
A Job Self-Scheduling Policy for HPC Infrastructures

F. Guim, J. Corbalan⋆

Barcelona Supercomputing Center{francesc.guim,julita.corbalan}@bsc.edu

Abstract. The number of distributed high performance computing architectures
has increased exponentially these last years. Thus, systems composed by several
computational resources provided by different Research centers and Universities
have become very popular. Job scheduling policies have been adaptedto these
new scenarios in which several independent resources have to be managed. New
policies have been designed to take into account issues like multi-cluster environ-
ments, heterogeneous systems and the geographical distribution of the resources.
Several centralized scheduling solutions have been proposed in the literature
for these environments, such as centralized schedulers, centralized queues and
global controllers. These approaches use a unique scheduling entity responsible
for scheduling all the jobs that are submitted by the users.
In this paper we propose the usage of self-scheduling techniques for dispatching
the jobs that are submitted to a set of distributed computational hosts that are
managed by independent schedulers (such as MOAB or LoadLeveler). It is a
non-centralized and job-guided scheduling policy whose main goal is to optimize
the job wait time. Thus, the scheduling decisions are done independently for each
job instead of using a global policy where all the jobs are considered. On top of
this, as a part of the proposed solution, we also demonstrate how the usage of
job wait time prediction techniques can substantially improve the performance
obtained in the described architecture.

1 Introduction

The increasing complexity of the local systems has led to newdistributed architec-
tures. These forthcoming systems are composed of multiple computational resources
with different characteristics and policies. In these new distributed scenarios, traditional
scheduling techniques have evolved into more complex and sophisticated approaches
where other factors, such the heterogeneity of the resources [22] or the geographical
distribution [11], have been taken into account.

Distributed HPC architectures are usually composed of several centers containing
many hosts. In the job scheduling strategies proposed in literature, jobs are submitted to
one centralized scheduler that is responsible for scheduling all the submitted jobs to all
the computational resources available in the system. Therefore, users submit jobs to this
scheduler and it schedules them according to a global scheduling policy. It takes into
account all the queued jobs and the resources available in the center to decide which
jobs have to be submitted to, where and when.

⋆ This paper has been supported by the Spanish Ministry of Science and Education under con-
tract TIN2004-07739-C02-01.



Similar to the philosophy of the AppLeS project [3], in this paper we propose not
to use a global scheduler or global structures for managing the jobs submitted in these
scenarios. Rather, we propose using self-scheduling techniques for dispatch the jobs
that users want to submit to the set of distributed hosts. In this architecture, the jobs are
scheduled by their own dispatcher and there are no centralized scheduling decisions.
The dispatcher is aware of the status of the different resources that are available for
the job, but it is not aware of the rest of the jobs that other users have submitted to
the system. Thus, the job itself decides which is the most appropriate resource for it
to be executed. The target architectures of our work are distributed systems were each
computational resource is managed by an independent scheduler (such as MOAB or
SLURM). Different from AppLeS approach, we propose the interaction between the
job dispatcher and the local schedulers. Thus, the presented work proposes the usage
of two level of scheduling layers: at the top, the job is scheduled by the dispatcher
(the schedule is based on the information provided by the local schedulers and their
capabilities); and once the resource is selected and the jobsubmitted, the job become
scheduled by the local resource scheduler.

For this purpose, we have designed the ISIS-Dispatcher. It is a scheduling entity
that is associated to one and only one job. Therefore, once the user wants to submit
a job, a new dispatcher is instantiated. It is responsible for submitting the job to the
computational resource that best satisfies the job requirements and that maximizes its
response time. The ISIS-Dispatcher has been designed for deployment in large systems,
for instance groups of HPC Research Centers or groups of universities. The core of the
ISIS-Dispatcher algorithm is based on task selection policies. We also have described a
new task selection policy (Less-WaitTime) based on the job wait time prediction. The
main advantage of this is that it takes into account the capacity of the available resources
while the others not (i.e: Less-WorkLeft, Less-Queued-Jobs etc.).

In this paper we have evaluated the different task assignment other policies proposed
in the literature and the Less-WaitTime policy (LWT). The evaluation of the presented
architecture shows how the self-scheduling policy can achieve good performance results
(in terms of resource usage and job performance). Furthermore, we state how the usage
of prediction techniques for the waiting time used in the newLess-WaitTime policy can
substantially improve the overall performance. The main reason for this improvement
is caused by the fact that it takes into account the status of the resource and its capacity
(i.e: number of processors), while the original techniquesonly considered the status of
the resources (i.e: number of queued jobs) and were designedfor homogeneous archi-
tectures with resources having the same configurations.

The rest of the paper is organized as follows: in sections 2 and 3 we present the
background of the presented work and our main contributions; in the section 4 we de-
scribe the proposed scheduling architecture, the task selection policies that have been
evaluated in the dispatcher and a description of how the prediction of the wait time
metric is computed in each center; next the simulation environment used is described,
including the models and modules that it includes; in section 6 the experiments and their
evaluation studied in this work are presented; and finally, in section 7 the conclusions
are presented.



2 Motivation and related work

2.1 Backfilling policies

Authors like Feitelson, Schwiegelshohn, Rudolph, Calzarossa, Downey or Tsafrir have
modeled logs collected from large scale parallel production systems. They have pro-
vided inputs for the evaluation of different system behavior. Such studies have been
fundamental since they have allowed an understanding how the HPC centers users be-
have and how the resources of such centers are being used. Feitelson has presented
several works concerning this topic, among others, he has published papers on log
analysis for specific centers [15][27], general job and workload modeling [13][17][14],
and, together with Tsafrir, papers on detecting workload anomalies and flurries [38].
Calzarossa has also contributed with several workload modellization surveys [4][5].
Workload models for moldable jobs have been described in works of authors like Cirne
et al. in [7][8], by Sevcik in [32] or by Downey in [9].

Fig. 1: Heterogeneous multi-host architectures

Concerning job scheduling policies, backfilling [34] policies have been the main
goal of study in recent years. As with research in workload modeling, authors like S-H
Chiang have provided the community with many quality works regarding this topic. In
[18] general descriptions of the most commonly used backfilling variants and parallel
scheduling policies are presented. Moreover, a deeper description of the conservative
backfilling algorithm can be found in [37], where the authorspresent policy character-
izations and how the priorities can be used when choosing theappropriate job to be
scheduled. Other works are [19] and [6].

More complex approaches have been also been proposed by other researchers. For
instance, in [28] the authors propose maintaining multiplejob queues which separate
jobs according to their estimated run time, and using a backfilling aggressive based
policy. The objective is to reduce the slowdown by reducing the probability that short
job is queued behind a long job. Another example is the optimization presented by



Shmueli et al. in [33] which attempts to to maximize the utilization using dynamic
programming to find the best packing possible given the system status.

2.2 Global Scheduling

The previously-discussed works have analyzed how local centers behave when jobs
are submitted to a specific host managed by one scheduler. In such conditions jobs are
executed in the host to which they were submitted. However, in the current HPC centers,
they may have many hosts managed by one centralized scheduler, or even more than
one host managed by independent schedulers. In these cases,there is the possibility that
a job submitted to a Host A could start earlier in Host B of the same center, or even that
it could achieve more performance (i.e.: improving the response time) in another Host
C. In recent years, scheduling research activities have started to focus on these new
scenarios where many computational resources are involvedin the architectures.

In the coming large distributed systems, like grids, more global scheduling ap-
proaches are being considered. In these scenarios users canaccess a large number of
resources that are potentially heterogeneous, with different characteristics and different
access and scheduling policies (see Figure 1). Thus, in mostcases the users do not have
enough information or skills to decide where to submit theirjobs. Several models have
been proposed in the literature to solve the challenges openin these architectures. We
will discuss the most referenced models:

1. Model 1: There areK independent systems with their own scheduling policies and
queuing systems, and one or more external controllers. In this scenario users sub-
mit jobs to the specific host with a given policy, and a global scheduling entity
tries to optimize the overall performance of the system and the service received by
the users. For example, as is exemplified in figure 2a the controller may decide to
backfill jobs among the different centers [39].

2. Model 2: There is a centralized global scheduler that manages the jobs at the global
level and at local level schedulers and queuing systems are also installed. In this
situation the users submit jobs to the centralized scheduling system that will later
submit the job to the selected scheduling system of a given center. Jobs are queued
at the two different levels: first at the global scheduler queue and second at the local
scheduler queue (see Figure 2b). This is the typical brokering approach.

3. Model 3: There is a centralized dispatcher that schedulesand manages all the jobs
but no local schedulers are installed. The local computational nodes only carry out
the resource allocation since all the scheduling decisionsare taken by the central-
ized dispatcher. The jobs are queued only at the upper level.(see Figure 3a)

4. Model 4: There is one centralized global queue where all the jobs are queued.
The local computational schedulers pull jobs from the global queue when there
are enough available resource for run them. In this way the scheduling decisions
are done independently at the local level. In this situation(see Figure 3b) the users
submit jobs to this centralized queue.

In [39], Yue proposes to apply a global backfilling within a set of independent hosts
where each of them is managed by an independent scheduler (Model 1, Figure 2a).



The core idea of the presented algorithm is that the user submits the jobs to a specific
system, managed by an independent scheduler. A global controller tries to find out if
the job can be backfilled to another host of the center. In the case that the job can
be backfilled in another host before it starts, the controller will migrate the job to the
selected one. As the algorithm requires the job runtime estimation provided by the user,
this optimization is only valid in very homogeneous architectures. This solution may
not scale in systems with a high number of computational hosts. Furthermore, other
administrative problems may arise, for instance it is not clear if the globalbackfiller
presented could scan the queues of all the host involved in the system due to security
reasons or VOs administration policies [21].

Sabin et al. studied in [22] the scheduling of parallel jobs in a heterogeneous multi-
site environment (Model 2, Figure 2b). They propose carrying out a global scheduling
within a set of different sites using a global meta-scheduler where the users submit the
jobs. Two different resource selection algorithms are proposed: in the first one the jobs
are processed in order of arrival to the meta-scheduler, each of them is assigned to the
site with the least instantaneous load; in the second one when the job arrives it is sub-
mitted toK different sites (each site schedules according to a conservative backfilling
policy), once the job is started in one site the rest of the submissions are canceled (this
technique is called multiple requests, MR).

(a) Global Backfilling (b) Global Scheduler

Fig. 2: Proposed solutions (I)

In [11] they analyze the impact of geographical distribution of Grid resources on
machine utilization and the average response time. A centralized Grid dispatcher that
controls all the resource allocations is used (Model 3, Figure 3a). The local schedulers
are only responsible for starting the jobs after the resource selection is made by the
Grid Scheduler. Thus, all the jobs are queued in the dispatcher while the size of the
job wait queues of the local centers is zero. In this model, a unique global reservation
table is used for all the Grid and the scheduling strategy used consists of finding the



allocation that minimizes the job start time. A similar approach is the one presented by
Schroeder et al. in [31], where they evaluate a set of task assignment policies using the
same scenario (one central dispatcher).

In [30] Pinchak et al. describe a metaqueue system to manage the jobs with explicit
workflow dependencies (Model 3 , Figure 3b). In this case, a centralized scheduling
system is also presented. However the submission approach is different from the one
discussed before. Here the system is composed of a user-level metaqueue that interacts
with the local schedulers. In this scenario, instead of the push model, in which jobs
are submitted from the metaqueue to the schedulers, placeholding is based on the pull
model in which jobs are dynamically bound to the local queueson demand.

(a) Global Dispatcher (b) Global queue using the Pull mechanism

Fig. 3: Proposed solutions (II)

In the previously discussed works, using the global policies, the utilization of the
available computational resources have been increased. Furthermore, the service re-
ceived by the users has also been improved. However, in very large domains these ap-
proaches may not scale. Therefore, implementing a centralized scheduling algorithms
in these architectures is not appropriate.

In the AppLess project [3][2] Berman et al. introduced the concept of application-
centric scheduling in which everything about the system is evaluated in terms of its
impact on the application. Each application developer schedules their application so
as to optimize their own performance criteria without regard to the performance goals
of other applications which share the system. The goal is to promote the performance
of an individual application rather than to optimize the useof system resources or to
optimize the performance of a stream of jobs. In this scenario the applications are de-
veloped using the AppLess framework and they are scheduled by the Apples agents.
These agents do not use the functionalities provide by the resource management sys-
tems. Therefore, they rely on systems such as Globus [20], Legion [23], and others to
perform that function.



2.3 Task assignment policies

The scheduling policy presented in this paper uses task assignment policies to decide
where the jobs should be submitted. The subject of job or taskassignment policy has
been studied in several works and several solutions have been proposed by the research
community. Some of the task assignment policies that have been used in the literature
are:

– The Randompolicy. The jobs are uniformly distributed among all the available
clusters.

– TheLess-SubmittedJobspolicy. The jobi is assigned to the hosti mod h(it gener-
ates a Round Robin submission).

– TheShorts-Queuepolicy. The jobs are submitted to the host with the least submit-
ted jobs.

– TheLeast-WorkLeftpolicy. The jobs are submitted to the host with the least pending
work. Where it is computed asPW = ∑∀ jobsRequestedTimejob∗Processorjob.

– TheCentral-Queuepolicy. The jobs are queued in a global queue. The hosts pull
the jobs from the global queue when enough resources are available.

– TheSITA-Epolicy (proposed in [26]). The jobs are assigned to the host based on
their runtime length. Thus,short jobs would be submitted tohost 1, mediumjobs
to host 2and so on. This policy uses the runtime estimation of the job.In this case
the duration cutoffs are chosen so as to equalize load.

– TheSITA-U-optpolicy (proposed in [31]). It purposely unbalances load among the
hosts, and the task assignment is chosen so as to minimize themean slowdown.

– The SITA-U-fair policy (also proposed in [31]). Similar to theopt, they base the
assignment to unbalance the host load. However, the goal forthis policy is to max-
imize fairness. In this SITA variant, the objective is not only to minimize the mean
slowdown, but also to balance the slowdown for large jobs equal to short jobs.

The evaluations presented in [31][26] concerning the performance of all these task
assignment policies have shown that the SITA policies achieve better results. Schroeacher
et al. stated that the Random policy performs acceptably forlow loads, but for high
loads, however, the average slowdown explodes. Furthermore, the SITA-E showed sub-
stantially better performance than Least-Work-Left and Random policies for high loads.
However, the Least-Work-Left showed lower slowdown than the SITA-E. SITA-U poli-
cies showed better results than the SITE-E. SITA-U-fair improved the average slow-
down by a factor of 10 and its variance by a factor of 10 to 100. Harchol presented
similar work in [1], where the same situation is studied, however the presented task pol-
icy does not know the job duration. Although both SITA-U and SITA-E policies have
shown promising performance results, they cannot be used for the Self-Scheduling pol-
icy described in this paper due to the fact that they assume having knowledge of the
global workload.

3 Paper contribution

To summarize, all the previous scenarios have two common characteristics:



– The scheduling policies are centralized. Thus, the users submit the jobs to a global
scheduler.

– They assume that the local resources are homogeneous and arescheduled according
the same policy.

Our proposal will be deployed in scenarios with the following conditions:

– The users can submit the jobs directly to the computational resources. Also, they
should be able to submit the jobs using the described dispatching algorithm.

– The computational resources can be heterogeneous (with different number of pro-
cessors, computational power etc.). Also, they can be scheduled by any run-to-
completion policy.

– The local schedulers have to provide functionalities for access to information con-
cerning their state (such as number of queued jobs).

In this paper we study the use of job-guided scheduling techniques in scenarios with
distributed and heterogeneous resources. The main contributions of this work are:

– The scheduling policy is a job-guided policy. The users submit the job using the
ISIS-Dispatcher (see figure 4). Each job is scheduled by an independent Dispatcher.

– Similar to AppLess, the ISIS-Dispatcher is focused on optimizing the job metrics
with the scheduling decisions, for instance the job averageslowdown, the job re-
sponse time, the wait time or the cost of the used resources assigned to the job.

– The application has not to be modified for use the proposed architecture. The
scheduling is totally transparent to the user and the application.

– The scheduling is done according the information and functionalities that the local
schedulers provide (seejob X of the figure 4). Thus, there is an interaction between
the two scheduling layers.

– We keep the local scheduling policies without important modifications. Centers do
not have to adapt their scheduling policies or schedulers toISIS-Dispatcher. They
have to provide dynamic information about the system status, for example: the
number of queued jobs, when a job would start if it were submitted to the center or
which is the remaining computational work in the center.

– In the simulation environment used in the evaluation, we modeled the different
levels of the scheduling architecture. Consequently, not only were the dispatcher
scheduling policy modeled, but also the local scheduling policies used in the exper-
iments are modeled using an independent reservation table for each of them.

– We propose and evaluate the use of the Less-Waittime task assignment policy that
is based on the wait time predictions for the submitted jobs.The evaluation for
this policy is compared with the task assignment policies described above, which
can be applied in the job-guided scheduling ISIS-Dispatcher policy (SITA policies
cannot).



Fig. 4: ISIS-Dispacher architecture

4 The ISIS-Dispatcher

The main objective of this work is to provide a scheduling component that will be used
by the user or any other component (e.g.: components that requires self-scheduling or
self-orchestration) to decide where to submit their jobs. Figure 4 provides an example
of a possible deployment of the proposed architecture. In this example, there are three
different users that have access to several computational resources. Each computational
resource has its own scheduling policy, different configurations and a particular state
(queued jobs, running jobs etc.). When the user wants to submit the job to these re-
sources an instance of the ISIS-Dispatcher is executed and associated to the job. It will
decide which is the most appropriate center to submit the jobto.

As we have already mentioned, the dispatcher chooses the resource based on a set
of metrics provided by each of their schedulers. In this paper we evaluate two different
sets of metrics: run time metrics concerning the status of the resource (like the number
of queued jobs), and the estimated wait time metric. This prediction information could
also be provided by an external prediction service.

In the rest of the section we describe the submission algorithm, the task assignment
policies that have been evaluated in this paper, and finally,the prediction model that has
been used for evaluated theLess-WaitTime.

4.1 The submission algorithm

When the user wants to submit a Jobα to the system, he/she contacts the ISIS-Dispatcher
which manages the job submision and provides the static description of the jobreqα =
{∂1, ..,∂n}. In this evaluation, the user provides the script/executable file, the number of
requested processors and the requested runtime time. Once the dispatcher has accepted
the submission, it carries out the following steps:



1. For each computational resourceσi (with particular configuration, characteristics
and managed by a given center) in all the resources{σ1, ..,σn} available to the user:
(a) The dispatcher checks that the static properties ofσi match to the static descrip-

tion of the job{∂1, ..,∂n}.For example, it would check that the computational
resource has equal or more processors than that requested bythe job1.

(b) In affirmative cases, the dispatcher contacts the predictor service and requests a
prediction for the job runtime in the given resource.RTPredα({∂1, ..,∂n} ,σi).
In the evaluation presented in this paper, the prediction used was the user run
time estimation provided in the original workloads. However, we are currently
evaluating the use of datamining techniques to predict the run time in these
distributed architectures.

(c) Once the dispatcher receives the job runtime predictionfor the given job in the
given resource. For each metricγi that has to be optimized ({γ1, ..,γn}):

i. It contacts the scheduler that manages the resource and requests the value
of the metric:αγi ,σi = LocalModule.Per f(RTPredα,Reqsα)

ii. It adds the performance metric returned to the list of metrics (metrics{α,σi})
for the job in the given resource.

2. Given all the list of retrieved metrics,metricsα =
{

α{γi ,σ1}, ..,α{γm,σn}

}

, where a
metric entry is composed of the metric value and the resourcewhere the metric was
requested. Using an optimization function,αγi ,σ j = SelectBestResource(metricsα),
the best resource is selected based on the metrics that have been collected.

3. The dispatcher will submit the job to the center that owns the resource.

The functionSelectBestMetricused in the evaluation of this paper is a simplified
version of the once presented above. In each of the evaluation experiments, in step
(c) of the previous algorithm, only one metric per computational resource was used.
(
{

α{γ1,σ}, ..,α{γn,σ}
}

).

4.2 Task Assignment Policies

For this paper we evaluated four different task assignment policies

– The Less-JobWaittime policy minimizes the wait time for thejob. Given a static de-
scription of a job, the local resource will provide the estimated wait time for the job
based on the current resource state. We implemented a prediction mechanism for
different sets of scheduling policies (EASY-Backfilling, LXWF-Backfilling, SJF-
Backfilled First and FCFS) that use a reservation table that simulates the possible
scheduling outcome taking into account all the running and queued jobs at each
point of time (see below).

– The Less-JobsInQueue policy submits the job to the computational resource with
the least number of queued jobs. (The presented Shortest-Queue in the background).

– The Less-WorkLeft policy submits the job to the computational resource with the
least amount of pending work.

– The Less-SubmittedJobs policy submits the jobs to the center with the least number
of submitted jobs.

1 In architecture with thousands of resources, it is not feasible to contactall the resources. Future
versions will include heuristics to decide which hosts the dispatcher has to connect to, and
which not.



4.3 Job wait time prediction

The Less-JobWaittime task assignment policy submits the job to the center that returns
the lowest predicted wait time. The approach taken in this evaluation was that each
center has to provide such predictions. However, other architectures can also be used,
for instance having several prediction/model services. Inthat case no interactions with
the local centers would be required.

How to predict the amount of time that a given job will wait in the queue of a
system has been explored by other researchers in several works [10][35][36][29]. What
we propose in this paper is the use of reservation tables. Thereservation is used by the
local scheduling policies to schedule the jobs and decide where and when the jobs will
start.

In this paper the prediction mechanism uses the reservationtable to estimate the
possible scheduling outcome. It contains two different types of allocations: allocations
for those jobs that are running; and pre-allocations for thequeued jobs. The status of
the reservation table in a given point of time is only one of all the possible scheduling
outcomes and the current scheduling may change depending onthe dynamicity of the
scheduling policy. Also, the accuracy of the job runtime estimation or prediction has an
impact on the dynamicity of the scheduling outcomes, mainlydue to the job runtime
overestimations.

The prediction of the wait time of a jobα at timeT1, that requiresαtime andαcpus,
in a given resource, will be computed with: the earliest allocation that the job would
receive in the resource given the current outcome if it was submitted at timeT1. Ob-
viously, this allocation will depend on the scheduling policy used in the center, and
probably will vary in different time stamps. All the scheduling events are reflected on
the status of the reservation table. The prediction technique presented in this work is
mainly designed for FCFS and backfilling policies. The information that is used for
allocating the job in the reservation table is: the number ofrequired processors and its
estimated runtime.

Figures 5 provide two examples of how a prediction for a new job would be com-
puted in the two scheduling policies used in this paper. In both examples the current
time ist1, there is one job running (Job 1), and three more queued (Job 2, Job 3andJob
4). If a prediction for the wait time for the jobJob 5was required by a given instance
of the ISIS-Dispatcher, the center would returnt4− t1 in the case of FCFS (Figure 5a)
and would return 0 in the case of Backfilling (Figure 5b).

5 Simulation characteritzation

In this section we describe the simulation environment thatwas used to evaluate the
presented policy and architecture: first we describe the C++event-driven simulator that
was used to simulate local and distributed High PerformanceComputing Architectures;
and second, we characterize all the experiments that were designed to evaluate the cur-
rent proposal.



(a) Prediction for FCFS (b) Prediction for Backfilling

Fig. 5: Scenario All SJF-Backfilled First

5.1 The Alvio Simulator

All the experiments were conducted using the C++ event-driven Alvio simulator [24].
The simulator models the different components that interact in local and distributed ar-
chitectures. Conceptually, it is divided into three main parts: the simulator engine, the
scheduling polices model (including the resource selection policies), and the computa-
tional resource model. A simulation allows us to simulate a given policy with a given ar-
chitecture. Currently, three different policies have beenmodeled: the First-Come-First-
Served, the Backfilling policies can be used, and finally, theISIS-Dispatcher scheduling
policy. For the backfilling policies the different properties of the wait queue and back-
filling queue are modeled (SJF, LXWF and FCFS) and different numbers of reservations
can also be specified.

The architecture model allows us to specify different kind of architectures. Cur-
rently, cluster architectures can be modeled, where the host is composed of a set of
computational nodes, where each node has a set of consumableresources (currently
Memory Bandwidth, Ethernet Bandwidth and Network bandwidth). Although the use
of these consumable resources can be simulated in a high level fashion, for the experi-
ments presented in this paper it has not been used.

The local scheduling policies (all excluding the ISIS-Dispatcher) use a set of job
queues and a reservation to schedule the jobs. The reservation table that is linked to a
given architecture has the running jobs allocated to the different processors during the
time. One allocation is composed of a set of buckets that indicate that a given jobα is
using the processorsβ from αstartTimeuntil αendTime. Depending on the policy configu-
ration, the scheduling policy will temporarily allocate the queued jobs (for instance, to
estimate the wait time for the jobs). The distributed scheduling ISIS-Dispatcher policy
does not have a reservation table because it does not allocate the jobs to the proces-



sors. Furthermore, the local scheduling policies must provide a functionality that allows
querying metrics concerning the current state of the local system. This functionality will
be used by the dispatcher to decide where to submit the jobs.

5.2 Experiments

In this section we present the workloads used in the simulations and the scenarios that
were designed to evaluate the proposal.

5.3 Workloads

The design and evaluation of our experiments were contrasted and based on the analyt-
ical studies available for each of the workloads that we usedin our simulations:

– The San Diego Supercomputer Center (SDSC) Blue Horizon log (144-node IBM
SP, with 8 processors per node)

– The San Diego Supercomputer Center (SDSC-SP2) SP2 log (128-node IBM SP2)
– The Cornell Theory Center (CTC) SP2 log [16] (512-node IBM SP2).

For the simulation we used traces generated with the fusion of the first four months
of each trace (FUSION). The following section describes thesimulation: first we sim-
ulated the four months for each trace independently; second, using the unique fusion
trace, different configurations of a distributed scenario composed by the three centers
were simulated. We chose these workloads because they contain jobs with different
levels of parallelism and with run times that vary substantially. More information about
their properties and characteristics can be found in the workload archive of Dror Feitel-
son [12].

5.4 Simulation Scenarios

In all the scenarios presented below, all the metrics presented in section 4 were evalu-
ated. In the second and third scenarios we also evaluated what happens when the charac-
teristics of the underlying systems have different configurations, in terms of scheduling
policies and computational resource configurations.

The characteristics of each of the evaluated scenarios are:

1. In the first scenario (ALL-SJF), all the centers used the same policy: Shortest Job
Backfilled First. The number of processors and computational resources were con-
figured in exactly the same way as the original.

2. In the second scenario (CTC/4), the SFJ-Backfilled first was also used for all the
centers. However, in this case we emulated what would happenif the CTC center
performed four times slower than the two others. In this case, all the jobs that ran to
this center spent four times longer than the runtime specified in the runtime of the
original workload2. The main goal is to evaluate the impact of having resources
with different computational power.

2 This is only a first approximation. Future studies may use more detailed models



3. In the last scenario (CTC-FCFS), the SDSC and SDSC-Blue also used the SJF-
Backfilled First policy. However, the CTC center used the FCFS scheduling policy.
As in the first scenario, the computational resource configuration was exactly the
same as the original.

The first scenario evaluates situations where all the hosts available have the same
scheduling policy. Thus, each computational host is managed by the same scheduling
policy and each computational unit (the processors) of all the hosts has the same power.
We defined the two other scenarios to evaluate how the presented scheduling policy be-
haves with heterogeneous computational resources and withdifferent scheduling poli-
cies. In the second scenario we evaluated the impact of having heterogeneous resources.
In this situation the CTC processors perform four times slower than the processors of
the other two centers. In the last scenario we evaluated the impact of having different
scheduling policies in the local hosts.

Center Estimator BSLD SLD WaitTime

SDSC
Mean 8,66 12,9 2471
STDev 47,7 86,07 8412
95th Percentile 17,1 18,92 18101

SDSC-Blue
Mean 6,8 7,6 1331
STDev 29 36 5207,2
95th Percentile 28,5 29 8777

CTC
Mean 2,8 3,03 1182
STDev 23 27,1 4307,3
95th Percentile 2,3 2,5 6223

CTC/4
Mean 19,8 20,467 9664
STDev 57,23 58,203 20216
95th Percentile114,3 116,3 54450

CTC FCFS
Mean 12,833 14,04 3183,3
STDev 66,54 77,03 9585
95th Percentile32,403 32,65 32996,4

Table 1: Performance Variables for each workload

6 Evaluation

6.1 The Original Workloads

Table 1 presents the performance metrics for the simulationof the workloads used in
this paper (CTC, SDSC and SDSC-Blue) with SJF Backfilling in each center. We also
include the simulations for the CTC with the other two different configurations that
were used in the experiments of the distributed scenarios: the first includes the CTC,



Fig. 6: Bounded Slowdown

Fig. 7: Wait time



and the second also includes the CTC simulation, but using the FCFS policy. As can
be observed, the workload that has the best slowdown and waittime is the CTC. The
SDSC and SDSC-Blue have a similar average bounded slowdown,however, the 95th
percentile of the SDSC-Blue is one order of magnitude greater than the SDSC. In terms
of wait time, jobs remain longer in the wait queue in the workload of the SDSC than
the other two. In terms of 95th percentile the jobs spend three times longer in the SDSC
than in the CTC.

The performance obtained when reducing the computational power and the policy
of the CTC center (Table 1) is not surprising. Using FCSC or reducing by four the
computational power of the CTC significantly increases the slowdown and wait time
for the CTC workload. The capacity of the resource of executethe same workload was
reduced four times. Thus, the original scenario cannot copewith the same job stream.
The main concern was to evaluate later this configuration in the distributed scenario.

Center Estimator Ratio BSLD Ratio SLD Ratio WaitTime

SDSC
Mean 5,44 7,5 10,98
STDev 5,1 9,27 4,36
95th Percentile 14,1 14,92 53,2

SDSC-Blue
Mean 4,2 4,4 5,9
STDev 3,1 3,6 2,7
95th Percentile 23,5 22 25,8

CTC
Mean 1,8 1,7 5,2
STDev 2,5 2,9,1 2,3
95th Percentile 1,6 1,6 18

Table 2: Ratio: Original Job Perf. / ISIS Less-WaitTime Job Perf.

6.2 The first scenario: all centers with SJF-Backfilled First

Figure 6 presents the average and 95th percentile for the average slowdown in the three
presented scenarios and the different task assignment policies studied. In thescenario
1 (all centers with SJF), the Less-JobQueuedJobs and Less-WaitTime policies showed
the best performance. However, the first one obtains a slowdown (1,7) twice as small
as the second one (3,9). The other two policies performed substantially worst. The av-
erage slowdown and the 95th percentile are three or even ten times greater than in the
others. For instance the average slowdown of the Less-Waitime is around two while the
same slowdown for the Less-WorkLeft in the same scenario is around ten. The average
wait time in this scenario (see Figure 7) presented similar behavior to the slowdown.
However, the percentile shows that in the case of the Less-SubmittedJobs and Less-
WorkLeft the wait time of the jobs has a high variance. This fact is also corroborated by
the standard deviation that the wait time experiments in both policies (see Figure 11).



The Less-WorkLeft policy takes into account the amount of pending work and the
Less-JobsInQueue not. Therefore, we expected that the firstpolicy one would perform
much better than the second one. However, the presented results showed the contrary.
Analyzing both simulations we have stated that in some situations the Less-WorkLeft
policy unbalances excessively the number of submitted jobs. As shown in table 3 it
submits around 800 jobs more to the SDSC center than the Less-JobsInQueue. The
figures 8 and 9 show that the amount of queued jobs in the SDSC issubstantially bigger
in the Less-WorkLeft policy in this specific interval of the simulation. This unbalance is
caused by the characteristics of the stream of jobs that are submitted during this interval
to the system. The initial part of this stream is composed by several jobs that requires
from 256 processors until 800 processors and that have largeruntime. Because of the
capacity of the SDSC center (128 processors), these jobs canonly be allocated to the
CTC center (412 processors) and the SDSC-Blue (1152 processors). This causes that an
important amount of smaller jobs (with less than 128 processors) have to be submitted
to the SDSC center for accumulate the same amount of pending work that are assigned
to the other two centers. Thus, as we state in [25], this stream of jobs composed by
jobs that requires all the processors of the host and jobs that requires small number of
processors causes an important fragmentation in the scheduling of the SDSC. These
situations occurs several times in the simulation and they decrease substantially the
performance achieved by the Less-WorkLeft policy.

What the results suggest is that the Less-SubmittedJobs policy has the worst per-
formance of all the assignment policies, since the choice ofwhere the job is submitted
does not depend on the static properties of the job (estimated runtime and processors).
Regarding the other two policies, the Less-JobsInQueue policy performs substantially
better than the Less-WorkLeft.

Table 2 provides the ratio for the job performance variablesin the original scenario
(where jobs where submitted to the independent centers) against the performance for
the jobs in the ALL-SJF scenario using the Less-WaitTime policy. The results show
that the jobs of all the centers obtained substantially better service in the new scenario.
For instance, the average bounded slowdown in SDSC is 5.44 times greater than the
average bounded slowdown for the jobs in theoriginal workloads. On the other hand,
the resource usage achieved by the Less-WaitTime policy hasbeen improved. As the
table 4 shows, the average of used processors per hour in the centers has been improved.
Although the SDSC-Blue has experimented a soft drop in its processors usage, the CTC
has experimented a notoriously increment in its processorsusage. Also, as can be been
seen in the number of running jobs per hour the packing of jobshas been improved.

6.3 Second and third scenarios: CTC/4 and CTC with FCFSC

The other two scenarios analyzed in the paper show that the ISIS-Dispacher scheduling
policy is able to react in heterogeneous environments wherethe computational capabil-
ities of the different centers can vary (in thescenario 2with a resource with less compu-
tational power and in thescenario 3with a resource with different scheduling policy).
Compared to thescenario 1the performance shown in both scenarios experienced only
a small drop. Thus, the system was able to schedule the jobs tothe different resources
adapting to the different capabilities of each of the available centers. This fact can be



Resource Less-JobsInQueueLess-WorkLeft
CTC 10788 10912
SDSC 1953 2560
SDSC-Blue 9550 8819
Table 3: Number of submitted jobs per host

Center Variable Original Workload Less-WaitTime Scenario

SDSC
Running Jobs 5,1 6,02
Number of used CPUs 52,3 58,3

SDSC-Blue
Running Jobs 4,5 4
Number of used CPUs 492,8 435,2

CTC
Running Jobs 148,5 282,7
Number of used CPUs 18,2 23,4

Table 4: Average of processors used and running jobs per hour

Fig. 8: Number of queued jobs in the SDSC



Fig. 9: Number of queued jobs in the SDSC

observed in figure 12 where the normalized amount of workloaddone by each center is
described forscenarios 1 and 2. Clearly, in the situation where the CTC center used a
scheduling policy with lower performance, the amount of workload was automatically
balanced from this center to the SDSC-Blue and to the SDSC center (similar properties
were found in thescenario 3). Regarding the performance achieved by each of the task
assignment policies used in the experiments, the results show similar behaviors to those
we observed in the first scenario.

Clearly, independently of the configuration used, using theLess-WaitTime assign-
ment policy in the ISIS-Dispatcher scheduling policy obtained the best performance
results in all the scenarios that were evaluated. It has demonstrated that it is better able
to adapt to the difference configuration of the local centers, and to provide a similar
service to all the jobs.

7 Conclusions and future Work

In this paper we have presented the use of a job-guided scheduling technique designed
to be deployed in distributed architectures composed of a set of computational resources
with different architecture configurations and different scheduling policies. Similar to
the AppLeS project, the main goal of the technique presentedhere is to provide the
user with a scheduling entity that will decide the most appropriate computational re-
source to submit his/her jobs to. We support the interactionbetween the job dispatcher
and the local schedulers. Thus, the presented work proposesthe usage of two level of



Fig. 10: Bounded Slowdown Standard Deviation

Fig. 11: Wait time Standard Deviation



(a) All With SJF (b) CTC with FCFS

Fig. 12: Work distribution in the ISIS-Scenarios

scheduling layers: at the top, the job is scheduled by the dispatcher (the schedule is
based on the information provided by the local schedulers and their capabilities); and
once the resource is selected and the job submitted, the job become scheduled by the
local resource scheduler.

The scheduling policy presented here uses a set of task assignment policies to de-
cide where the jobs are finally submitted. This paper has alsoevaluated how the most
representative task assignment scheduling policies presented in the literature perform in
the policy presented here (including the Less-WorkLeft, Less-Less-SubmittedJobs and
Less-JobsInQueue policies). Furthermore, a task selection policy using the wait time
prediction and focused on reducing the wait time for jobs hasbeen proposed.

We have evaluated the proposal in three different scenariosusing the workloads
CTC, SDSC and SDSC-Blue from the Workload Log Archive. The first scenario was
composed of a set of centers with the same scheduling policies and different com-
putational resources (different numbers of processors); the second was composed of
a set of centers with different scheduling policies (two with SJF-Backfilled First and
one with FCFS) and different computational resources ; and finally, the last one was
composed of centers with the same policies and different computational resources with
different computational power (one of the centers performed four times slower than the
other two). Although the scheduling proposal presented in this paper is non-centralized
and the dispatcher does not store any information regardingthe progress of the global
scheduling, it has been shown that using the appropriate task assignment policy (in
this analysis the Less-Waittime policy showed the most promising results) it is able to
achieve good global performance, adapting to the underlying center resource character-
istics and to the local scheduling policies. Furthermore, not only the job wait time has
been improved, the resource usage and the job packing have been also improved.

In future work we plan to use prediction techniques to estimate job runtime rather
than user estimates. We are currently working on prototypeswhere the run time of jobs
is estimated using C45 algorithms and discretization techniques (and other datamining
techniques). In such scenarios, users will only have to provide the number of requested
processors and the static description of the job. We will have to evaluate the impact of
prediction and user runtime estimation errors on such architectures.



We will extend the current submission algorithm including other negotiation mech-
anisms between the local centers and the dispatcher, for instance using Service Level
Agreement negotiations or advanced reservations. Furthermore, the ISIS-Dispatcher
will be alive during the complete job cycle of life monitoring the job evolution. It will be
able to decide to migrate the job to other resources or to carry out other scheduling de-
cisions to achieve better performance. In the current version the dispatching algorithm
contacts to all the schedulers that matches the job requirements to gathering the schedul-
ing information. Future version of this algorithm will include user and job heuristics for
reduce the amount of schedulers to be queried. Thus, the number of communications
will be reduced.

References

1. N. Bansal and M. Harchol-Balter.Analysis of SRPT scheduling: investigating unfairness.
2001.

2. F. Berman and R. Wolski. Scheduling from the perspective of the application. pages 100–
111, 1996.

3. F. Berman and R. Wolski. The apples project: A status report. 1997.
4. M. Calzarossa, G. Haring, G. Kotsis, A. Merlo, and D. Tessera. A hierarchical approach to

workload characterization for parallel systems.Performance Computing and Networking,
Lect. Notes Comput. Sci. vol., page pp. 102109, 1995.

5. M. Calzarossa, L.Massari, , and D. Tessera. Workload characterization issues and method-
ologies.In Performance Evaluation: Origins and Directions, Lect. Notes Comput. Sci., page
pp. 459482, 2000.

6. S.-H. Chiang, A. C. Arpaci-Dusseau, and M. K. Vernon. The impact of more accurate re-
quested runtimes on production job scheduling performance.8th International Workshop on
Job Scheduling Strategies for Parallel Processing, Vol. 2537:103 – 127, 2002.

7. W. Cirne and F. Berman. A comprehensive model of the supercomputer workload.4th Ann.
Workshop Workload Characterization, 2001.

8. W. Cirne and F. Berman. A model for moldable supercomputer jobs.15th Intl. Parallel and
Distributed Processing Symp., 2001.

9. A. B. Downey. A parallel workload model and its implications for processor allocation.6th
Intl. Symp. High Performance Distributed Comput., Aug 1997.

10. A. B. Downey. Using queue time predictions for processor allocation. 3rd Workshop on
Job Scheduling Strategies for Parallel Processing, Lecture Notes In Computer Science; Vol.
1291:35 – 57, 1997.

11. C. Ernemann, V. Hamscher, , and R. Yahyapour. Benefits of global grid computing for job
scheduling.5th IEEE/ACM International Workshop on Grid Computing, 2004.

12. D. D. G. Feitelson. Parallel workload archive, 2006.
13. D. G. Feitelson. Packing schemes for gang scheduling’.Job Scheduling Strategies for Par-

allel Processing, Lect. Notes Comput. Sci. 1162:pp. 89–110, 1996.
14. D. G. Feitelson. Workload modeling for performance evaluation.In Performance Evaluation

of Complex Systems: Techniques and Tools, Lect. Notes Comput. Sci. vol. 2459, pages pp.
114–141, 2002.

15. D. G. Feitelson and B. Nitzberg. Job characteristics of a production parallel scientific work-
load on the nasa ames ipsc/860.In Job Scheduling Strategies for Parallel Processing, Lect.
Notes Comput. Sci., vol. 949:pp. 337–360, 1995.

16. D. G. Feitelson and L. Rudolph. Workload evolution on the cornell theory center ibm sp2.
Job Scheduling Strategies for Parallel Processing, 1162:pp. 27–40, 1996.



17. D. G. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job scheduling.In
Job Scheduling Strategies for Parallel Processing, Lect. Notes Comput. Sci., vol. 1459:pp.
1–24, 1998.

18. D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel job scheduling - a status
report. Job Scheduling Strategies for Parallel Processing: 10th International Workshop,
JSSPP 2004, 3277 / 2005:9, June 2004.

19. D. G. Feitelson and A. Weil. Utilization and predictability in scheduling the ibm sp2 with
backfilling. Proceedings of the 12th. International Parallel Processing Symposium, pages
542–546, 1998.

20. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. J Intl - Inter-
national Journal of Supercomputer Applications., 1997.

21. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid:Enabling scalable virtual
organizations.Lecture Notes in Computer Science, 2150, 2001.

22. S. Gerald, K. Rajkumar, R. Arun, and S. Ponnuswamy. Scheduling of parallel jobs in a
heterogeneous multi-site environment.JSSPP, 2003.

23. A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds Jr. Legion: The
next logical step toward a nationwide virtual computer. (CS-94-21), 8,1994.

24. F. Guim, J. Corbalan, and J. Labarta. The internals of the alvio-simulator: Simulator of hpc
infraestructures (upc-dac-rr-cap-2007-2). Technical report,Architecture Computer Depar-
ment - Technical University of Catalunya, 2005.

25. F. Guim, J. Corbalan, and J. Labarta. Modeling the impact of resource sharing in backfilling
policies using the alvio simulator.Submitted to 15th Annual Meeting of the IEEE / ACM
International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems, 2007.

26. M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On choosing a task assignment policy
for a distributed server system.Journal of Parallel and Distributed Computing, 59(2):204–
228, 1999.

27. V. L. K. Windisch, R. Moore, D. Feitelson, , and B. Nitzberg. A comparison of workload
traces from two production parallel machines.In 6th Symp. Frontiers Massively Parallel
Comput., pages pp.319–326, 1996.

28. B. G. Lawson and E. Smirni.Multiple-Queue Backfilling Scheduling with Priorities and
Reservations for Parallel Systems. Springer Verlag, 2002. Lect. Notes Comput. Sci.
vol. 2537.

29. H. Li, J. Chen, Y. Tao, D. Groep, , and L. Wolters. Improving a local learning technique for
queue wait time predictions.Cluster and Grid computing, 2006.

30. C. Pinchak, P. Lu, and M. Goldenberg. Practical heterogeneousplaceholder scheduling in
overlay metacomputers: Early experiences.Job Scheduling Strategies for Parallel Process-
ing, pages 205–228, 2002. Lect. Notes Comput. Sci. vol. 2537.

31. B. Schroeder and M. Harchol-Balter. Evaluation of task assignment policies for supercom-
puting servers: The case for load unbalancing and fairness.Cluster Computing 2004, 2004.

32. K. C. Sevcik. Application scheduling and processor allocation in multiprogrammed parallel
processing systems.Performance Evaluation, pages pp. 107–140, 1994.

33. E. Shmueli and D. G. Feitelson.Backfilling with Lookahead to Optimize the Performance of
Parallel Job Scheduling. Springer Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

34. J. Skovira, W. Chan, H. Zhou, and D. A. Lifka. The easy - loadleveler api project.Proceed-
ings of the Workshop on Job Scheduling Strategies for Parallel Processing, Lecture Notes In
Computer Science; Vol. 1162 archive:41 – 47, 1996.

35. W. Smith, V. E. Taylor, and I. T. Foster. Using run-time predictions toestimate queue wait
times and improve scheduler performance.Proceedings of the Job Scheduling Strategies for
Parallel Processing, Lecture Notes In Computer Science; Vol. 1659:202 – 219, 1999.



36. W. Smith and P. Wong. Resource selection using execution and queuewait time. predictions.
page 7.

37. D. Talby and D. Feitelson. Supporting priorities and improving utilization of the ibm sp
scheduler using slack-based backfilling.Parallel Processing Symposium, pages pp. 513–
517, 1999.

38. D. Tsafrir and D. G. Feitelson. Instability in parallel job scheduling simulation: the role of
workload flurries.In 20th Intl. Parallel and Distributed Processing Symp, 2006.

39. J. Yue. Global backfilling scheduling in multiclusters.Asian Applied Computing Conference,
AACC 2004, pages pp. 232–239, 2004.


