Skip to main content

An Immune Genetic Algorithm Based on Bottleneck Jobs for the Job Shop Scheduling Problem

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4972))

Abstract

An immune genetic algorithm based on bottleneck jobs is presented for the job shop scheduling problem in which the total weighted tardiness must be minimized. Bottleneck jobs have significant impact on final scheduling performance and therefore need to be considered with higher priority. In order to describe the characteristic information concerning bottleneck jobs, a fuzzy inference system is employed to transform human knowledge into the bottleneck characteristic values which reflect the features of both the objective function and the current optimization stage. Then, an immune operator is designed based on these characteristic values and a genetic algorithm combined with the immune mechanism is devised to solve the job shop scheduling problem. Numerical computations for problems of different scales show that the proposed algorithm achieves effective results by accelerating the convergence of the optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenstra, J.K., Kan, A.H.G.R., Brucker, P.: Complexity of machine scheduling problems. Annals of Discrete Mathematics 7, 343–362 (1977)

    Google Scholar 

  2. Cheng, R., Gen, M.: A tutorial survey of job-shop scheduling problems using genetic algorithms—Part I: representation. Computers & Industrial Engineering 34(4), 983–997 (1996)

    Article  Google Scholar 

  3. Cheng, R., Gen, M.: A tutorial survey of job-shop scheduling problems using genetic algorithms—Part II: hybrid genetic search strategies. Computers & Industrial Engineering 36(2), 343–364 (1999)

    Article  Google Scholar 

  4. Gao, J., Sun, L., Gen, M.: A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems. Computers & Operations Research (in press)

    Google Scholar 

  5. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Optimization. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  6. Jiao, L., Wang, L.: A novel genetic algorithm based on immunity. IEEE Transactions on Systems, Man and Cybernetics, Part A 30(5), 552–561 (2000)

    Article  Google Scholar 

  7. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop scheduling. Management Science 34(3), 391–401 (1988)

    MATH  MathSciNet  Google Scholar 

  8. Roser, C., Nakano, M., Tanaka, M.: Shifting bottleneck detection. In: Proceedings of the Winter Simulation Conference, pp. 1079–1086 (2002)

    Google Scholar 

  9. Varela, R., Vela, C.R., Puente, J., Gomez, A.: A knowledge-based evolutionary strategy for scheduling problems with bottlenecks. European Journal of Operational Research 145(1), 57–71 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wu, S.D., Byeon, E.S., Storer, R.H.: A graph-theoretic decomposition of the job shop scheduling problem to achieve scheduling robustness. Operations Research 47(1), 113–124 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: Past, present and future. European Journal of Operational Research 113(2), 390–434 (1999)

    Article  MATH  Google Scholar 

  12. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  13. Zhang, C.Y., Li, P.G., Rao, Y.Q., Li, S.X.: A new hybrid GA/SA algorithm for the job shop scheduling problem. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 246–259. Springer, Heidelberg (2005)

    Google Scholar 

  14. Singer, M.: Decomposition methods for large job shops. Computers and Operations Research 28(3), 193–207 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhang, C.Y., Li, P.G., Rao, Y.Q., Guan, Z.L.: A very fast TS/SA algorithm for the job shop scheduling problem. Computers & Operations Research 35, 282–294 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang, K.L., Liao, C.J.: Ant colony optimization combined with taboo search for the job shop scheduling problem. Computers & Operations Research 35, 1030–1046 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jano van Hemert Carlos Cotta

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, R., Wu, C. (2008). An Immune Genetic Algorithm Based on Bottleneck Jobs for the Job Shop Scheduling Problem. In: van Hemert, J., Cotta, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2008. Lecture Notes in Computer Science, vol 4972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78604-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78604-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78603-0

  • Online ISBN: 978-3-540-78604-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics