. return TgtT ree.

Algorithm NDTBL first invokes function BuildBufferedNDtree to build a
buffered ND-tree for the given input set (step 1). If no leaf node is oversized,
the target ND-tree has been successfully built from the buffered ND-tree (steps
2 - 3). If there is at least one oversized leaf node (step 4), NDTBL first outputs
the top portion of the current ND-tree to disk (step 5) and then recursively calls
itself to build an ND-subtree for the vectors in each oversized leaf node (steps 6
- 11). If the heights of the above ND-subtrees are different, NDTBL re-balances
the ND-tree by cutting the subtrees that are taller than others (steps 12 - 17).
Since each ND-subtree is built as an ND-tree for a subset of input vectors, it is
possible that its root has less than m children (entries). In this case, NDTBL cuts
every ND-subtree by one level so that all nodes of the resulting target ND-tree
meets the minimum space utilization requirement (steps 18 - 23).

3.4 Building Buffered ND-Tree

The following function creates a buffered ND-tree for a given set of input vectors.

Function 1 : BuildBufferedNDtree
Input: a set SV of input vectors.
Output: an ND-tree for SV with non-leaf nodes buffered in memory.

164 H.-J. Seok et al.

Method:
1. create a buffered root node RN with an empty leaf node;
2. let H = 1;
3. while there are more uninserted vectors in SV do
4. fetch the next vector b from SV ;
5. nodelist = InsertVector(b, RN , H);
6. if |nodelist| > 1 then
7. create a new buffered root RN with entries for nodes

in nodelist as children;
8. let H = H + 1;
9. end if;
10. end while;
11. return RN .

Function BuildBufferedNDtree starts with a non-leaf root node with an empty
leaf node (steps 1 - 2). Note that, if a buffered ND-tree returned by Build-
BufferedNDtree has only one leaf node N , the target ND-tree output by NDTBL
consists of N only (i.e., the buffered non-leaf node is removed). Otherwise, all
non-leaf nodes of a buffered ND-tree are used for the target ND-tree. Build-
BufferedNDtree inserts one input vector at a time into the buffered ND-tree by
invoking function InsertVector (steps 4 - 5). After a new vector is inserted into
the tree, the tree may experience a sequence of splits making the original root to
be split into several nodes. In such a case, BuildBufferedNDtree creates a new
root to accommodate the nodes (steps 6 - 9).

Function InsertVector inserts an input vector into a given buffered ND-tree/
subtree. To improve performance, it inserts input vectors into the relevant auxil-
iary buffers of the parents of the desired leaf nodes first. Once an auxiliary buffer
is full, it then clears the buffer by moving its vectors into the desired leaf nodes
in batch. Since multiple buffered vectors can be pushed into a leaf node at once,
multiple splits could happen, leading to possibly multiple subtrees returned.

Function 2 : InsertVector
Input: vector b to be inserted into a subtree with root RN and height H .
Output: a list of root nodes of subtrees resulting from inserting vector b.
Method:
1. let resultnodes = { RN };
2. if the level of RN is H do
3. insert b into the auxiliary buffer AuxBuf for RN ;
4. if AuxBuf is full then
5. sort vectors in AuxBuf according to the order of

their desired leaf nodes in RN ;
6. for each group of vectors in AuxBuf with the same

desired leaf node number do
7. insert the vectors into the desired leaf node N ;
8. if N overflows and there is enough memory then
9. splitnodes = Multisplit(N);
10. replace entry for N in its parent P with entries

for nodes from splitnodes;
11. if P overflows then
12. splitnodes = Multisplit(P);
13. resultnodes = (resultnodes − {P}) ∪ splitnodes;
14. end if;

Bulk-Loading the ND-Tree in Non-ordered Discrete Data Spaces 165

15. end if;
16. end for;
17. end if;
18. else
19. SN = ChooseSubtree(RN , b);
20. tmplist = InsertVector(b, SN , H);
21. if |tmplist| > 1 then
22. replace entry for SN in RN with entries for nodes from tmplist;
23. if RN overflows then
24. splitnodes = Multisplit(RN);
25. resultnodes = (resultnodes − {RN}) ∪ splitnodes;
26. end if;
27. end if;
28. end if;
29. return resultnodes.

If the given root RN is a parent of leaf nodes (i.e., at level H), InsertVector
inserts the input vector into the auxiliary buffer associated with RN (steps 2 -
3). If the buffer is full, InsertVector clears it by moving all its vectors into their
desired leaf nodes (steps 4 - 17). To avoid reading the same leaf node multiple
times, InsertVector sorts the vectors first and moves all vectors for the same leaf
node together (steps 5 - 7). If a leaf node overflows and there is enough memory,
InsertVector will split the node (steps 8 - 10). A leaf node split could cause its
parent to split (steps 11 - 14). Note that the parent P of a leaf node can be
a new node generated from a previous split rather than the original given root
RN . If there is no enough memory for splitting, the input vectors are put into
their desired leaf nodes without splitting, resulting in oversized leaf nodes. If
the given root RN is not at level H (i.e., a parent of leaf nodes), InsertVector
chooses the best subtree to accommodate the input vector by utilizing operation
ChooseSubtree from the conventional TL algorithm for the ND-tree (steps 19 -
20). The split of the root of the subtree may cause the given root RN to split
(steps 21 - 26).

3.5 Multi-way Splitting

When a node N overflows, a conventional TL algorithm for an index tree (such
as the one for the ND-tree) would split N into two nodes. As mentioned earlier,
when clearing an auxiliary buffer during our bulk-loading, multiple vectors may
be put into the same child node N . Splitting N into two after accommodating
multiple vectors may not be sufficient since a new node may still overflow. Hence
it may be necessary to split N into more than two nodes. One way to handle
such a case is to split N into two whenever a new vector from the auxiliary buffer
triggers an overflow for N , and the splitting process is immediately propagated
to its parent if the parent also overflows. This approach is essentially applying a
sequence of conventional two-way splits to N . To avoid propagating the splitting
process to the parents multiple times, a more efficient way to handle the case
is not splitting N until all relevant vectors from the auxiliary buffer are loaded
into N . If N overflows, it is split into a set G of new nodes, where |G| ≥ 2.
This new multi-way splitting requires to extend the conventional TL two-way

166 H.-J. Seok et al.

splitting. The splitting process may be propagated (only once) to the ancestors
of N . Note that if a node at level H is split, the vectors in its associated auxiliary
buffer are also split accordingly.

One approach employed by the conventional TL algorithm for the ND-tree to
splitting an overflow node N with M + 1 entries into two nodes is to apply an
auxiliary tree technique [16,18]. The key idea is as follows. For each dimension
i (1 ≤ i ≤ d), it sorts the entries in N into an ordered list Li by building
an auxiliary tree for the i-th component sets of the DMBRs for the entries.
The auxiliary tree is built in such a way that overlap-free partitions for the i-th
component sets can be exploited in Li. For ordered list Li, M −2m+2 candidate
partitions are generated by placing the first j (m ≤ j ≤ M −m+1) entries in the
first portion of a partition and the remaining entries in the second portion of the
partition. The ND-tree TL algorithm then chooses a best partition among all
candidate partitions from all dimensions according to several criteria, including
minimizing overlap, maximizing span, centering split, and minimizing area. Node
N is then split into two nodes N0 and N1 according to the best partition chosen
in the above process. For the bulk-loading case, N may have ≥ M + 1 entries,
and N0 or N1 (or both) can still overflow (i.e., having ≥ M + 1 entries). In this
situation, the multi-way splitting applies the above splitting process recursively
to the overflow node(s). Note that the overflow splitting process is not propagated
to the ancestors until the split of N is completely done.

The details of the multi-way splitting function are described as follows.

Function 3 : Multisplit
Input: an overflow node N
Output: a list of nodes resulting from splitting N
Method:
1. apply the auxiliary tree technique to find a best partition

to split node N into two nodes N0 and N1;
2. let splitnodes = { N0, N1 };
3. if N0 overflows then
4. tmplist = Multisplit(N0);
5. splitnodes = (splitnodes − {N0}) ∪ tmplist;
6. end if;
8. if N1 overflows then
9. tmplist = Multisplit(N1);
10. splitnodes = (splitnodes − {N1}) ∪ tmplist;
11. end if;
12. return splitnodes.

3.6 Adjust Irregular Tree

Algorithm NDTBL invokes the following function to cut the subtrees of a given
node to a given height. It is needed when making proper adjustments to an
intermediate ND-tree that does not meet all the ND-tree requirements.

Function 4 : CutTree
Input: (1) current target ND-tree TgtT ree; (2) parent node P of subtrees that need
to be cut; (3) desired subtree height h.
Output: adjusted target ND-tree.

Bulk-Loading the ND-Tree in Non-ordered Discrete Data Spaces 167

Method:
1. let ST be the set of subtrees with height > h in P ;
2. for each T in ST do
3. let S = { subtrees of height h in T };
4. replace T in its parent PN with all subtrees from S;
5. if PN overflows then
6. splitnodes = Multisplit(PN);
7. if PN is not the root of TgtT ree then
8. replace entry for PN in its parent with entries for

nodes from splitnodes;
9. else
10. create a new root of TgtT ree with entries for nodes from splitnodes;
11. end if
12. the overflow splitting process can be propagated up

to the root of TgtT ree when needed;
13. end if;
14. end for;
15. return TgtT ree.

Function CutTree cuts each subtree T of a given node P to a given height
h, and links the resulting subtrees to the parent PN of T (steps 1 - 4). Note
that, since a split may have happened, PN may not be the same as the original
parent P . If PN overflows, CutTree invokes Multisplit to split PN . This splitting
process can be propagated up to the root of the given tree (steps 5 - 13).

4 Experimental Results

To evaluate the efficiency and effectiveness of NDTBL, we conducted extensive
experiments. Typical results from the experiments are reported in this section.

Our experiments were conducted on a PC with Pentium D 3.40GHz CPU,
2GB memory and 400 GB hard disk. Performance evaluation was based on the
number of disk I/Os with the disk block size set at 4 kilobytes. The available
memory sizes used in the experiments were simulated based on the program con-
figurations rather than physical RAM changes in hardware. The data sets used in
the presented experimental results included both real genome sequence data and
synthetic data. Genomic data was extracted from bacteria genome sequences of
the GenBank, which were broken into q-grams/vectors of 25 characters long (25
dimensions). Synthetic data was randomly generated with 40 dimensions and
an alphabet size of 10 on all dimensions. For comparison, we also implemented
both the conventional TL (tuple-loading) algorithm for the ND-tree [16,18] and
the representative generic bulk-loading algorithm GBLA [6]. All programs were
implemented in C++ programming language. The minimum space utilization
percentage for a disk block was set to 30%. According to [6], we set the size
(disk block count) of the external buffer (pages on disk) of each index node of
the buffer-tree in GBLA at half of the node fan-out, which was decided by the
available memory size.

Figures 5 and 6 (logarithmic scale in base 10 for Y-axis) show the number
of I/Os needed to construct ND-trees for data sets of different sizes using TL,
GBLA, and NDTBL for genomic and synthetic data, respectively. The size of

168 H.-J. Seok et al.

0 2 4 6 8 10

x 10
6

10
3

10
4

10
5

10
6

10
7

10
8

number of indexed vectors

nu
m

be
r

of
 I/

O
s

Tuple−loading
GBLA
NDTBL

0 2 4 6 8 10

x 10
6

10
3

10
4

10
5

10
6

10
7

10
8

number of indexed vectors

nu
m

be
r

of
 I/

O
s

Tuple−loading
GBLA
NDTBL

Fig. 5. Bulk-loading performance com-
parison for genomic data

Fig. 6. Bulk-loading performance com-
parison for synthetic data

memory available for the algorithms was fixed at 4 megabytes. From the figures,
we can see that the bulk-loading algorithms significantly outperformed the con-
ventional TL algorithm. For example, NDTBL was about 89 times faster than
TL when loading 10 million genomic vectors in our experiments. Between the
two bulk loading algorithms, GBLA was consistently slower than NDTBL, which
showed that the strategies adopted by the latter, including avoiding the level-by-
level construction process, applying the multi-way splitting and narrowing down
search scopes, were effective. In fact, the performance improvement was increas-
ingly larger as the database size increased. For example, NDTBL was about 4.5
times faster than GBLA when bulk-loading 10 million genomic vectors.

Since both NDTBL and GBLA employ a special in-memory intermediate
(sub)tree structure for bulk-loading, the available memory size has a signifi-
cant impact on their performance. Experiments were also conducted to study
the effect of different memory sizes on the performance of NDTBL and GBLA.
Table 1 shows the number of I/Os needed by these two algorithms to construct

Table 1. Effect of memory size on bulk-loading performance

Memory 4MB 8MB 16MB 32MB 64MB 128MB 256MB
GBLA/genomic 869793 815999 705982 612496 274381 100526 39027
NDTBL/genomic 319905 298272 270024 235886 182347 76698 35502
GBLA/synthetic 1265294 1187039 1026998 891003 399144 156235 72653
NDTBL/synthetic 585019 545591 493984 441445 339919 147864 68552

the ND-trees for a genomic data set (4 million vectors) and a synthetic data
set (4 million vectors) under different sizes of available memory. From the ex-
perimental results, we can see that NDTBL was consistently more efficient than
GBLA. When the memory size was small comparing to the database size, the
performance of NDTBL was significantly better than that of GBLA. On the

Bulk-Loading the ND-Tree in Non-ordered Discrete Data Spaces 169

Table 2. Query performance comparison for genomic data

rq = 1 rq = 2 rq = 3
key# io io io io io io io io io

TL GBLA NDTBL TL GBLA NDTBL TL GBLA NDTBL
100000 16.0 15.9 15.9 63.8 63.7 63.6 184.3 184.0 183.6
200000 18.2 18.0 18.0 79.9 79.3 79.0 249.8 248.0 247.2
400000 20.1 19.8 19.6 96.5 95.4 94.4 327.6 323.6 320.4
1000000 22.7 22.6 22.3 121.8 121.1 119.8 451.4 449.0 444.0
2000000 26.6 26.3 26.2 145.2 143.2 142.9 572.8 565.0 563.8
4000000 29.8 29.7 29.4 172.0 169.3 167.9 724.9 715.3 709.2
10000000 33.5 33.3 33.0 210.1 209.5 207.7 958.2 955.1 946.4

Table 3. Query performance comparison for synthetic data

rq = 1 rq = 2 rq = 3
key# io io io io io io io io io

TL GBLA NDTBL TL GBLA NDTBL TL GBLA NDTBL
100000 19.6 19.5 19.2 78.0 77.3 76.0 228.3 228.3 225.1
200000 22.4 23.4 22.8 97.2 98.3 98.1 305.9 305.9 299.2
400000 25.3 24.9 24.1 119.1 119.0 116.8 403.3 403.3 391.6
1000000 29.6 30.3 30.2 154.6 157.3 155.2 578.3 578.3 573.2
2000000 32.7 31.9 31.6 183.7 191.1 188.7 734.9 734.9 729.6
4000000 37.5 35.8 35.6 217.9 192.7 190.5 921.2 921.5 910.9
10000000 42.6 41.2 40.0 264.1 258.4 236.0 1188.2 1162.7 1137.4

other hand, when the memory was very large so that almost the entire ND-tree
could be fit in it, the performance of two algorithms became close. However,
since GBLA still needs to construct the target ND-tree level by level in such a
case, its performance is still worse than that of the NDTBL. In real applications
such as genome sequence searching, since the available memory size is usually
small comparing to the huge database size, NDTBL has a significant perfor-
mance benefit. In other words, for a fixed memory size, the larger the database
size is, the more performance benefit the NDTBL can provide.

To evaluate the effectiveness of NDTBL, we compared the quality of the ND-
trees constructed by all algorithms. The quality of an ND-tree was measured
by its query performance and space utilization. Tables 2 and 3 show query per-
formance of the ND-trees constructed by TL, GBLA, and NDTBL for genomic
and synthetic data, respectively. These trees are the same as those presented in
Figures 5 and 6. Query performance was measured based on the average number
of I/Os for executing 100 random range queries at Hamming distances 1, 2 and
3. The results show that the ND-trees constructed by NDTBL have comparable
performance as those constructed by TL and GBLA.

Table 4 shows the space utilization of the same set of ND-trees for genomic
and synthetic data. From the table, we can see that the space utilization of
NDTBL was also similar to that of TL and GBLA.

170 H.-J. Seok et al.

Table 4. Space utilization comparison

genomic data synthetic data
key# ut% ut% ut% ut% ut% ut%

TL GBLA NDTBL TL GBLA NDTBL
100000 69.7 69.8 70.0 62.5 62.5 63.6
200000 69.0 69.5 70.0 62.1 62.1 64.5
400000 69.0 69.9 70.3 62.3 62.3 64.6
1000000 72.4 72.8 73.9 65.7 65.7 67.6
2000000 71.9 72.2 73.3 65.7 66.0 68.0
4000000 70.9 71.6 72.4 65.7 67.8 68.2
10000000 68.7 68.9 69.7 81.1 81.5 82.6

Besides the experiments reported above, we have also conducted experiments
with data sets of various alphabet sizes and dimensionalities. The results were
similar. Due to the space limitation, they are not included in this paper.

5 Conclusions

There is an increasing demand for applications such as genome sequence search-
ing that involve similarity queries on large data sets in NDDSs. Index structures
such as the ND-tree [16,18] are crucial to achieving efficient evaluation of sim-
ilarity queries in NDDSs. Although many bulk-loading techniques have been
proposed to construct index trees in CDSs in the literature, no bulk-loading
technique has been developed specifically for NDDSs. In this paper, we present
a new algorithm NDTBL to bulk-load the ND-tree for large data sets in NDDSs.

The algorithm employs a special intermediate tree structure with related
buffering strategies (e.g., keeping non-leaf nodes in memory, providing auxil-
iary buffers for parents of leaves, FCFS caching for leaves, and sorting buffered
vectors before clearing, etc.) to build a target ND-tree by parts using available
memory space. It applies a unique adjustment processing to ensure the properties
of the ND-tree when needed. It also adopts a multi-way splitting method to split
an overflow node into multiple nodes rather than always two nodes to improve
efficiency. The auxiliary tree technique from the original ND-tree TL algorithm
[16,18] is utilized to sort discrete rectangles/vectors based on the properties of
an NDDS during the multi-way splitting.

Our experimental results demonstrate that the proposed algorithm to bulk-
load an ND-tree significantly outperforms the conventional TL algorithm and the
generic bulk-loading algorithm GBLA in [6], especially when being used for large
data sets with limited available memory. The target ND-trees obtained from all
the algorithms have comparable searching performance and space utilization.

Our future work includes studying bulk-loading techniques exploiting more
characteristics of an NDDS and developing bulk-load methods for the space-
partitioning-based index tree, the NSP-tree [17], in NDDSs.

Bulk-Loading the ND-Tree in Non-ordered Discrete Data Spaces 171

References

1. Arge, L., Hinrichs, K., Vahrenhold, J., Viter, J.S.: Efficient Bulk Operations on Dy-
namic R-trees. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS,
vol. 1619, pp. 328–348. Springer, Heidelberg (1999)

2. Arge, L., Berg, M., Haverkort, H., Yi, K.: The Priority R-tree: a practically efficient
and worst-case optimal R-tree. In: Proc. of SIGMOD, pp. 347–358 (2004)

3. Beckman, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-tree: an efficient and
robust access method for points and rectangles. In: Proc. of SIGMOD, pp. 322–331
(1990)

4. Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-tree: an index structure for high-
dimensional data. In: Proc. of VLDB 1996, pp. 28–39 (1996)

5. Berchtold, S., Bohm, C., Kriegel, H.-P.: Improving the Query Performance of
High-Dimensional Index Structures by Bulk-Load Operations. In: Schek, H.-J.,
Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 216–230.
Springer, Heidelberg (1998)

6. Bercken, J., Seeger, B., Widmayer, P.: A Generic Approach to Bulk Loading Mul-
tidimensional Index Structures. In: Proc. of VLDB, pp. 406–415 (1997)

7. Bercken, J., Seeger, B.,, B.: An Evaluation of Generic Bulk Loading Techniques.
In: Proc. of VLDB, pp. 461–470 (2001)

8. Ciaccia, P., Patella, M.: Bulk loading the M-tree. In: Proc. of the 9th Australian
Database Conference, pp. 15–26 (1998)

9. De Witt, D., Kabra, N., Luo, J., Patel, J., Yu, J.: Client-Server Paradise. In: Proc.
of VLDB, pp. 558–569 (1994)

10. Garcia, Y., Lopez, M., Leutenegger, S.: A greedy algorithm for bulk loading R-
trees. In: Proc. of ACM-GIS, pp. 02–07 (1998)

11. http://www.ncbi.nlm.nih.gov/Genbank/
12. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proc.

of SIGMOD, pp. 47–57 (1984)
13. Jermaine, C., Datta, A., Omiecinski, E.: A novel index supporting high volumne

data warehouse insertion. In: Proc. of VLDB, pp. 235–246 (1999)
14. Kamel, I., Faloutsos, C.: On packing R-trees. In: Proc. of CIKM, pp. 490–499

(1993)
15. Leutenegger, S., Edgington, J., Lopez, M.: STR: A Simple and Efficient Algorithm

for R-Tree Packing. In: Proc. of ICDE, pp. 497–506 (1997)
16. Qian, G., Zhu, Q., Xue, Q., Pramanik, S.: The ND-Tree: a dynamic indexing

technique for multidimensional non-ordered discrete data spaces. In: Aberer, K.,
Koubarakis, M., Kalogeraki, V. (eds.) VLDB 2003. LNCS, vol. 2944, pp. 620–631.
Springer, Heidelberg (2004)

17. Qian, G., Zhu, Q., Xue, Q., Pramanik, S.: A Space-Partitioning-Based Indexing
Method for Multidimensional Non-ordered Discrete Data Spaces. ACM TOIS 23,
79–110 (2006)

18. Qian, G., Zhu, Q., Xue, Q., Pramanik, S.: Dynamic Indexing for Multidimen-
sional Non-ordered Discrete Data Spaces Using a Data-Partitioning Approach.
ACM TODS 31, 439–484 (2006)

19. Robinson, J.T.: The K-D-B-tree: a search structure for large multidimensional
dynamic indexes. In: Proc. of SIGMOD, pp. 10–18 (1981)

20. Roussopoulos, N., Leifker, D.: Direct spatial search on pictorial databases using
packed R-trees. In: Proc. of SIGMOD, pp. 17–31 (1985)

http://www.ncbi.nlm.nih.gov/Genbank/

	Bulk-Loading the ND-Tree in Non-ordered Discrete Data Spaces
	Introduction
	Preliminaries
	Bulk-Loading the ND-Tree
	GBLA and Shortcomings
	Key Idea of a New Algorithm
	Main Procedure
	Building Buffered ND-Tree
	Multi-way Splitting
	Adjust Irregular Tree

	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

