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Abstract. Biomedical knowledge bases and ontologies constantly evolve to up-
date the knowledge in the domain of interest. One problem in current change 
management methodologies is the over-reliance on human factors. Despite the 
advantages of human intervention in the process of ontology maintenance, in-
cluding a relative increase of the overall rationality of the system, it does not 
guarantee reproducible results of a change. To overcome this issue, we propose 
using intelligent agents to discover and learn patterns for different changes and 
their consequences. In this paper, we present a novel multi-agent-based ap-
proach, to manage the evolving structure of biomedical ontologies. This frame-
work aims to assist and guide ontology engineers through the change manage-
ment process in general, and aids in tracking and representing the changes, par-
ticularly through the use of category theory. It provides an efficient way to 
automatically capture, validate, and implement a change.  

 Keywords: Bio-Ontologies, Multi-Agent, Learning, Change Management, 
Category Theory        

1 Introduction  

Bioinformatics is a challenging domain in knowledge management. Biological data 
are highly dynamic, and the large biomedical knowledge sources contain complexly 
interrelated elements, with various levels of interpretation. With advances in life sci-
ence, many features and functionalities must be added to or removed from existing 
knowledge bases in the biomedical domain. Bio- ontologies and controlled vocabular-
ies evolve continuously to provide meaningful and valid information. Due to com-
plexity and heterogeneity of their structure, changing one component can have wide-
ranging, unpredictable effects. Different versions of an ontology may respond differ-
ently to queries, so a system based on frequently changing ontologies may yield re-
sponses of questionable quality. The automatic representation, validation and repro-
duction of changes with minimal human intervention raise challenging issues in on-
tology evolution. Many bio-ontologies are known to be seriously defective, from both 
terminological and ontological perspectives. Our approach is based on the RLR 
framework for employing agents in an integrated, ontology-driven infrastructure to 
capture the pattern of changes and validate the results. To represent changes in ontol-



 

ogy-driven biomedical applications and formalize interactions between agents, we 
also propose the use of category theory as a mathematical notation, independent of 
any specific ontology language or implementation. We have chosen category theory 
as the main formalism in our framework, because it proved itself as an efficient vehi-
cle to examine the process of structural change in living and evolving systems [30]. 
As an experiment, we have employed the RLR framework to manage the evolving 
structure of the Skin disease Ontology (SKDON). Due to ambiguities in medical 
mycology from the lack of a standard and consistent vocabularies with comprehensi-
ble semantic, there is a need [1] for a standard set of vocabularies to support derma-
tological practice and enhance the accuracy of clinical knowledge management. The 
SKin-Disease ONtology (SKDON) is an integrated formal ontology based on OWL-
DL, and aims to provide a shared and common understanding of the concepts in the 
domain of medical mycology for dermatologists and other researchers working on life 
science. In our work, we have concentrated on disorders of the skin and related tis-
sues, such as hair and nail due to fungi. We have designed the SKDON as an essential 
part of the FungalWeb semantic web infrastructure [2] to gather, retrieve and manage 
consistent laboratorial and clinical information for patient care. SKDON is created 
from several distributed resources, including structured/unstructured texts,  online 
databases, and existing controlled vocabularies, such as MeSH [3], ICD-9 
(http://www.cdc.gov/nchs/icd9.htm), SNOMED (http://www.snomed.org/) and Dis-
ease database (http://www.diseasesdatabase.com/). Cross referencing between the 
FungalWeb ontology, SKDON and MeSH “Chemicals & Drugs” category provides 
valuable information about the disease, the involved fungus and the drugs prescribed. 
Change in any of the resources can alter the definitions in the target ontology. 

2 The RLR Framework  

The RLR framework aims to Represent, Legitimate, and Reproduce the changes and 
their effects (Figure 1). It helps to capture, track, represent, and manage the changes 
in a formal and consistent way, enabling the system to generate reproducible results.  

 
Fig. 1. The RLR framework 

In this framework, various ontological changes can be represented in either formal 
or diagrammatical ways. Each change will be legitimated and validated logically, then 



 

approved publicly and by experts. To reproduce the results of changes and automate 
the change management process, agents are recruited to learn change patterns and 
their consequences. 

2.1 Representation 

This phase is responsible for consistently updating the representations of new knowl-
edge. Many of the problems in ontology evolution are basically problems about the 
nature and representation of change. For the formal representation of changes, we use 
Description Logics, and for diagrammatical representation, we employ a method 
based on discrete state model and category theory [4]. 

2.2 Legitimation 

Legitimation, in our context, is defined as the verification of the legitimacy and con-
sistency of a change in the domain of interest. This phase assesses the impact of a 
potential change before the change is actually made.  Experts and logical reasoners 
should study a change based on its consistency with the whole design, in various 
degrees of granularity.  Then, the final approval is needed from end-users. Logical 
legitimation can be obtained by a reasoning agent. 

2.3 Reproduction 

Over-reliance on human factors is a problem in current change management method-
ologies. Despite the advantages of in maintenance, including higher rationality, hu-
man intervention does not guarantee the reproducibility of results of a change [29]. 
To overcome this issue, we propose using intelligent agents that discover patterns for 
different changes and their consequences. 
 

 

Fig. 2. The change management process using agents. 



 

3 Agents and Pattern of Change 

Intelligent agents have the ability to find, identify, and collect desired information 
from multiple resources about various actions under changing conditions [5]. Agents 
are able to work rationally in order to capture changes in dynamic and heterogeneous 
environments, and to respond properly to these changes [6]. In the RLR framework, 
we have used four types of agents: Change capture agents, Learner agents, Reasoning 
agents, and Negotiation agents. Figure 2 demonstrates the interactions between them. 

3.1 Change Capture Agents 

This agent family is responsible for discovering, capturing, and tracking the changes 
in ontology, by processing one or more change logs. They detect real-world altera-
tions and report them as new facts with which to update the knowledge base of an 
agent. Changes can occur on a random or scheduled basis. The change capture agents 
act like triggers in a database. We have defined the following three different types of 
change-capture agents:   

• Action Control Agents (ACA): The action control agents consist of user ac-
tivities and legal operations, which together capture changes such as dele-
tion, insertion, and updates to ontology elements, and can store all the data 
related to different types of change in change logs.  

• Explorer Agents (EA): The explorer agents capture changes by processing 
and reading change logs in parallel, in a specified time range. By logically 
determining transactions, the explorer agents generate the appropriate mes-
sages for the corresponding services.  

• Log-Reading Agents (LRA): The log-reading agents read the log files in a 
specified time period. This information will be passed on to a learning agent 
in order to create patterns for different changes. Later, the information can be 
used to Undo or Redo a change.   

    Together, these agents determine which ontological elements have changed. To 
capture ontological changes, we also use annotation properties such as: Timestamps, 
Version and Status on ontological elements. 

3.2 Learner Agent 

As an application is used and evolves over time, the change logs can accumulate 
invaluable data and information about various types of changes. A learner agent can 
use these historical records of changes that occur over and over in a change process to 
derive a pattern. After several changes, possibly from various releases, it would be 
feasible to estimate the rate and direction of future changes for a system by generating 
rules or models.  In RLR, the reasoner and negotiation agents can change the gener-
ated rules, and send modifications to the learning agent. The learning agent starts with 



 

limited, uncertain knowledge of the domain, and tries to improve itself, relying on 
adaptive learning based on semantics provided by the ontological backbone. The 
adaptive learner agent plays an important role in the reproduction phase, where we 
look for patterns to bootstrap the process of change management. The discovery of 
temporal patterns for event-based data is addressed by P.S. Kam, et al. [7], while 
Höppner tackled the problem with the discovery of informative temporal rules for 
defining temporal patterns in [8]. Learning rules for discovering temporal patterns is 
described by L. Sacchi, et al. [9, 10]. The RLR-Learning agent uses the Sacchi’s 
algorithm [9] for extracting temporal rules to learn patterns of evolving ontological 
data [9]. 

3.3 Reasoning Agent 

A reasoning agent is a software agent that controls and verifies the logical validity of 
a system, revealing inconsistencies, hidden dependencies, redundancies, and misclas-
sifications. It automatically notifies users or other agents when new information about 
the system becomes available. We use RACER [11] as a description logic reasoner 
agent, along with other semi-formal reasoners in the RLR framework.  

When the agent is faced with a change, it ought to revise its conceptualization [12] 
based on the new input by reasoning about the consistency of the change using both 
prior and new knowledge. Several attempts [13, 31] have been made, to provide rea-
soning services for category-based systems. We also use a semi-automated reasoning 
system for basic category-theoretic reasoning based on a first-order sequent calculus 
[14]. It captures the basic categorical constructors, functors, and natural transforma-
tions, and provides services to check consistency, semantic coherency, and inferenc-
ing [14]. 

3.4 Negotiation Agent 

Negotiation happens when agents with conflicting interests desire to cooperate [15]. 
In the RLR framework, the negotiation agent acts as a mediator allowing the ontology 
engineer and other autonomous agents to negotiate the proper implementation of a 
specific change while maximizing the benefits and minimizing the loss caused by 
such  change. A human expert may then browse the results, propose actions and de-
cide whether to confirm, delete, or modify the proposals, in accordance with the in-
tention of the application.  

In our framework, negotiation is defined based on the conceptual model of argu-
mentation [16]. In this context, an argument is described as a piece of information 
that allows an agent to support and justify its negotiation stance or influence that of 
another agent [15, 17]. Employing argumentation to analyze belief revision with the 
intention of updating an agent’s knowledge also has been studied by M. Capobianco 
[24], based on dialectical databases. 



 

4 Category Theory for Representing Agent Interactions  

Category theory is a new domain of mathematics, introduced in 1945 [18]. Using 
categories, one can recognize certain regularities in distinguishing a variety of ob-
jects, capture and compose their interactions, differentiate equivalent interactions, 
identify patterns of interacting objects and extract some invariants in their action, and 
decompose a complex object into its basic components [19]. Categorical notations 
consist of diagrams with arrows. Each arrow f: X Y represents a function. Represen-
tation of a category can be formalized using the notion of diagram.  

As presented in [4], category theory has great potential as a mathematical medium to 
represent, track, and analyze changes in biomedical ontologies. In addition we dem-
onstrated [4] its capability to analyze some of the common operations during ontol-
ogy evolution. After describing the ontological concepts within categories represent-
ing a modular hierarchy of domain knowledge, we have employed category theory as 
a formalism to analyze ontological changes and agent interaction in different stages of 
the RLR framework. 

Agents perform actions in a context by using rules. The change of the rules is a 
main adaptation principle [20] for learning in our framework. For describing our 
adaptive agents we follow G. Resconi’s formalization method [20]. Each rule in-
cludes a finite or infinite semantic unity symbolized as S1, IN, P1 and OUT, respec-
tively representing the input statement, the domain of the rule, the rule, and the range 
of the rule (denoting the value of an agent’s action). Generally, when working in a 
static environment, we deal with only one family of rules for each context, but when 
the environment is dynamic, it is very likely that these rules change into other rules. 
Therefore, a single change in an ontological element triggers other changes in rules 
and contexts. As an agent gradually learns the different rules for various contexts, a 
communication channel between these rules and between different agents is neces-
sary. Such changes are demonstrated in [20] as follows (Figure 3). 

 

 
Fig. 3. Demonstration of the semantic unity of the changes of the rule X1 in the context 1 into 
the rule X2 in the context 2 (adapted from [20]). 

Agent interactions can be simulated by categories. We have used category theory 
formalism, along with General Systems Logical Theory (GSLT) explained in [21], to 



 

describe agent communication. For example, the communication between different 
semantic unities as shown in [20] can be represented as follows: 

 

 
Fig. 4. Categorical representation that demonstrates how rules P1 and P2 enable the transforma-
tion of the rule X1 into the rule X2 [20]. 

Category theory can also be used for modeling agent interaction protocols [22] 
yielding, a practical image of adaptive learning agents, their semantic unities and 
adaptation channels [20]. 

5. Application Scenario 

Since skin disorders have been historically categorized by appearance rather than 
scientific and systematic facts [23], the existing taxonomy must be modified to update 
the ontological truth. Many terms in current medical mycology vocabularies describ-
ing skin disorders originate as verbal descriptions of appearance, foods, people, 
mythological and religious texts, geographical places, and acronyms [24]. Many 
names and terms are highly dependent on individual or regional preferences [24], 
causing redundancy, vagueness, and misclassification in current vocabularies. We 
study various alterations in fungal taxonomy [4]. An example of the proposed 
changes are Trichophyton Soudanense to Trichophyton Violaceum, Trichophyton 
megninii to Trichophyton rubrum, and Trichophyton equinum to Trichophyton Ton-
surans.  
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Fig. 5. Changing the fungi name can change the related disease name. 



 

As another example, the pathogenic fungus Candida glabrata is now called Toru-
lopsis glabrata [26]. Usually changes in fungi taxonomy can alter the related disease 
name and description (Figure 5). For instance, the name of the fungus, Allescheria 
boydii which can cause various infections in humans, was changed to Petriellidium 
boydii and then to Pseudallescheria boydii within a short time [25]. Consequently, the 
infections caused by this organism were referred to as allescheriasis, allescheriosis, 
petriellidosis, and pseudallescheriosis in the medical literature [28]. In our domain, 
we need to update and improve the ontological structure of the FungalWeb and 
SKDON Ontologies regularly for the annotation of fungal genes and analyzing the 
role of the fungi species in various diseases. For example, the older version of the 
FungalWeb Ontology did not have sufficient terminology to annotate genes involved 
in Malassezia infections. To meet this new requirement, the updated version of the 
ontology has gained 26 additional terms addressing these infections.  

As it is shown in Section 4, category theory can be used in RLR to represent agent 
interactions. It is also used as formalism for analyzing changes in FungalWeb Ontol-
ogy and SKDON. Changes to any part of the ontologies may cause the conceptual 
design changes the state and also may cause alterations to other dependent artifacts. 
To represent different states of our conceptualization, we use a categorical discrete 
state-model, which describes states and events in diagrammatical notion.  

 

Fig. 6. A Class diagram that represents the transition between states [4]. 

Based on our application we designed our class diagrams following the method de-
scribed in [27, 4] (Figure 6), which can be used to create patterns for learning agents. 
The Opi arrows in this figure represent the operations for the class, wherein the opera-
tion or event Op1 causes an object in state St1 to undergo a transition to state St2. The 
operation Op1 has no effect upon the object if it is in any other state, since no arrow 
labeled Op1 originates from any other state. The object  in the diagram is the null 
state. The create arrow represents the creation of the object by assigning an identifier 
and setting its state to the initial defined state, and the destroy arrow represents its 
destruction.   

6 Discussion and Challenges 



 

Ontologies in general must change to update their ontological ‘truth’. The heterogene-
ity of biomedical ontologies and the volatility of their knowledge sources increase the 
odds of different structural alterations. One issue in the domain of ontology evolution 
is lack of formal change models with clear, comprehensible semantics. In this 
manuscript we have introduced a novel multi-agent framework to handle changes in 
bio-ontologies based on category theory. This framework assists an ontology engineer 
to capture, track, represent and manage the changes in a formal and consistent way 
which enables the system to create reproducible results. Using category theory with 
its dynamic nature in our model allows capturing the full semantics of evolving bio-
ontologies as well as providing a formal basis to represent agent interactions.  

In the process of employing category theory as the core formalism for the RLR 
framework, we had to deal with a variety of challenges, including the reasoning is-
sues and management of conceptualization changes. However, we are able to provide 
basic reasoning and inferencing for categories, though we still must improve the rea-
soning capability to cover more advanced services. The representation of conceptuali-
zation changes is another challenge, especially for abstract concepts and notions. To 
overcome this, we are working on grammatical change algorithms in linguistics and 
language evolution. Minimizing human intervention is an issue in the “Reproduction” 
phase, although improvement of the learning and negotiation algorithms for the 
agents may reduce the problem.  
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