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Abstract. Sequential behavior and sequence learning is essential to in-
telligence. Often the elements of sequences exhibit an internal structure
that can elegantly be represented using relational atoms. Applying tradi-
tional sequential learning techniques to such relational sequences requires
either to ignore the internal structure or to put up with a combinatorial
explosion in the model complexity. This chapter briefly reviews relational
sequence learning and describes methods that have been developed such
as data mining techniques, (hidden) Markov models, conditional random
fields, dynamic programming and reinforcement learning techniques.

1 Introduction

Sequential behavior is essential to intelligence, and it is a fundamental part of
human activities ranging from reasoning to language, and from everyday skills to
complex problem solving. In particular, sequence learning is an important com-
ponent of learning in many task domains such as planning, reasoning, robotics,
user modeling, natural language processing, speech recognition, adaptive con-
trol, activity recognition, information extraction, and computational biology.
Therefore it is not surprising that sequential data has been the subject of ac-
tive research for last few decades. Learning tasks investigated include prediction,
alignment, classification, labeling, and density and policy estimation.

One major dimension along which to differentiate sequential learning tech-
niques is the complexity of the language they employ to describe sequences and
models. At one extreme are learning approaches that assume a propositional
language. The simplicity of a propositional language allows such methods to
represent the model in matrix form: cells typically denote the transition prob-
abilities among symbols. Indeed, matrices are simple and efficient matrix oper-
ations can be used. In turn, a matrix form makes it possible to devise efficient
algorithms. At the other end of the spectrum, (probabilistic) relational systems
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accept descriptions of complex, structured sequence elements and generate rela-
tionally structured models. They typically have access to background knowledge
and require fewer entity description. This chapter presents several relational se-
quences learning techniques that build on ideas developed on both sides of the
spectrum. They fill an interesting, intermediate position on the expressiveness
scale, namely sequences of relational atoms.

The following section briefly reviews sequential learning. After illustrating
the inadequacies of propositional languages, the chapter introduces the more
complex data model of relational sequences. In the remaining sections, we will
then present methods for dealing with relational sequences.

2 Sequential Learning

Consider sequences of Unix commands. They typically tell a lot about the user
herself since users tend to respond in a similar manner to similar situations,
leading to repeated sequences of actions.

Example 1. For instance, LATEX users frequently run Emacs to edit their LATEX
files and afterwards compile the edited file using LATEX:

emacs rsl.tex, ls, latex dvips.tex, dvips rsl . . . (1)

The existence of command alias mechanisms in many Unix command inter-
preters also supports the idea that users tend to enter many repeated sequences
of commands. Thus, Unix command sequences carry a lot information, which
can be used to automatically construct user profiles, which in turn can be used
to predict the next command, the identify the current user etc.

In general, sequence learning considers essentially strings (command logs)
s = w1, w2, . . . , wT (T > 0) of symbols wi (Unix commands) over an alpha-
bet Σ. With some necessary simplification, we can identify various sequence
learning problems. In sequence prediction for instances we want to predict el-
ements (commands) of a sequence based on preceding elements (commands),
i.e., wt−k, wt−k+1, . . . , wt → wt+1. In frequent sequence mining for instance, we
want to compute the (sub)sequences frequently occurring in a set of sequences.
In sequence prediction, we want to predict elements (commands) of a sequence
based on preceding elements (commands), i.e., wt−k, wt−k+1, . . . , wt → wt+1. In
sequence classification we want to predict a single class label (user or user type)
c that applies to an entire sequence s, i.e., s → c. In sequence labeling, we
want to assign a (class) labels (shell sessions) ci to each sequence element wi,
i.e., w1, w2, . . . , wT → c1, c2, . . . , cT . Sequential decision making involves select-
ing sequences of actions to accomplish a goal or to maximize the future reward
function (for instance to optimally organize email folders). In addition, there are
also other issues arising out, or along with, these above sequence learning tasks.
For example, we may want to segment a sequence, cluster set of sequences, or
we may align two or more sequences.

Another dimension along which one can characterized sequential learning is
the learning paradigm followed. Learning tasks can be supervised, unsupervised,
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or reinforced. In all cases, however, sequence learning methods essentially rely
on models for ”legitimate” sequences (in the form of production rules, Markov
chains, hidden Markov models, or some other form), which can typically be
developed from data using grammar learner, expectation-maximization, gradient
descent, policy iteration or some other form of machine learning algorithm. All
prominent types of models investigated over the last decades, however, essentially
share a principal weakness that stems from a lack of expressive power in the
language used to described sequences and models.

3 Moving to More Complex Sequences

Prominent sequence learning techniques such as (hidden) Markov models assume
atomic representations, which essentially amounts to enumerate all unique con-
figurations. It might then be possible to learn, for example, that state state234
follows (with high probability) state654321. Atomic representations are simple
and learning can be implemented using efficient matrix operations. These matri-
ces, however, can become intractably large as they scale quadratically in the size
of the language. This problem becomes is even prominent when the sequence
element are structured.

In many applications, sequence elements are indeed structured and can ele-
gantly be represented as relational ground atoms.

Example 2. Using ground atoms, the UNIX command sequence of Example 1
can be represented as

emacs(rsl, tex), ls, latex(rsl, tex), dvips(rsl, dvi) . . .

Here, emacs/2, ls/0, latex/1, dvips/2 are predicates (of arity 2, 0 and 1 re-
spectively) that identify relations. Lower-case strings like rsl, tex, and dvi are
constants. Ground atoms are now predicates together with their arguments, for
example emacs(rsl, tex) and ls. In principle, symbols can even be described
propositionally, i.e., conjunctions of ground atoms. For instance, the conjunc-
tion file(f1), name(f1, rsl), suffix(f1, tex) describes that there is a file with
name rsl and suffix tex. Though this representation affords some opportunities
for generalization, we must still refer to objects by name such as file(f1). This
prevents generalization over several entities such as emacs(X, tex). The abstract
symbol emacs(X, tex) is — by definition — a logical atom, i.e., a predicate to-
gether with it arguments, where an argument can now be a placeholder X, Y, . . .
for some constant. It is abstract in that it represents the set of all ground, i.e.,
variable-free atoms such as emacs(rsl, tex), emacs(rsl, dvi), emacs(april, tex)
etc. Moreover, unification allows to share information between subsequent sym-
bols. For example, the (abstract) sub-sequence latex(X, tex), dvips(X, dvi) de-
scribes that a user, after compiling a LATEXfile into a dvi file, turns the dvi
into a PostScript file, without stating the name of the file. This is especially
important when generalizing patterns across filenames as the objects referred
to will typically be different, and the precise identifiers do not matter but the
relationships and events they occur in do.
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Having specified a more complex language to describe sequences, the next
step is to develop sequential learning methods capable of exploiting it. This is
what relational sequence learning is about. In the remaining sections, we will
review several relational sequence learning and mining methods that have been
proven successful in applications. Their underlying idea is to make use of re-
lational abstraction: similar symbols are grouped together by means of logical
variables and knowledge is shared across abstract symbols by means of unifi-
cation. More precisely, we will discuss relational sequence mining, alignment,
Markov models, and reinforcement learning in turn.

4 Mining Logical Sequences

Many of the traditional data mining tasks can be phrased as finding the set of
patterns Th(L, D, q) = {φ ∈ L|q(φ,D) holds }, cf. [21]. Here, L is the space or
language of all possible patterns, D is a set of observations, and q is a predicate
or constraint that characterizes the solutions to the data mining task.

The MineSeqLog algorithm of [20] (see also [3]) is a constraint based pattern
mining system for logical sequences. The basic component is a frequent pattern
miner, which makes the following choices in Th(L, D, q):

– D is a set of ground logical sequences over an alphabet Σ
– L consists of the abstract sequences over Σ, (in which variables can occur)
– q is a constraint of the form freq(φ,D) ≥ t expressing that the pattern φ

must cover at least t of the sequences in D

This formulation makes some simplifications, in that MineSeqLog can also cope
with sequences with gaps as well as with other constraints than a minimum
frequency threshold, cf. [20].

The key constraint is the minimum frequency threshold. The frequency,
freq(φ,D)a, of a pattern (in the form of an abstract sequence) φ is the number
of sequences s in D for which φ subsumes s. A sequence s = w1, w2, . . . , wT is
subsumed by a pattern φ = p1, . . . , pk if and only if there exists a substitution
θ and natural numbers i, j such that p1θ = wi, p2θ = wi+1, . . . , pkθ = wj . For in-
stance, the pattern latex(File, tex), dvipdf(File, dvi) subsumes the concrete
sequence cd(april), latex(par, tex), dvipdf(par, dvi), lpr(par, pdf) with sub-
stitution θ = {File/april}. We sometimes will say that φ is more general than
s, or vice versa, that s is more specific than φ. The subsumption relation induces
a partial order on the language L, which is used in order to structure the search
for frequent patterns. The subsumption ordering can be exploited because the
minimum frequency constraint is anti-monotonic. More formally, a constraint q
is anti-monotonic if and only if ∀ sequences x: x subsumes y ∧ p(y)→ p(x). It is
easy to see that this holds for frequency because the frequency can only decrease
when refining patterns. The anti-monotonicity property implies that there is a
border of maximally specific sequences satisfying the constraint.

The set Th(L, D, freq(φ,D)) can now be computed by instantiating the tra-
ditional level-wise algorithm of [21], which is essentially a breadth-first general-
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to-specific search algorithm. To generate more specific patterns from more gen-
eral ones, a refinement operator ρ is employed. A refinement operator is an
operator ρ that maps each sequence s to a set of specializations of it, i.e.
ρ(s) ⊆ {s′ ∈ L | s subsumes s′}. Furthermore, to avoid generating the same
pattern more than once, the operator should be optimal, i.e.

Complete Applying the operator ρ on ε, the empty sequence (possibly with
repetitions), it is possible to generate all other queries in L. This requirement
guarantees that we will not miss any queries that may satisfy the constraints.

Single path Given pattern p, there should exist exactly one sequence of pat-
terns p0 = ε, p1, . . . , pT = p such that pi+1 ∈ ρ(pi) for all i. This requirement
helps ensuring that no query is generated more than once. i.e. There are no
duplicates.

The following operator satisfies these requirements. ρ(s1, . . . , sl) is obtained by
applying one of the following operations.

Add an atom sl+1 to the right of the query such that sl+1 is an atom whose
arguments are different variables not yet occurring in s1, . . . , sl

Apply a substitution of the form θ = {X/c}, where X is a variable, c a
constant such that there are no constants occurring to the right of X in
s1, . . . , sl, and all variables in s1, . . . , sl are different

Unify two variables X and Y such that X occurs only once, all variables to
the right of X occur only once, and X occurs to the right of Y .

This operator can then be integrated in the standard level-wise algorithm for fre-
quent pattern mining. This algorithm is sketched below. It starts from the empty
sequence and repeatedly generates candidates (on Ci) to determine afterwards
(using Fi) whether they are frequent. To generate candidates the refinement op-
erator ρ is applied. Furthermore, only frequent sequences are refined due to the
anti-monotonicity property. This process continues until no further candidates
are frequent.

Algorithm 1: Computing the frequent sequences.

i := 0; C0 := {ε}; F0 := ∅
while Ci 6= ∅ do

Fi := {p ∈ Ci | freq(p, D) ≥ t}
output Fi

Ci+1 := {p | p ∈ ρ(p′), p′ ∈ Fi}
i := i + 1

The MineSeqLog algorithm as described by [20] cannot only cope with anti-
monotonic constraints, but also with monotonic ones, and even conjunctions of
the two. A maximum frequency threshold, which is of the form freq(φ,D) < f ,
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is a monotonic constraint. [20] also report on experiments with MineSeqLog using
the Unix-command data set of [8] and constraints of the form (freq(φ,ClassA) ≥
f1) ∧ (freq(φ,ClassB) < f2).

5 Relational Alignments

The need to measure sequence similarity arises in many application domains and
often coincides with sequence alignment: the more similar two sequences are,
the better they can be aligned. Aligning sequences not only shows how similar
sequences are, it also shows where there are differences and correspondences
between the sequences. As an example, consider the major application area for
sequence alignment in the biological domain. One common approach is, given
the amino acid sequence of an unknown protein (query sequence) to scan an
existing database of other amino acids sequences (containing proteins with more
or less known function) and extract the most similar ones with regard to the
query sequence. The result is usually a list, ordered by some score, with the
best hits at the top of this list. The common approach for biologists, is now to
investigate these top scoring alignments or hits to conclude about the function,
shape, or other features of query sequence.

5.1 Sequence Alignment Algorithms

One of the earliest alignment algorithm is that for global alignment by Needle-
man and Wunsch in 1970 [24]. The algorithm is based on dynamic programming,
and is able to find the alignment of two sequences with the maximal overall sim-
ilarity w.r.t. a given pairwise similarity model. More precisely, the algorithm
proceeds as follows: initially, for two sequences of length l and k, a matrix with
l + 1 columns and k + 1 rows is created. The matrix then is filled with the
maximum score as follows:

Mi,j = max


Mi−1,j−1 + Si,j : a match or mismatch
Mi,j−1 + w : a gap in the first sequence
Mi−1,j + w : gap in the second sequence

(2)

where Si,j is the pairwise similarity of amino acids and w reflects a linear gap
(insert or deletion step) penalty. The overall score of the alignment can be found
in cell Ml,k.

In the biological domain, this similarity model Si,j is typically represented by
pair-wise similarity or dissimilarity scores of pairs of amino acids. These scores
are commonly specified by a so-called similarity matrix, like the PAM [4] or
BLOSUM [10] families of substitution matrices. The scores, or costs, associated
with a match or mismatch between two amino acids, reflect to some extent the
probability that this change in amino acids might have occurred over time of
evolution.

The Needleman-Wunsch algorithm attempts to align every element in every
sequence. By contrast, local alignments identify regions of similarity within long
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1: - vi(ch2,tex) ls latex(ch2,tex) xdvi(ch2,dvi) dvipdf(ch2,dvi) pdfview(ch2,pdf)
2: cd(thesis) vi(ch1,tex) bibtex(ch1) latex(ch1,tex) xdvi(ch1,dvi) dvipdf(ch1,dvi) pdfview(ch1,pdf)
3: - - - - xdvi(pap2,dvi) dvipdf(pap2,dvi) pdfview(pap2,pdf)
4: cd(pap1) - - vi(pap1,tex) latex(pap1,tex) dvipdf(pap1,dvi) pdfview(pap1,pdf)
5: - vi(rsl,tex) - latex(rsl,tex) dvips(rsl,dvi) - -

Table 1. The multiple alignment of five arbitrary Unix command line sequences using
gap opening cost 1.5, gap extention cost 0.5, and padding cost 0.25. The ’-’ denotes
a gap in a sequence. Clearly one can see the aligned commands for xdvi, dvipdf, and
pdfview. In sequence four, the corresponding vi and latex commands are not properly
aligned due to the gap opening costs, as the proper alignment would require two gaps
instead of the single one employed here.

sequences that are often widely divergent overall. To calculate the best local
alignment of two sequences, one often employs the Smith-Waterman local align-
ment algorithm [31]. The main difference of this algorithm when compared to
the Needleman-Wunsch algorithm, is that all negative scores are set to 0.

In general, the alignments resulting from an global or local alignment, show
then the more conserved regions between two sequences. To enhance the de-
tection of these conserved regions, commonly multiple sequence alignments are
constructed. Given a number of sequences belonging to the same class, i.e. in
biological terms believed to belong to the same family, fold, or are somehow
otherwise related, alignments are constructed by aligning all sequences in one
single alignment, a so-called profile. A common approach for the construction
of a multiple alignment is a three step approach: First, all pairwise alignments
are constructed. Second, using this information as starting point a phylogenetic
tree is created as guiding tree. Third, using this tree, sequences are joined con-
secutively into one single alignment according to their similarity. This approach
is known as the neighbor joining approach [28].

5.2 Moving towards the Alignment of Relational Sequences

The alignment algorithms discussed in the previous paragraphs assume a given
similarity measure Si,j . Typically, this similarity measure is a propositional one
as the considered sequences consist of propositional symbols. Many sequences
occurring in real-world problems, however, can elegantly be represented as rela-
tional sequences. A relational sequence alignment simply denotes the alignment
of sequences of such structured terms.

One attractive way to solve this problem is to use a standard alignment
algorithm but to replace the propositional similarity measure Si,j in Eq. (2) by a
structured one. In [12] we proposed the use of one of the many distance measures
developed within the field of Inductive Logic Programming [23]. As an example,
consider one of the most basic measures proposed by Nienhuys-Cheng [25] 4. It
treats ground structured terms as hierarchies, where the top structure is most
4 For sequences of more complex logical objects such as interpretations and queries, a

different, appropriate similarity function could be chosen. We refer to Jan Ramon’s
PhD Thesis [27] for a nice review of them.
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Fig. 1. Information content (IC) for the Unix command line example in table 1. The
bar graph on the left-hand side shows the IC at each position in the alignment. The
bar graph on the right-hand side shows the cumulative IC up to each position in the
alignment.

important and the deeper, nested sub-structures are less important. Let S denote
the set of all symbols, then Nienhuys-Cheng distance d is inductively defined as
follows:

∀c/0 ∈ S : d(c, c) = 0
∀p/u, q/v ∈ S : p/u 6= q/v : d(p(t1, . . . , tu), q(s1, . . . , sv)) = 1
∀p/u ∈ S : d(p(t1, . . . , tu), p(s1, . . . , su)) = 1

2u

∑u
i=1 d(ti, si)

For different symbols the distance is one; however, when the symbols are the
same, the distance linearly decreases with the number of arguments that have
different values, and is at most 0.5. The intuition is that longer tuples are more
error-prone and that multiple errors in the same tuple are less likely. To solve the
corresponding relational alignment problem, one simply sets Si,j = 1− d(xi, yi)
in Equation (2).

5.3 Relational Information Content

Now that we have introduced relational sequence alignments, we will investi-
gate how informative they are. Following Gorodkin et al. [6], the information
content Ii of position i of a relational sequence alignment is Ii =

∑
k∈G Iik =∑

k∈G qik log2

(
qik

pk

)
, where G is the Herbrand base over the language of the

aligned sequences including gaps (denoted as ’−’) and qik is the fraction of
ground atoms k at position i. When k is not a gap, we interpret pk as the a pri-
ori distribution of the ground atom. Following Gorodkin et al., we set p− = 1.0,
since then qi− log2(qi−/p−) is zero for qi− equal to zero or one. For the work
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Fig. 2. Sequence logos for the Unix command line example in table 1 (from bottom to
top: ground, relational, and abstract). For positions 1 as well as positions 5 -7 one can
clearly see that the abstract logo contributes substantially towards a conserved region.

reported here, we set pk = 1/(|G| − 1) when k 6= −. The intuition is as follows:
if Iik is negative, we observe fewer copies of ground atom k at position i than
expected, and vice versa if Iik is positive, we observe more of it.

The total information content becomes I =
∑T

i=1 Ii (where T is the length
of the alignment) and can be used to evaluate relational sequence alignments. So
far, however, we have defined the information content at the most informative
level only, namely the level of ground atoms. Relational sequences exhibit a rich
internal structure and, due to that, multiple abstraction levels can be explored:
variables allow to make abstraction of specific symbols. To compute the infor-
mation content at a higher abstraction levels, i.e., of an atom a replacing all
covered ground atoms k at position i, we view qia (resp. pa) as the sum of qik

(resp. pk) of the ground atoms k covered by a. Figure 1 shows the (cumulative)
information content for our running Unix command line example. As prior we
use the empirical frequencies over all five sequences.

The information content is a significant concept as it allows to evaluate align-
ments of and to find common motifs in relational sequences. Moreover, it allows
one to represented alignments graphically by so-called relational sequence logos.

5.4 Relational Sequence Logos

Reconsider the alignment in Table 1. It consists of several lines of information.
This makes it for longer sequences difficult – if not impossible – to read off infor-
mation such as the general consensus of the sequences, the order of predominance
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of the symbols at every position, their relative frequencies, the amount of infor-
mation present at every position, and significant locations within the sequences.
In contrast, the corresponding sequence logo as shown in Figure 2 concentrates
all of this into a single graphical representation. In other words, ’a logo says
more than a thousand lines alignment’.

Each position i in a relational sequence logo is represented by a stack consist-
ing of the atoms at position i in the corresponding alignment. The height of the
stack at position i indicates the information content Ii available. The height hik

of each atom k at position i is proportional to its frequency relative to the ex-
pected frequency, i.e., hik = αi ·

(
qik

pk

)
· Ii , where αi is a normalization constant.

The atoms are sorted according to their heights. If Iik is negative, a simple bar
is shown using the absolute value of the Iik.

Sequence logos at lower abstraction levels can become quite complex. Rela-
tional abstraction can be used to straighten them up. Reconsider Figure 2. It also
shows the logo at the highest abstraction level, where we considered as symbols
the least general generalization of all ground atoms over the same predicate at
each position in the alignment only. Because the prior probabilities change dra-
matically, the abstract logo looks very different from the ground one. It actually
highlights the more conserved region of the sequences at the end (positions 5-7).
Both views provide relevant information. Relational logos now combine both by
putting at each position the individual stack items together and sort them in
ascending order of heights.

To summarize, relational sequence logos illustrate that while relational align-
ments can be quite complex, they exhibit rich internal structures which, if ex-
ploited, can lead to new insights not present in flat alignments. For applications
to information extraction from MedLine abstracts and to and protein fold de-
scription, we refer to [12].

Both frequent sequence mining and sequence alignment are nonparametric
methods in that they do not assume an underlying model. We will now turn
to model-based sequence learning methods. More precisely, we will focus on
probabilistic sequence models. They are an appealing approach to sequential
learning as they take uncertainty explicitly into account.

6 Relational Grams

Relational Grams extend n-gram models to sequences of logical atoms. In a
nutshell, n-gram models are smoothed Markov chains: they model the probability
of a sequence s = w1...wm as a mixture of Markov distributions of different
orders. For k ∈ N, a k-th order Markov chain estimates the probability for s as

Pk(w1...wm) =
m∏

i=1

Pk(wi | wi−k+1...wi−1) (3)

In the most basic case, the conditional probabilities are estimated from a set S
of training sequences in terms of “gram” counts, i.e., counts of short patterns of
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symbols such as wi−k+1...wi−1:

Pk(wi | wi−k+1 . . . wi−1) =
C(wi−k+1 . . . wi)

C(wi−k+1 . . . wi−1)
(4)

where C(wi−k+1...wi−1) is the number of times wi−k+1...wi−1 appeared as a
subsequence in any s ∈ S. This is the maximum likelihood estimate for the
model described by Equation 3.

In this model, the gram order k defines the trade-off between reliability of
probability estimates and discriminatory power of the model. For larger k, many
probability estimates will typically be zero due to data sparseness, which can
deteriorate model accuracy. n-grams combine models of different order [22], and
estimate the conditional probabilities as

P (wi | wi−n+1 . . . wi−1) =
n∑

k=1

αkPk(wi | wi−k+1 . . . wi−1) (5)

where the α1, ..., αn are suitable weights with
∑n

k=1 αk = 1, and the distributions
Pk(wi | wi−k+1 . . . wi−1) are estimated according to Equation 4. This effectively
smoothes the probability estimates of the higher-order models with the more
robust estimates of lower-order models and thereby avoids the data sparseness
problem. More advanced smoothing techniques have also been proposed (cf. [22]),
but they are beyond the scope of this chapter. Despite their simplicity, n-grams
have proven to be a powerful tool for sequence classification and probability
estimation.

By generalizing the sequence elements wi to first-order logical atoms, rela-
tional grams (or r-grams) inherit the power and simplicity of the n-gram method.
However, they go beyond a simple relational upgrade of n-grams in two ways:

1. Relational Smoothing In addition to smoothing by shorter his-
tories (as for n-grams), relational grams can smooth probability
estimates by relational generalization of grams. For example, the
gram emacs(rsl, tex), latex(rsl, tex) could be generalized by short-
ening it to emacs(rsl, tex), but also by logical abstraction to
emacs(F, tex), latex(F, tex). Both generalizations avoid the data sparseness
problem by estimating probabilities from a larger sample, however, they rep-
resent a different bias. In the second case, we model a pattern indicating that
a user first runs emacs and then latex on the same file, independently of a
particular filename.

2. Abstraction from Identifiers In fact, there are some arguments in the
predicates used to define sequence elements which should never be grounded.
Consider, for example, filenames in the Unix user modeling domain described
above. File names, in contrast to file extensions, are just names—except for
some system files, they are chosen more or less arbitrarily to describe the
particular content of a file. Accordingly, it does not make sense to estimate
distributions over filenames, especially if we want the induced models to gen-
eralize across different users, who typically name their files differently. Rela-
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tional grams therefore provide a mechanism to abstract from such identifiers,
and define distributions over ground sequences modulo identifier renaming.

More formally, r-gram models can be defined as follows. Let Σ denote a typed
relational alphabet, for which the set of types is partitioned into constants and
identifiers. We will also talk about constant-variables and identifier-variables de-
pending on the variable’s type. Let Σ̂ denote the subset of Σ where no arguments
of identifier types are grounded.

Definition 1 (r-gram model). An r-gram model R of order n over an al-
phabet Σ is a set of relational grams

l1n ∨ ... ∨ ldn ← l1...ln−1

where

1. ∀i : l1...ln−1l
i
n ∈ Σ̄∗;

2. ∀i : lin contains no constant-variables;
3. ∀i : lin is annotated with probability values

Pr(lin | l1...ln−1) such that
∑d

i=1 Pr(lin | l1...ln−1) = 1
4. ∀i 6= j : l1...ln−1l

i
n 6� l1...ln−1l

j
n; i.e. the heads are mutually exclusive. Here,

the operator � implements subsumption under object identity as defined
in [29].

Example 3. The following is an example of an order 2 relational gram in the
Unix user domain.

0.4 latex(F, tex)
0.1 latex(F ′, tex)
0.1 emacs(F ′, tex)
...

0.05 cd(Dir)

← emacs(F, tex)

It states that after editing a file with emacs, a user is more likely to use latex on
that file than she is to use latex on a different file or execute another command.

We still need to show how an r-gram model R defines a distribution over rela-
tional sequences. We first discuss a basic model by analogy to an unsmoothed
n-gram, before extending it to a smoothed one in analogy to Equation 5.

A Basic Model In the basic r-gram model, for any ground sequence g1...gn−1

there is exactly one gram l1n ∨ ... ∨ ldn ← l1...ln−1 with l1...ln−1 �θ g1...gn−1. Its
body l1...ln−1 is the most specific sequence subsuming g1...gn−1. According to
Equation 3, we start by defining a probability PR(g | g1...gn−1) for any ground
atom g given a sequence g1...gn−1 of ground literals. Let g be a ground literal
and consider the above gram subsuming g1...gn−1. If there is an i ∈ {1, ..., d}
such that l1...ln−1l

i
n �θ g1...gn−1g it is unique and we define

PR(g | g1...gn−1) := Pr(g | g1...gn−1) := Pr(lin | l1...ln−1)
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Otherwise, PR(g | g1...gn−1) = 0. From PR(g | g1...gn−1), a sequence probability
PR(g1...gm) can be derived as in Equation 3.

In this way, the model assigns a probability value to any ground sequence s
over the alphabet Σ. If two sequences are identical up to local identifier renam-
ing, the model will assign them the same probability value. For example, the
same probability is assigned to emacs(chapter1, tex), latex(chapter1, tex) and
emacs(chapter2, tex), latex(chapter2, tex). We have therefore modeled patterns
of object identifiers (the fact that the same file name is used in both commands)
without referring to any concrete identifiers. As the model does not distinguish
between sequences that are identical up to identifier renaming, the sum of proba-
bility estimates over all ground sequences is larger than one. However, the model
defines a proper probability distribution over the set of equivalence classes mod-
ulo local identifier renaming. More details can be found in [18].

Smoothing r-grams In the basic model, there was exactly one gram r ∈ R
subsuming a given ground subsequence g1...gn−1, namely the most specific
one. As for n-grams, the problem with this approach is that there is a large
number of such grams and the amount of training data needed to reliably
estimate all of their frequencies is prohibitive unless n is very small. The basic
idea behind smoothing in r-grams is to generalize grams logically, and mix the
resulting distributions, i.e., PR(g | g1...gn−1) =

∑
r∈R̂

αr

α Pr(g | g1...gn−1) where
Pr(g | g1...gn−1) is the probability defined by r as explained above, R̂ is the
subset of grams in R subsuming g1...gn−1, and α is a normalization constant, i.e.
α =

∑
r∈R̂ αr. The more general r, the more smooth the probability estimate

Pr(g | g1...gn−1) will be. The actual degree and characteristic of the smoothing
is defined by the set of matching r-grams together with their relative weights
αr.

To summarize, r-grams upgrade n-grams to deal with sequences of logical
atoms. As n-grams, they combine simple Markov models with powerful smooth-
ing techniques. Furthermore, they allow to abstract from identifiers in the data.
As for n-grams, learning r-grams is straightforward, and basically amounts to
counting frequencies of first-order patterns in the data. These could be de-
termined efficiently e.g. by a first-order sequential pattern miner such as Se-
qLog [19]. Furthermore, r-grams need a user-defined language bias, which con-
strains the allowed patterns in terms of types and determines which types are
treated as identifiers.

r-grams have been successfully applied to structured sequential problems
in Unix user modeling, protein fold prediction, and mobile phone user pattern
analysis (see [18]).

7 Logical Hidden Markov Models

In r-grams and Markov models in general, the (structured) states are directly
visible, and therefore the transition probabilities among states are the only pa-
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latex(F,tex) emacs(F,tex)
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emacs(F):0.7

ls:0.4

latex(F):0.2
emacs(F):0.3

emacs(F):0.6

latex(F):0.2

emacs(F):0.1

emacs(F):0.3

latex(F):0.6

Fig. 3. A logical hidden Markov model. Abstract states are represented by gray nodes.
Arrows between nodes denote abstract transitions. The abstract emissions and tran-
sition probabilities are associate with the arrows. Dotted arrows denote ’must-follow’
links; dashed arrows the ’more-general-than’ relation.

rameters. In hidden Markov models [26], the states are not directly observable,
but only by means of variables (called observations) influenced by the state.

Definition 2. Abstract transitions are expressions of the form p : H O←− B where
p ∈ [0, 1], and H, B and O are atoms. The atoms H and B are abstract states and O
represents an abstract output symbol. All variables are implicitly assumed to be
universally quantified, i.e., the scope of variables is a single abstract transition.

Consider Figure 3. Here, the gray node emacs(File, tex) denotes that a LATEX
user edits a file F using emacs. That the user is indeed a LATEXuser, however,
is not directly observable but only through a sequence of observations such as
emacs(F) and latex(F) specified in terms of abstract transitions (arrows) such as

c ≡ 0.6 : latex(File, tex)
emacs(File)←−−−−−−−− emacs(File, tex). Assume now that we

are in state emacs(rsl, tex), i.e. θB = {File/rsl}. Then c specifies that there
is a probability of 0.6 that the next state will be subsumed by latex(rsl, tex)
and that one of the symbols represented by emacs(rsl) will be emitted. This
was a simple example for an abstract transition because θH and θO were both
empty. In general, the resulting state and output symbol sets are not singletons.

For instance, for 0.6 : emacs(File′, U)
latex(File)←−−−−−−− latex(File, tex) the result-

ing state set is the set of subsumed ground states of emacs(File′, U) such as
emacs(rsl, tex), emacs(rsl, dvi), emacs(lohmm, tex) etc. We therefore need a
way to assign probabilities to these possible alternatives.

Definition 3. The selection distribution µ specifies for each abstract state and
observation symbol A over the alphabet Σ a distribution µ(· | A) over all ground
atoms subsumed by A.
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In our example, assume a selection probability

µ(emacs(rsl, tex) | emacs(File′, U)) = 0.4,

µ(emacs(april, tex) | emacs(File′, U)) = 0.6
µ(emacs(rsl, word) | emacs(File′, U)) = 0.5,

µ(emacs(april, word) | emacs(File′, U)) = 0.5

Then there would be a probability of 0.4 × 0.6 = 0.24 that the next state is
emacs(rsl, tex). Taking µ into account, the meaning of an abstract transition
p : H O←− B can be summarized as follows: Let BθB, HθBθH and OθBθHθO be ground
atoms. Then the model makes a transition from OθBθHθO with probability

p · µ(HθBθH | HθB) · µ(OθBθHθO | OθBθH). (6)

To represent µ, any probabilistic representation can - in principle - be used, e.g.
a Bayesian network or a Markov chain. In [14], we show how to use a näıve Bayes
approach to reduce the model complexity.

Thus far the semantics of a single abstract transition has been defined. A
logical hidden Markov model usually consists of multiple abstract transitions,
which makes things a little bit more complicated. Reconsider Figure 3. Here,
dotted edges indicate that two abstract states behave in exactly the same way.
If we follow a transition to an abstract state with an outgoing dotted edge,
we will automatically follow that edge making appropriate unifications. Further-
more, dashed edges encode a preference order among abstract states used as con-
flict resolution strategy. Indeed multiple abstract transitions can match a given
ground state. Consider the dashed edge in Figure 3 connecting emacs(File, U)
and emacs(File, tex) For the state emacs(rsl, tex the matching abstract tran-
sitions do not sum to 1.0. To resolve this, we only consider the maximally specific
transitions (with respect to the body parts B) that apply to a state in order to
determine the successor states. The rational behind this is that if there exists a
substitution θ such that B2θ = B1, i.e., B2 subsumes B1, then the first transition
can therefore be regarded as more informative than the second one.

Finally, in order to specify a prior distribution over states, we assume a finite
set Υ of clauses of the form p : H ← start using a distinguished start symbol
such that p is the probability of the logical hidden Markov model to start in a
some ground state.

In [14] it is proven that logical hidden Markov models specify a unique prob-
ability measure over sequences of ground atoms over Σ. Moreover all algorithms
for hidden Markov models such as the forward, the Viterbi and the Baum-Welch
algorithms carry over to the relational case. Thus they can be used for sequence
prediction, sequence classification and sequence labeling tasks. Here, we would
like to exemplify the practical relevance of logical Hidden Markov models on
two bioinformatics domains [16, 14]: Protein fold classification and mRNA sig-
nal structure detection.
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Fig. 4. Graphical representation of linear-chain CRF.

Protein fold classification is concerned with how proteins fold in nature, i.e.,
their three-dimensional structures. More precisely, given given a protein of un-
known fold, assign it to the best matching class of proteins, which were grouped
together according to the similarity of their folds. This is an important problem
as the biological functions of proteins depend on the way they fold. As already
shown in the section on relational alignments, the secondary structure of pro-
teins can elegantly be represented as logical sequences. Here, however, we used a
more fine grained discretization of lengths of helices and strands. On a data sets
of 816 proteins taken from the ASTRAL dataset version 1.65 consisting of 22210
ground atoms, the 10-fold cross-validated accuracy was 76%. This is in a similar
range as Turcotte et al.’s [34] 75% accuracy for a similar task. More importantly,
the logical hidden Markov models were by an order of magnitude smaller than
the number of the equivalent hidden Markov models (120 vs. approx. 62000).

The secondary structure of mRNA contains special subsequences called signal
structures that are responsible for special biological functions, such as RNA-
protein interactions and cellular transport. In contrast to the secondary structure
of proteins, however, it does not form linear chains but trees and hence cannot
be represent using ordinary hidden Markov models. We performed leave-one-out
cross-validation experiments on a similar data set as used in [11]. The logical
hidden Markov models achieved an accuracy of 99% which is well in the range
of Horvath et al.’s relational instance-based learning approach.

8 Relational Conditional Random Fields

(Logical) HMMs model a sequence X by assuming that there is an underlying
sequence of states Y drawn from a finite set of states S. To model the joint
distribution P (X, Y ) tractably, HMMs make two independency assumptions:
each state depends only on its immediate predecessor and each observation/input
xj depends only on the current state yj . The downside of these assumptions is
that they make it relatively cumbersome to model arbitrary dependencies in the
input space, i.e., in the space of X.

For the sequence labeling task, conditional random fields [17] (CRFs) are an
alternative to (logical) HMMs that makes it relatively easy to model arbitrary
dependencies in the input space. They have become popular in language pro-
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cessing, computer vision, and information extraction. They have outperformed
HMMs on language processing tasks such as information extraction and shallow
parsing. CRFs are undirected graphical models that represent the conditional
probability distribution P (Y |X). Instead of the generatively trained (Lo)HMM,
the discriminatively trained CRF is designed to handle non-independent input
features, which can be beneficial in complex domains.

When used for sequences, the graph structure of a CRF is a first-order chain
as shown in Figure 4. Normalization by the Z(X) ensures that the defined func-
tion returns a probability:

P (Y |X) =
1

Z(X)
exp

∑T

t=1
Ψt(yt, X) + Ψt−1,t(yt−1, yt, X). (7)

In difference to a Markov Random Field, both the normalization factor Z(X)
and the potential functions Ψ are conditioned on the input nodes X. For the
sequential learning setting, the potentials are typically represented as a linear
combination of feature functions {fk}, which are given and fixed:

Ψ(yt, X) =
∑

αkgk(yt, X) and Ψ(yt−1, yt, X) =
∑

βkfk(yt−1, yt, X). (8)

The model parameters are then a set of real-valued weights αk, βk, one weight for
each feature. In linear-chain CRFs (see figure 4), a first-order Markov assumption
is made on the hidden variables. In this case, there are features for each label
transition. Feature functions can be arbitrary such as a binary test that has
value 1 if and only if yt−1 has the label a.

So far, CRFs have mainly been applied on propositional input sequences. In
the following we will show how to lift them to the relational sequences case. A
more detailed description can be found in [9].

8.1 TildeCRF

The only parts of a CRF which access the input sequence are the potential
functions. Therefore, CRFs can easily be lifted to the relational sequences case
by representing the potential function F as a sum of relational regression trees
learned by a relational regression tree learner such as Tilde [2]. Each regression
tree stands for a gradient and the sum of all for the potential function. We
adapted Dietterich et al.’s Gradient Tree Boosting approach, called TreeCRF,
to learn the trees. Following their notation, we define F yt(yt−1, X) = Ψ(yt, X)+
Ψ(yt−1, yt, X). We do not make assumptions on F , it can be any function not
only a linear combination of features.

The gradient of ∂ log P (Y |X)
∂F v(u,wd(X)) can be evaluated quite easily for every training

sequence and position:

∂ log P (Y |X)
∂F v(u, wd(X))

=I(yd−1≺u, yd≺ v)− P (yd−1≺u, yd≺ v|wd(X)) (9)
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Fig. 5. A relational regression tree; used in TildeCRF to represent the potential func-
tion. The inner nodes are logical tests..

where I is the identity function, the symbol ≺ denotes that u θ-subsumes y, and
P (yd−1≺u, yd≺ v|wd(X)) is the probability that class labels u, v fit the class
labels at positions d, d−1. It is calculated as shown in GenExamples in Alg. 2.

By evaluating the gradient at every known position in our training data
and fitting a regression model to this values, we get an approximation of the
expectation of the gradient. In order to simplify the derivation of the gradient
and afterwards the evaluation, we do not use the complete input X but a window
wd(X) = xd−s, . . . , xd, . . . , xd+s, where s is a fixed window size. This is exactly
the learning setting of Tilde: each window, i.e., each regression example is a
(weighted) set of ground atoms.

All the rest of Dietterich al.’s original approach, called TreeCRF, remains
unchanged. That is, we can use the forward-backward algorithm as proposed by
[5] to compute Z(X). The forward recursion is defined as α(k, 1) = expF k(⊥
, w1(X)) and α(k, t) =

∑
k′∈K

[
expF k(k′, wt(X))

]
· α(k′, t − 1). The backward

recursion is defined as β(k, T ) = 1 and β(k, t) =
∑

k′∈K

[
expF k′

(k,Wt+1(X))
]
·

β(k′, t + 1).

8.2 Making Predictions

There are several ways for getting a classifier from a trained CRF. We can predict
the output sequence Y with the highest probability: H(X) = arg maxY P (Y |X).
The Viterbi algorithm [26] can be used for this. Another option is to predict
every atom yt in the output sequence individually. This makes sense when
we want to maximize the number of correctly tagged input atoms: Ht(X) =
arg maxk∈K P (yt = k|X). Finally, one can also use a CRF for sequence classi-
fication, i.e., to predict a single label for the entire sequence. To do so, we can
simply make a kind of majority vote. That is, we first predict H(X). Next, we
count the number of times each class atom was predicted, i.e., count(c, Y ) :=
|{i ∈ {1, . . . , T} | yi = c}|. Then, the sequence X is assigned to class c with prob-
ability P (c|X) = T−1 · count(c,H(X)).

We employed TildeCRF to the protein fold classification problem. We used
the same subset on the subset of the SCOP database [7] which was mention in



19

Algorithm 2: Gradient Tree Boosting.

Function TreeCRF(Data, L)
begin

for 1 ≤ m ≤M do
for 1 ≤ k ≤ K do

Sk :=GenExamples(k, Data, Potm−1)
∆m(k) :=FitRelRegressTree(S(k), L) F k

m := F k
m−1 + ∆m(k)

Return PotM

end
Function GenExamples(k, Data, Potm)
begin

S := ∅
for (Xi, Yi) ∈ Data do`

α, β, Z(Xi)
´

:= ForwardBackward(Xi, T, K)
for 1 ≤ t ≤ Ti do

for 1 ≤ k′ ≤ K do
/* Compute value of gradient at position t for class

label k */

P (yt−1 = k′, yt = k|Xi) :=
α(k′, t− 1) · exp(F k

m(k′, wt(X))) · β(k, t)

Z(Xi)
∆(k, k′, t) := I(yt−1≺ k′, yt≺ k)− P (yt−1≺ k′, yt≺ k|Xi)
/* add example to set of regression examples */

S := S ∪ {((wt(Xi), k
′), ∆(k, k′, t))}

Return S

end

7. We have done a 10-fold cross-validation and received an overall accuracy of
92.62% which is significantly better than LoHMMs.

To summarize, the previous sections have shown that it is indeed possible to
lift many prominent sequence learning techniques to the relational case. Before
concluding, we will show that this also holds for relational sequential decision
making, i.e., for relational sequence generation through actions.

9 Relational Sequential Decision Making

Animals are able to learn appropriate actions in response to particular stimuli on
the basis of associated rewards or punishment is a focus of behavioral psychology.
In the machine learning community, learning about stimuli or actions solely
on the basis of the rewards and punishments associated with them is called
reinforcement learning [32]. It is the problem faced by an agent that acts in
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an environment and occasionally receives some reward based on the state the
agent is in and the action(s) the agent took. The agent’s learning task is to
find a policy for action selection that maximizes its reward over the long term.
This task requires not only choosing those actions that are associated with high
rewards in the current state but also looking ahead by choosing actions that
will lead the agent to more lucrative parts of the state space. Thus, in contrast
to supervised sequence learning tasks such as sequence labeling, reinforcement
learning is minimally supervised because agents are not told explicitly the actions
to take in particular situations, but must work this out for themselves on the
basis of the rewards they receive.

9.1 Markov Decision Processes

Consider an agent acting in the blocks world [30]. The domain consists of a
surface, called the floor, on which there are blocks. Blocks may be on the floor
or on top of other blocks. They are said to pile up in stacks, each of which is
on the floor. Valid relations are on(X, Y), i.e., block X is on Y, and cl(Z), i.e.,
block Z is clear. At each time, the agent can move a clear (and movable) block
X onto another clear block Y. The move(X, Y, Z) action is probabilistic, i.e., it
may not always succeed. For instance, with probability p1 the action succeeds,
i.e. X will be on top of Y. With probability 1−p1, however, the action fails. More
precisely, with probability p2 the block X remains at its current position, and
with probability p3 (with p1 + p2 + p3 = 1) it falls on some clear block Z.

A natural formalism to treat the utilities and uncertainties of the blocks
world are Markov decision processes. A Markov decision process (MDP) is a
tuple M = (S, A,T, λ). Here, S is a set of system states such as

z ≡ cl(a), on(a, b), on(b, floor), block(a), block(b)

describing the blocks world consisting of two blocks a and b where a is on top of
b. The agent has available a finite set of actions A(z) ⊆ A for each state z ∈ S,
which cause stochastic state transitions, for instance, move(a, floor) moving a
on the floor. For each z, z′ ∈ S and a ∈ A(z) there is a transition T in T, i.e.,
z′

p:r:a←−−− z. The transition denotes that with probability P (z, a, z′) := p action
a causes a transition to state z′ when executed in state z. For instance z′ ≡
cl(a), cl(b), on(a, floor), on(b, floor), block(a), block(b). For each z ∈ S and
a ∈ A(z) it holds

∑
z′∈S P (z, a, z′) = 1. The agent gains a reward when entering

a state, denoted as R(z) := r. In the blocks world we could have R(z′) = 10.
A solution of a (relational) Markov decision process is a policy π : S 7→ A

mapping state to actions. Essentially policy can be viewed as sets of expressions
of the form a ← z for each z ∈ S where a ∈ A(z) such as move(a, floor) ←
cl(a), on(a, b), on(b, floor), blcok(a), block(b). It denotes a particular course
of actions to be adopted by an agent, with π(z) := a being the action to be
executed whenever the agent is in state z.

Assuming that the sequence of rewards after step t is rt+1, rt+2, rt+3, . . .,
the agent’s goal now is to find a policy that maximizes the expected reward
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E[R] for each step t. Typically, future rewards are discounted by 0 ≤ λ < 1
so that the expected return basically becomes

∑∞
k=0 λk · rt+k+1. To achieve

this, most techniques employ value functions. More precisely, given some MDP
M = 〈S, A, T,R〉, a policy π for M , and a discount factor γ ∈ [0, 1], the state
value function V π : S → R represents the value of being in a state following
policy π with respect to the expected reward. In other words, the value V π(z)
of a state z is the expected return starting from that state, which depends
on the agent’s policy π. A policy π′ is better than or equal to another policy
π, π′ ≥ π, if and only if ∀s ∈ S : V π′

(s) ≥ V π(s). Thus, a policy π∗ is
optimal, i.e., it maximizes the expected return for all states if π∗ ≥ π for all π′.
Optimal value functions are denoted V ∗. Bellman’s [1] optimality equation states:
V ∗(s) = maxa

∑
s′ T (s, a, s′)[R(s, a, s′)+γV ∗(s′)]. From this equation, basically

all model-based and model-free methods for solving MDPs can be derived.

9.2 Abstract Policies

A policy over ground states is propositional in the sense that it specifies for
each ground state separately which action to execute. In turn, specifying such
policies for Markov decision programs with large state spaces is cumbersome
and learning them will require much effort. This motivates the introduction of
abstract policies.

An abstract policies π intentionally specify the action to take for sets of
states, i.e., for an abstract state.

Definition 4. An abstract policy π over Σ is a finite set of decision rules of
the form a← L, where a is an abstract action and L is an abstract state. We
assume a to be applicable in L, i.e., vars(a) ⊆ vars(L) .

The meaning of a single decision rule a ← L is as follows: If the agent is in
a state Z such that a ≤θ L, then the agent performs action aθ with probability
1/|θ|, i.e., uniformly with respect to number of possible instantiations of action a
in Z. Usually, however, π consists of multiple decision rules. We assume a total
order ≺π among the decision rules in π and use the first matching decision rule
such as in Prolog.

Consider the following unstack-stack abstract policy:

〈1〉 move(A, floor, B)← on(A, B), on(C, D), on(E, floor),cl(A), cl(C), cl(E).
〈2〉 move(A, floor, B)← on(A, B), on(C, D), cl(A), cl(C).
〈3〉 move(E, A, floor)← on(A, B), on(E, floor), cl(A), cl(E).
〈4〉 move(A, B, floor)← cl(A), cl(B).
〈5〉 stop← on(A, B), cl(A).

where the start action adds the absorbing propositions, i.e., it encodes that
we enter an absorbing state 5. For instance in state z (see before), only decision
rule 〈3〉 fires.
5 For ease of exposition, we have omitted the absorbing state in front and statements

that variables refer to different blocks.
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Fig. 6. The decision rules of the unstack-stack policy. In the figure, the decision rules
are ordered from left to right, i.e., a rule fires only if no rule further to the left fires.

The policy, which is graphically depicted in Figure 6 , is interesting for several
reasons. First, it is close to the unstack-stack strategy, which is well known in
the planning community [30]. Basically, the strategy amounts to first putting
all blocks on the table and then building the goal state by stacking all blocks
from the floor onto one single stack. No block is moved more than twice. Second,
it perfectly generalizes to all other blocks worlds, no matter how many blocks
there are. Finally, it cannot be learned in a propositional setting because here
the optimal, propositional policy would encode the number of states and the
optimal number of moves.

9.3 Relational Temporal Difference Learning

The crucial question for (relational) Markov decision programs and for rela-
tional reinforcement learning is how one can learn abstract policies? Almost all
relational MDP solvers and reinforcement learning systems follow the so called
generalized relational policy iteration scheme. It consists of three interacting pro-
cesses: policy evaluation, policy improvement, and policy refinement. Here, eval-
uating a policy refers to computing a performance measure of the current policy;
policy improvement refers to computing a new policy based on the current value
function; and policy refinement makes small modifications to an abstract policy
such as adding rules.

Here, we will focus on model-free approaches, i.e., we do not assume any
model of the world. For a model-based approach, we refer to [15]. Moreover, we
will focus on the relational evaluation problem, which considers how to compute
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Algorithm 3: Relational TD(0) where α is the learning rate and bV (L) is the
approximation of V (L).

Let π be an abstract policy over abstract states L
Initialize bV0(L) arbitrarily for each L in L
repeat

Pick a ground state Z of the underlying (relational) MDP M
repeat

Choose action a in Z based on π, i.e., (1) select first decision rule a← L

in π that matches according to ≺π, (2) select aθ uniformally among
induced ground actions
Take aθ, observe immediate reward r and successor state Z′, i.e.,
(1) select with probability pi the i-th outcome of aθ, (2) compute Z′ as
[b \ Bθ] ∪ Hiθ
Let L′ in L be the abstract state first matching Z′ according to ≺πbV (L) := bV (L) + α · (r + λ · bV (L′)− bV (L))
Set Z := Z′

until Z is terminal, i.e., absorbing

until converged or some maximal number of episodes exceeded

the state-value function V π for an arbitrary abstract policy π: Given an abstract
policy π, find the state-value function V π from experiences 〈St, at, St+1, rt〉 only,
where action at leads from state St to state St+1 receiving reward rt.

The basic idea is to define the value of an abstract state Li (i.e., a body of
a decision rule) to be the average expected value for all the states subsumed by
that state. This is a good model because if we examine each state subsumed,
we make contradictory observations of rewards and transition probabilities. The
best model is the average of these observations given no prior knowledge of
the model. For ease of explanation, we will focus on a TD(0) approach, see
e.g. [32]. Results for general TD(λ) can be obtained by applying Tsitsiklis and
van Roy’s [33] results.

Relational TD(0) sketches the resulting approach. Given some experience
following an abstract policy π, RTD(0) updates its estimate V̂ of V . If the
estimated is not changing considerably, the algorithm stops. If an absorbing
state is reached, an episode ends and a new ”starting” state is selected. If a
nonabsorbing state is visited, then it updates its estimate based on what happens
after that visit. Instead of updating the estimate at the level of states, RTD(0)
updates its estimate at the abstract states of π only

RTD(0) can be proven to converge, see e.g. [13]. Figure 7 shows the perfor-
mance of RTD(0) when evaluating the unstack-stack abstract policy (see above).
We randomly generated 100 blocks world states for 6 blocks, for 8 blocks, and
for 10 blocks using the procedure described by [30]. This set of 300 states consti-
tuted the set Start of starting states in all experiments. Note that for 10 blocks a
traditional MDP would have to represent 58, 941, 091 states of which 3, 628, 800
are goal states. The result of each experiment is an average of five runs of 5000
episodes, where for each new episode we randomly selected one state from Start
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Fig. 7. Relational TD(0)’s learning curves on the evaluation problem for the unstack-
stack policy. The predicted values are shown as a function of the number of episodes.
These data are averages over 5 runs; the error bars show the standard deviations.

as starting state. For each run, the value function was initialized to zero. Fur-
thermore, we used a discount factor λ of 0.9 and a learning rate α of 0.015. The
learning curves show that the values of the abstract states converged and, hence,
RTD(0) converged. Note that the value of abstract state 〈5〉 remained 0. The
reason for this is that, by accident, no state with all blocks on the floor was in
Start. Furthermore, the values converged to similar values in all runs. The values
basically reflect the nature of the policy. It is better to have a single stack than
multiple ones.

10 Conclusions

Relational sequences learning problems arise in many applications. This chapter
has attempted to describe the relational sequence learning tasks and review
some of the leading methods for solving it. In contrast to propositional sequence
learning, relational sequence learning assumes the elements of the sequences to
be structured in terms of (ground) atoms. This in turn can allow to compress
the sequences models tremendously by employing relational abstraction through
variables and unification. Our long-term goal should be to develop methods for
off-the-shelf relational sequence models. Although we are still some distance from
this goal, substantial progress has already been made, and we can look forward
to more exciting work in the near future.
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