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Abstract. Similarity search in complex databases is of utmost interest in a wide
range of application domains. Often, complex objects are described by several
representations. The combination of these different representations usually con-
tains more information compared to only one representation. In our work, we
introduce the use of an index structure in combination with a negotiation-theory-
based approach for deriving a suitable subset of representations for a given query
object. This most promising subset of representations is determined in an unsu-
pervised way at query time. We experimentally show how this approach signif-
icantly increases the efficiency of the query processing step. At the same time
the effectiveness, i.e. the quality of the search results, is equal or even higher
compared to standard combination methods.

1 Introduction

Similarity search is an important issue in a broad range of applications like the re-
trieval of multimedia, biological, spatial, and CAD objects. In order to handle complex
domain-specific objects, a feature extraction is typically applied. The feature extraction
aims at transforming characteristic object properties into feature values. The extracted
feature-values can be interpreted as a vector in a multidimensional vector space called
feature space. The most important characteristic of a meaningful feature space is that
whenever two of the objects are similar, the associated feature vectors have a small dis-
tance according to an appropriate distance function (e.g., the Euclidean distance). Thus,
similarity search on complex objects can be naturally translated into a k-nearest neigh-
bor (kNN) query in a feature space. Objects are usually described by several feature
spaces in order to capture various object properties. Thus, one of the most promis-
ing approaches for effective similarity search in databases is to exploit the properties of
multiple feature spaces or representations. Though the effectiveness can be improved by
using multiple representations, the efficiency of the multi-represented similarity search
should also be addressed. For answering a kNN query, we have to consider all available
representations. This can be accomplished in two ways. We can either perform a kNN
query on all representations independently and combine the results, or we can combine
all feature spaces into a single feature space and perform a kNN query on this com-
bined feature space. Each of these two approaches has its drawbacks. The first approach
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yields potentially different kNN ranking results for the different representations and it
is not obvious how to derive a combined answer. The seconde approach suffers from
the well-known ”curse of dimensionality”. In this paper, we propose a novel approach
for efficient, multi-represented similarity search where each representation uses its own
index structure. In the first step, our approach performs a pre-selection in order to re-
duce the number of available representations to a small subset S of the most accurate
representations. This reduction is based on the coalitional game theory. Furthermore,
our approach allows to calculate such a most promising subset S dynamically (i.e.,
the subset S is computed depending on the given query object). In contrast to existing
approaches (e.g., entropy-based methods [1]) which apply an effective but supervised
technique for similarity search with multiple representations, we propose an unsuper-
vised approach. Furthermore we outline an algorithm for answering kNN queries using
separate index structures for each representations. Instead of using similarity distances,
we follow the idea of negotiation game theory and apply self confidence and so-called
payoff values in order to rank multi-represented objects.

2 Related Work

Similarity search based on multiple representations has attracted considerable attention
in several research communities. However, to the best of our knowledge, no existing
technique dynamically calculates a suitable coalition of representations and supports
efficient multi-represented kNN query processing in an unsupervised way. The existing
approaches can be grouped into two categories: indexing of multi-represented objects
and combining several similarity measures corresponding to different representations.
In [2], the M2-tree is proposed that combines information from multiple metric spaces
within a single index structure. The main drawback of the M2-tree is that it combines
features spaces statically, i.e. independently of the current query object. Furthermore,
the combination function has to be known beforehand. In contrast to that, the approach
of [3, 4] derives a linear combination of metrics dynamically, i.e. based on a given query.
However, all available representations are considered, in contrast to our approach that
dynamically selects a small subset of relevant representations.
An overview of combining approaches in information retrieval can be found in [5].
According to [5], the most common way to combine representations is the use of the
weighted sum of distances in each representation. To find proper weights for each rep-
resentation, several approaches were proposed that rely on user feedback. Further ap-
proaches to approximate weights employing user feedback are described in [6, 7]. In
comparison to our approach, these methods employ global weights and do not use dy-
namic and unsupervised adjusting.
The authors of [8] introduce a technique based on the entropy impurity measure. In
comparison to our method, the proposed technique requires a set of labeled objects.
An unsupervised technique for the weighted combination of multiple representations
was proposed in [9], but this method does not consider efficient data access using index
structures. It is furthermore only applicable in combination with summarization which
is not a necessary element of general multi-represented similarity search.



3 Adapting Coalitional Game Theory for Similarity Search

3.1 Preliminaries

Comparability of Feature Spaces. Usually, the similarity distance values of different
representations do not have a common scale. This problem is called the comparabil-
ity problem. To overcome this problem, normalization methods are applied. We use
the most common Min-Max normalization which calculates the maximum (max) and
the minimum (min) of the original distance values. Afterwards, a distance value d is
mapped to the normalized distance dn where dn = (d−min)/(max−min).
Coalitional Games. We consider the problem of combining similarity information of
different representations as a game theory problem, in particular as a so called coali-
tional game. For a detailed introduction, we refer the reader to [10].
A game is a tuple (N,V ), where N = {r1...rn} is the set of players participating in the
game. In our approach these players correspond to the available representations, each
one trying to suggest its own similarity distance as the best one. V is a function which
assigns the so called payoff or gain value to a subset U ⊆ N . U is called a coalition.
Each player can choose from a predefined set of strategies, each yielding a certain pay-
off. In our approach each representation can choose between n possible moves: either
not to cooperate or to cooperate with one of the n − 1 other representations. A repre-
sentation is more likely to cooperate with another one, if they are similar to each other.
A representation is more likely not to cooperate with another representation if either
no similar representation is available for a given query or if the representation is very
confident of its own similarity distance (cf. Section 3.2).
A game can be described by a n × n payoff matrix M listing the payoff values for
each possible move. The diagonal holds the gain values for the decision not to coop-
erate while the entry in the i-th row and the j-th column corresponds to the gain for
player i to cooperate with player j. Section 3.3 describes how to use M to determine
the winning coalition, i.e. to determine a subset of representations that is used to calcu-
late the similarity of database objects for a given query object. The overall idea of our
negotiation-game-theory-based approach (NGT) is depicted in Figure 1(a).

3.2 Calculating Gains for Coalitions of Representations

This section describes the calculation of the gain values for the different strategies.
Given a query, several influences have to be taken into account.
The first influence is the position of the query object in the different feature spaces. Intu-
itively, if the feature vector corresponding to the query object is far away from a cluster
in a feature space, this might indicate that the current representation considers the query
as an outlier. Assuming there are indeed similar objects in the database this means the
current representation is less suitable for describing and answering the current query.
This idea is illustrated in Figure 1(b), where the first representation might be less useful
for the given query q. In order to obtain clustering information we exploit the cluster-
ing properties of tree-like index structures. We propose to use an X-tree [11] because
it is a common index structure for high-dimensional data and efficiently supports kNN
queries. As the directory of a tree-like index structure is a good approximation of the
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Fig. 1. Overview and general idea.

underlying data distribution, for representation i we calculate the distance di between q
and the nearest cluster as the MINDIST [12] between q and a directory node.
The second influence on the negotiation behavior of different representations is their
similarity to each other. More similar representations should more willingly cooperate
with each other. As we normalized all distances as described above, we are able to use
the next-cluster values di as described before to compare different representations. Let
in the following µ be the mean value and σ be the standard deviation of the distances
di. We define the gain for representation ri not to cooperate as

Mi,i = (1− d2
i ) · (1− |di − µ|2)

The first factor of the product reflects the quality of representation ri for a given query
as described above. The second factor of the formula compares the quality of ri to the
average quality of all representations. Thus, a representation has the largest motivation
not to cooperate with another representation if its next-cluster distance is small and at
the same time similar to the average next-cluster distance.
The remaining matrix entries Mi,j , i 6= j, indicate the payoff for representation ri

for cooperating with representation rj . A cooperation with rj can either increase or
decrease the gain for ri, i.e. Mi,j = Mi,i · changeFactor. The change factor takes the
following considerations into account: The smaller the difference between di and dj

compared to σ, the more likely is a cooperation. If the difference between di and dj is
larger than σ, ri and rj are not allowed to cooperate. In order to form stable coalitions
we have to prevent the case where ri decides to cooperate with rj while at the same
time rj decides to cooperate with ri. Only a one-directional cooperation is allowed.
We favor the representation whose next-cluster distance is nearer to the average µ. This
leads to the following definition for non-diagonal payoff matrix elements:

Mi,j = Mi,i · changeFactor = Mi,i ·

{
−1 if |di − µ| < |dj − µ| ∨ |di − dj | > σ

(1 + (σ − |di − dj |)) ∗ 1+|di−µ|
1+|dj−µ| else



3.3 Determining the Winning Coalition

After having calculated all payoff values we are now able to determine the winning
coalition of representations, i.e. the coalition with the highest gain. The gain of a coali-
tion is the sum of the gain values of the decisions that have led to the coalition. In order
to identify the strongest coalition we determine the maximal entry of each row, as this
entry indicates the best strategy of the associated representation. Then, for a certain col-
umn, we sum up all these maximal values that can be found in this column. This yields
the payoff for the coalition consisting of the representations whose best gain values
have been summed up.

3.4 Deriving Weights

Aside from limiting the number of representations involved in answering a query, we
can use the above generated matrix to calculate weights for the remaining represen-
tations. We use these weights to perform high-quality kNN queries very efficiently as
described in Section 4. Let C be the coalition. The weight wi of the coalition mem-
ber ri is calculated as the ratio between Mi,i and the average non-cooperating gains
of all participating representations: wi = (Mi,i · |C|)/(

∑
rj∈C Mj,j). Intuitively, Mi,i

reflects how confident representation ri is about its own quality. So, weights larger than
1 indicate a confidence above the average.

4 Efficient kNN Query Processing on Multiple Representations

In the following, we use the above described weights to calculate a weighted linear com-
bination of these representations. As in the previous section, we are using the principles
of the negotiation game theory for combining the representations. In our experiments,
we observed that using the weighted sum yields the best results for our NGT-based ap-
proach.
A ranking is performed on each of the relevant representations in order to answer a kNN
query for a given query object. The following technique bases on the assumption of
searching in a tree-like index structure. The kNN query algorithm uses the well-known
Hjaltason-Samet ranking algorithm [13] and orders all objects in a single priority queue.
The priority queue of the ranking is initialized with the roots of all representations of
the best coalition. The ranking priority queue is organized in descending order w.r.t.
gain-based value as described below. We propose to calculate the priority of the ranked
directory pages dp similar to the representation selection in the previous section. The
gain formula has to be adapted as follows: priority = gaindp ∗ wi, where gaindp =
(1 − MinDist(dp)2). In each iteration of the algorithm, the first object is removed
from the ranking queue. For each entry of a directory page, we calculate the priority
according to the above formula and insert it into the ranking priority queue. In case of a
data page, we process all objects within this page. Each retrieved object is added to the
result priority queue, where the sum of the weighted gains in all relevant representations
is used as priority value. In case an object is already in the queue, its priority value is
updated. The gain is calculated as the gain for a directory page, instead of the MINDIST



value we use the Euclidean distance value. The idea behind using the sum of the gain
values as priority is that objects which have been retrieved in a lot of representations
are ranked higher. Furthermore, we also test if the currently retrieved or updated object
fulfills a stop condition. We terminate the kNN algorithm if there is no change in the
first k objects of our result queue. Once this is the case, it is most likely that no further
gain value has enough impact to alter the kNN result queue.

5 Experimental Evaluation

We performed our evaluation on four different datasets. Please note that each dataset is
described by three or more representations because our NGT approach is only applica-
ble if at least three representations are available. As mentioned in Section 3, all datasets
are organized in an X-tree. Unless noted otherwise, we conducted 30 kNN queries with
randomly chosen query objects and averaged the results.
The NTU dataset is based on a subset of the NTU 3D Model Benchmark [14] and con-
sists of 549 objects in 46 classes. We extracted three representations for this dataset with
an average dimensionality of 80. The Music dataset contains 516 songs taken from 15
different music genres. We generated 6 different feature representations per song with
an average dimensionality of 500. The Proteins dataset consists of 2465 objects taken
from the SWISS-PROT [15] protein database. We derived 18 feature representations
with an average dimensionality of 20. The last dataset is the synthetic CBF Timeseries
dataset [16] for which we calculated 9 different feature representations with an average
dimensionality of 20.

5.1 Efficiency Evaluation

At first, we turned our attention to the efficiency of our proposed approach. We com-
pared our approach with the standard combination rules SUM, PROD, MIN, and MAX.
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Fig. 2. Efficiency evaluation.
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Fig. 3. Quality of NGT approach vs. standard combination rules.

Figure 2(a) depicts the runtime results of a 5NN query for all four datasets. Because
our approach executes the kNN query only for a subset of the available representations,
it yields a significant speedup on all datasets. Even when only three different represen-
tations are available (NTU), our NGT approach achieves a speedup of about factor 3.
For the Proteins dataset, we executed another experiment in order to evaluate the re-
lationship between the runtime and the available representations (see Figure 2(b)). We
started with three representations and added another three representations in every step.
As already demonstrated in the first evaluation, our NGT approach shows an advantage
in runtime even for three representations. This advantage increases when more repre-
sentations are available up to a factor of 10.7 for 18 representations. We observed the
NGT approach does not favor a particular subset of representations. Instead, the best
coalition is always chosen dynamically from all available representations.

5.2 Effectiveness Evaluation

In this section, we demonstrate the effectiveness of our NGT approach. Figure 3 depicts
the quality of our NGT approach and the four standard combiners for the NTU and the
Proteins dataset. This figure displays precision-recall plots, which were obtained by
performing kNN queries where k = |dataset|. For all datasets, the effectiveness of
the NGT approach is either comparable or even better than the traditional combination
rules. On the NTU dataset, our NGT technique is able to outperform all other combiners
for all recall values. For the other datasets, the result quality of the NGT method is
comparable to the standard combination rules.

6 Conclusions and Outlook

In this paper, we presented a novel approach that is able to efficiently process similar-
ity queries using multi-represented objects. The main idea of our approach is to select
a small subset of representations and to perform a subsequent similarity search using



only this small subset. In order to determine a suitable subset of representations, a novel
method is proposed that is based on coalitional negotiation game theory. All available
representations start a negotiation process for a given query in order to form coalitions.
The goal of each representation is to contribute its own similarity measure in the coali-
tion. The negotiation is based on the assumed usefulness of a certain representation for
the given query. The negotiation step selects only a suitable subset of representations
that is used to answer the query. Furthermore we introduced an efficient kNN query al-
gorithm which operates on the selected representations. We demonstrated the efficiency
of the proposed approach on four datasets. Furthermore, our novel approach yields a
comparable or even higher effectiveness on all considered datasets. As future work we
plan to turn our attention to further aspects of the game theory. For example, it seems
promising to use a mix of coalitional and behavioristic negotiation theory to determine
suitable coalitions.
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