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Abstract. The number of distributed high performance computing architectures
has increased exponentially these last years. Thus, systems cahyassveral
computational resources provided by different Research cemdrdiversities
have become very popular. Job scheduling policies have been adaptezse
new scenarios in which several independent resources have tortagyeth New
policies have been designed to take into account issues like multi-clusterenv
ments, heterogeneous systems and the geographical distribution eftheaes.
Several centralized scheduling solutions have been proposed in théuligera
for these environments, such as centralized schedulers, centralizedsgand
global controllers. These approaches use a unique scheduling esfiphsble

for scheduling all the jobs that are submitted by the users.

In this paper we propose the usage of self-scheduling techniquespatching

the jobs that are submitted to a set of distributed computational hosts that are
managed by independent schedulers (such as MOAB or LoadLpvitlés a
non-centralized and job-guided scheduling policy whose main goal iditniap

the job wait time. Thus, the scheduling decisions are done independemtiydio

job instead of using a global policy where all the jobs are considered. Daofto
this, as a part of the proposed solution, we also demonstrate how the ofsag
job wait time prediction techniques can substantially improve the perforenanc
obtained in the described architecture.

1 Introduction

The increasing complexity of the local systems has led to distvibuted architec-

tures. These forthcoming systems are composed of multgpigoatational resources
with different characteristics and policies. In these nestrithuted scenarios, traditional
scheduling techniques have evolved into more complex apHbisticated approaches
where other factors, such the heterogeneity of the ress&@} or the geographical
distribution [11], have been taken into account.

Distributed HPC architectures are usually composed ofraéeenters containing
many hosts. In the job scheduling strategies proposeckiratitre, jobs are submitted to
one centralized scheduler that is responsible for scheglall the submitted jobs to all
the computational resources available in the system. Tarerausers submit jobs to this
scheduler and it schedules them according to a global sthgduolicy. It takes into
account all the queued jobs and the resources availableinghter to decide which
jobs have to be submitted to, where and when.

* This paper has been supported by the Spanish Ministry of Science arcdtitoh under con-
tract TIN2004-07739-C02-01.



Similar to the philosophy of the AppLeS project [3], in thiager we propose not
to use a global scheduler or global structures for managiaegobs submitted in these
scenarios. Rather, we propose using self-scheduling iads for dispatch the jobs
that users want to submit to the set of distributed hostsitnarchitecture, the jobs are
scheduled by their own dispatcher and there are no cemtdatizheduling decisions.
The dispatcher is aware of the status of the different ressuthat are available for
the job, but it is not aware of the rest of the jobs that othersihave submitted to
the system. Thus, the job itself decides which is the mostogiate resource for it
to be executed. The target architectures of our work areldised systems were each
computational resource is managed by an independent dengduch as MOAB or
SLURM). Different from AppLeS approach, we propose theriatéon between the
job dispatcher and the local schedulers. Thus, the preseek proposes the usage
of two level of scheduling layers: at the top, the job is sched by the dispatcher
(the schedule is based on the information provided by thal lschedulers and their
capabilities); and once the resource is selected and theujoimitted, the job become
scheduled by the local resource scheduler.

For this purpose, we have designed the ISIS-Dispatches.dtgcheduling entity
that is associated to one and only one job. Therefore, ore@ghr wants to submit
a job, a new dispatcher is instantiated. It is responsiblesfitbmitting the job to the
computational resource that best satisfies the job reqeimtsrand that maximizes its
response time. The ISIS-Dispatcher has been designedgtmyaeent in large systems,
for instance groups of HPC Research Centers or groups oérsities. The core of the
ISIS-Dispatcher algorithm is based on task selection jgsidNVe also have described a
new task selection policy (Less-WaitTime) based on the jali time prediction. The
main advantage of this is that it takes into account the ggpaicthe available resources
while the others not (i.e: Less-WorkLeft, Less-Queuedskto.).

In this paper we have evaluated the different task assighotieer policies proposed
in the literature and the Less-WaitTime policy (LWT). The leradion of the presented
architecture shows how the self-scheduling policy caneaehjood performance results
(in terms of resource usage and job performance). Furthesme state how the usage
of prediction techniques for the waiting time used in the h@ss-WaitTime policy can
substantially improve the overall performance. The ma@soa for this improvement
is caused by the fact that it takes into account the statuseafgsource and its capacity
(i.e: number of processors), while the original techniquely considered the status of
the resources (i.e: number of queued jobs) and were designédmogeneous archi-
tectures with resources having the same configurations.

The rest of the paper is organized as follows: in sections®23awe present the
background of the presented work and our main contribugionthe section 4 we de-
scribe the proposed scheduling architecture, the tasktg®iepolicies that have been
evaluated in the dispatcher and a description of how theigited of the wait time
metric is computed in each center; next the simulation envirent used is described,
including the models and modules that it includes; in sediithe experiments and their
evaluation studied in this work are presented; and finailgdction 7 the conclusions
are presented.



2 Motivation and related work

2.1 Backfilling policies

Authors like Feitelson, Schwiegelshohn, Rudolph, CalgsapDowney or Tsafrir have
modeled logs collected from large scale parallel productigstems. They have pro-
vided inputs for the evaluation of different system behavBuch studies have been
fundamental since they have allowed an understanding hewiBC centers users be-
have and how the resources of such centers are being us¢elséreihas presented
several works concerning this topic, among others, he hafished papers on log
analysis for specific centers [15][27], general job and waall modeling [13][17][14],
and, together with Tsafrir, papers on detecting workloaohaadies and flurries [38].
Calzarossa has also contributed with several workload Himatéon surveys [4][5].
Workload models for moldable jobs have been described iksvof authors like Cirne
et al. in [7][8], by Sevcik in [32] or by Downey in [9].
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Fig. 1: Heterogeneous multi-host architectures

Concerning job scheduling policies, backfilling [34] podis have been the main
goal of study in recent years. As with research in workloadieting, authors like S-H
Chiang have provided the community with many quality worgarding this topic. In
[18] general descriptions of the most commonly used batlidilvariants and parallel
scheduling policies are presented. Moreover, a deeperipiésc of the conservative
backfilling algorithm can be found in [37], where the authprssent policy character-
izations and how the priorities can be used when choosingpipeopriate job to be
scheduled. Other works are [19] and [6].

More complex approaches have been also been proposed byetkarchers. For
instance, in [28] the authors propose maintaining multjplequeues which separate
jobs according to their estimated run time, and using a b#offiaggressive based
policy. The objective is to reduce the slowdown by reducimg probability that short
job is queued behind a long job. Another example is the optition presented by



Shmueli et al. in [33] which attempts to to maximize the métion using dynamic
programming to find the best packing possible given the systatus.

2.2 Global Scheduling

The previously-discussed works have analyzed how localecgibehave when jobs
are submitted to a specific host managed by one schedulercincenditions jobs are
executed in the host to which they were submitted. Howenég current HPC centers,
they may have many hosts managed by one centralized schemlutven more than
one host managed by independent schedulers. In these tteseds the possibility that
a job submitted to a Host A could start earlier in Host B of thme center, or even that
it could achieve more performance (i.e.: improving the ogse time) in another Host
C. In recent years, scheduling research activities havéedtéo focus on these new
scenarios where many computational resources are invoivibe architectures.

In the coming large distributed systems, like grids, morebgl scheduling ap-
proaches are being considered. In these scenarios usess@ass a large number of
resources that are potentially heterogeneous, with diftecharacteristics and different
access and scheduling policies (see Figure 1). Thus, incasss the users do not have
enough information or skills to decide where to submit tiwds. Several models have
been proposed in the literature to solve the challenges opérese architectures. We
will discuss the most referenced models:

1. Model 1: There ar& independent systems with their own scheduling policies and
gueuing systems, and one or more external controllers.idrstienario users sub-
mit jobs to the specific host with a given policy, and a globalieduling entity
tries to optimize the overall performance of the system aedservice received by
the users. For example, as is exemplified in figure 2a the @etmay decide to
backfill jobs among the different centers [39].

2. Model 2: There is a centralized global scheduler that masthe jobs at the global
level and at local level schedulers and queuing systemslsodrestalled. In this
situation the users submit jobs to the centralized scheglslystem that will later
submit the job to the selected scheduling system of a givetecelobs are queued
at the two different levels: first at the global schedulenguand second at the local
scheduler queue (see Figure 2b). This is the typical brogexpproach.

3. Model 3: There is a centralized dispatcher that scheduldsnanages all the jobs
but no local schedulers are installed. The local computatinodes only carry out
the resource allocation since all the scheduling decissmagaken by the central-
ized dispatcher. The jobs are queued only at the upper kes.Figure 3a)

4. Model 4: There is one centralized global queue where alljolvs are queued.
The local computational schedulers pull jobs from the glahseue when there
are enough available resource for run them. In this way theduding decisions
are done independently at the local level. In this situatsme Figure 3b) the users
submit jobs to this centralized queue.

In [39], Yue proposes to apply a global backfilling within &4 sEindependent hosts
where each of them is managed by an independent schedulele(Mop Figure 2a).



The core idea of the presented algorithm is that the user issilime jobs to a specific
system, managed by an independent scheduler. A globaloflentiries to find out if
the job can be backfilled to another host of the center. In #ee ¢hat the job can
be backfilled in another host before it starts, the contrellidd migrate the job to the
selected one. As the algorithm requires the job runtimenesion provided by the user,
this optimization is only valid in very homogeneous arcttitees. This solution may
not scale in systems with a high number of computationalshdairthermore, other
administrative problems may arise, for instance it is netaclif the globalbackfiller
presented could scan the queues of all the host involveckeisyhtem due to security
reasons or VOs administration policies [21].

Sabin et al. studied in [22] the scheduling of parallel jaba heterogeneous multi-
site environment (Model 2, Figure 2b). They propose cagyint a global scheduling
within a set of different sites using a global meta-scheadwlgere the users submit the
jobs. Two different resource selection algorithms are psegl: in the first one the jobs
are processed in order of arrival to the meta-scheduleh, eBihiem is assigned to the
site with the least instantaneous load; in the second one wteejob arrives it is sub-
mitted toK different sites (each site schedules according to a coateswbackfilling
policy), once the job is started in one site the rest of thergsions are canceled (this
technique is called multiple requests, MR).
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Fig. 2: Proposed solutions (1)

In [11] they analyze the impact of geographical distribataf Grid resources on
machine utilization and the average response time. A der@daGrid dispatcher that
controls all the resource allocations is used (Model 3, flé@a). The local schedulers
are only responsible for starting the jobs after the resmgedection is made by the
Grid Scheduler. Thus, all the jobs are queued in the dispatetile the size of the
job wait queues of the local centers is zero. In this modehigue global reservation
table is used for all the Grid and the scheduling strategy usasists of finding the



allocation that minimizes the job start time. A similar apgch is the one presented by
Schroeder et al. in [31], where they evaluate a set of tasgrasgnt policies using the
same scenario (one central dispatcher).

In [30] Pinchak et al. describe a metaqueue system to mahagelis with explicit
workflow dependencies (Model 3 , Figure 3b). In this case,rdrabzed scheduling
system is also presented. However the submission appreatifierent from the one
discussed before. Here the system is composed of a usérretaqueue that interacts
with the local schedulers. In this scenario, instead of thehpmodel, in which jobs
are submitted from the metaqueue to the schedulers, plaiefids based on the pull
model in which jobs are dynamically bound to the local quearedemand.
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Fig. 3: Proposed solutions (1)

In the previously discussed works, using the global pdicthe utilization of the
available computational resources have been increasetheRmore, the service re-
ceived by the users has also been improved. However, in aegg Homains these ap-
proaches may not scale. Therefore, implementing a cezgthBcheduling algorithms
in these architectures is not appropriate.

In the AppLess project [3][2] Berman et al. introduced thea&pt of application-
centric scheduling in which everything about the systemvauated in terms of its
impact on the application. Each application developer dales their application so
as to optimize their own performance criteria without rebrthe performance goals
of other applications which share the system. The goal isdmpte the performance
of an individual application rather than to optimize the v$esystem resources or to
optimize the performance of a stream of jobs. In this scerthe applications are de-
veloped using the AppLess framework and they are schedylébebApples agents.
These agents do not use the functionalities provide by theuree management sys-
tems. Therefore, they rely on systems such as Globus [2@]phd23], and others to
perform that function.



2.3 Task assignment policies

The scheduling policy presented in this paper uses tasgrassint policies to decide
where the jobs should be submitted. The subject of job oraasignment policy has
been studied in several works and several solutions havegreposed by the research
community. Some of the task assignment policies that haga beed in the literature
are:

— The Randompolicy. The jobs are uniformly distributed among all the itakzle
clusters.

— ThelLess-SubmittedJolmolicy. The jobi is assigned to the hostmod h(it gener-
ates a Round Robin submission).

— The Shorts-Queugolicy. The jobs are submitted to the host with the least sttbm
ted jobs.

— ThelLeast-WorkLefpolicy. The jobs are submitted to the host with the least pend
work. Where it is computed @W = 3 yjopsRequested Timg, x Processofop.

— The Central-Queugolicy. The jobs are queued in a global queue. The hosts pull
the jobs from the global queue when enough resources afalateai

— The SITA-Epolicy (proposed in [26]). The jobs are assigned to the hased on
their runtime length. Thushortjobs would be submitted tbhost 1, mediumjobs
to host 2and so on. This policy uses the runtime estimation of theljothis case
the duration cutoffs are chosen so as to equalize load.

— TheSITA-U-optpolicy (proposed in [31]). It purposely unbalances load agitine
hosts, and the task assignment is chosen so as to miniminecte slowdown.

— The SITA-U-fair policy (also proposed in [31]). Similar to trapt, they base the
assignment to unbalance the host load. However, the go#iifopolicy is to max-
imize fairness. In this SITA variant, the objective is notyoto minimize the mean
slowdown, but also to balance the slowdown for large jobsktushort jobs.

The evaluations presented in [31][26] concerning the parémce of all these task
assignment policies have shown that the SITA policies &ethetter results. Schroeacher
et al. stated that the Random policy performs acceptablyofwrioads, but for high
loads, however, the average slowdown explodes. Furthesrtiar SITA-E showed sub-
stantially better performance than Least-Work-Left anddem policies for high loads.
However, the Least-Work-Left showed lower slowdown than$tTA-E. SITA-U poli-
cies showed better results than the SITE-E. SITA-U-fairrionpd the average slow-
down by a factor of 10 and its variance by a factor of 10 to 108ccHol presented
similar work in [1], where the same situation is studied, beer the presented task pol-
icy does not know the job duration. Although both SITA-U and@/AE policies have
shown promising performance results, they cannot be usald&elf-Scheduling pol-
icy described in this paper due to the fact that they assumad&nowledge of the
global workload.

3 Paper contribution

To summarize, all the previous scenarios have two commorracteaistics:



— The scheduling policies are centralized. Thus, the usénnisuhe jobs to a global
scheduler.

— They assume that the local resources are homogeneous authadelled according
the same policy.

Our proposal will be deployed in scenarios with the follogvonditions:

— The users can submit the jobs directly to the computatiogsdurces. Also, they
should be able to submit the jobs using the described disipatalgorithm.

— The computational resources can be heterogeneous (wighedif number of pro-
cessors, computational power etc.). Also, they can be stbédy any run-to-
completion policy.

— The local schedulers have to provide functionalities faress to information con-
cerning their state (such as number of queued jobs).

In this paper we study the use of job-guided scheduling tigcies in scenarios with
distributed and heterogeneous resources. The main catirils of this work are:

— The scheduling policy is a job-guided policy. The users stitime job using the
ISIS-Dispatcher (see figure 4). Each job is scheduled bydap@ndent Dispatcher.

— Similar to AppLess, the ISIS-Dispatcher is focused on ojziimg the job metrics
with the scheduling decisions, for instance the job avesig®@down, the job re-
sponse time, the wait time or the cost of the used resoursggasl! to the job.

— The application has not to be modified for use the proposehitacture. The
scheduling is totally transparent to the user and the aqujibic.

— The scheduling is done according the information and fonetiities that the local
schedulers provide (sgab X of the figure 4). Thus, there is an interaction between
the two scheduling layers.

— We keep the local scheduling policies without important ifications. Centers do
not have to adapt their scheduling policies or schedulelSI®-Dispatcher. They
have to provide dynamic information about the system stdtirsexample: the
number of queued jobs, when a job would start if it were sutemito the center or
which is the remaining computational work in the center.

— In the simulation environment used in the evaluation, we ehexdl the different
levels of the scheduling architecture. Consequently, ntt were the dispatcher
scheduling policy modeled, but also the local schedulifgigs used in the exper-
iments are modeled using an independent reservation tabéath of them.

— We propose and evaluate the use of the Less-Waittime tagjnasant policy that
is based on the wait time predictions for the submitted jdthee evaluation for
this policy is compared with the task assignment policiescdbed above, which
can be applied in the job-guided scheduling ISIS-Dispatpbécy (SITA policies
cannot).
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4 The ISIS-Dispatcher

The main objective of this work is to provide a scheduling poment that will be used
by the user or any other component (e.g.: components thairescself-scheduling or
self-orchestration) to decide where to submit their joligufe 4 provides an example
of a possible deployment of the proposed architecture.itnekample, there are three
different users that have access to several computatiesalirces. Each computational
resource has its own scheduling policy, different configars and a particular state
(queued jobs, running jobs etc.). When the user wants to submiob to these re-
sources an instance of the 1SIS-Dispatcher is executedssudiated to the job. It will
decide which is the most appropriate center to submit thégob

As we have already mentioned, the dispatcher chooses thercesbased on a set
of metrics provided by each of their schedulers. In this pageevaluate two different
sets of metrics: run time metrics concerning the statusefélource (like the number
of queued jobs), and the estimated wait time metric. Thidipten information could
also be provided by an external prediction service.

In the rest of the section we describe the submission algorithe task assignment
policies that have been evaluated in this paper, and firlh#yprediction model that has
been used for evaluated thess-WaitTime

4.1 The submission algorithm

When the user wants to submit a Joto the system, he/she contacts the ISIS-Dispatcher

which manages the job submision and provides the staticigéea of the jobreq, =
{01,..,0n}. In this evaluation, the user provides the script/exedattille, the number of
requested processors and the requested runtime time. despatcher has accepted
the submission, it carries out the following steps:



1. For each computational resourge(with particular configuration, characteristics
and managed by a given center) in all the resoufcgs.., 0, } available to the user:
(a) The dispatcher checks that the static properties ofatch to the static descrip-

tion of the job{d1,..,0n}.For example, it would check that the computational
resource has equal or more processors than that requestiee jop.
(b) In affirmative cases, the dispatcher contacts the piadiervice and requests a
prediction for the job runtime in the given resourBd. Preq ({01, ..,0n},0i).
In the evaluation presented in this paper, the predicti@d wgas the user run
time estimation provided in the original workloads. Howewee are currently
evaluating the use of datamining techniques to predict tinetime in these
distributed architectures.
(c) Once the dispatcher receives the job runtime predidtiothe given job in the
given resource. For each metyidhat has to be optimized¥a, .., Yn}):
i. It contacts the scheduler that manages the resource gudsts the value
of the metric:ay, o, = LocalModulePer f(RT Pred, Reqs)
ii. Itadds the performance metric returned to the list ofnestmetricsy ;)

. for the job in the given resource.
2. Given all the list of retrieved metriceyetrics = {0y a,},-» Qyman} | » Where a

metric entry is composed of the metric value and the resouhege the metric was
requested. Using an optimization function, o; = SelectBestResourgeetrics),
the best resource is selected based on the metrics that bemecbllected.

3. The dispatcher will submit the job to the center that ovinesresource.

The functionSelectBestMetricised in the evaluation of this paper is a simplified
version of the once presented above. In each of the evatuetiperiments, in step
(c) of the previous algorithm, only one metric per compuatadil resource was used.

({agy,005 - Ay })-

4.2 Task Assignment Policies
For this paper we evaluated four different task assignmelitips

— The Less-JobWaittime policy minimizes the wait time for jbie. Given a static de-
scription of a job, the local resource will provide the egtted wait time for the job
based on the current resource state. We implemented a fiwadicechanism for
different sets of scheduling policies (EASY-BackfillingKWF-Backfilling, SJF-
Backfilled First and FCFS) that use a reservation table ihailates the possible
scheduling outcome taking into account all the running amelugd jobs at each
point of time (see below).

— The Less-JobsInQueue policy submits the job to the conipuatdtresource with
the least number of queued jobs. (The presented Shortestieunithe background).

— The Less-WorkLeft policy submits the job to the computatiaesource with the
least amount of pending work.

— The Less-SubmittedJobs policy submits the jobs to the cevitie the least number
of submitted jobs.

1 In architecture with thousands of resources, it is not feasible to caalt#ioe resources. Future
versions will include heuristics to decide which hosts the dispatcher hasmtecbto, and
which not.



4.3 Job wait time prediction

The Less-JobWaittime task assignment policy submits theégahe center that returns
the lowest predicted wait time. The approach taken in theduation was that each
center has to provide such predictions. However, otheritaathres can also be used,
for instance having several prediction/model servicesh&h case no interactions with
the local centers would be required.

How to predict the amount of time that a given job will wait inetqueue of a
system has been explored by other researchers in seveid {#61[35][36][29]. What
we propose in this paper is the use of reservation tablesr&dsgvation is used by the
local scheduling policies to schedule the jobs and deciderevand when the jobs will
start.

In this paper the prediction mechanism uses the reservtdlda to estimate the
possible scheduling outcome. It contains two differenegy/pf allocations: allocations
for those jobs that are running; and pre-allocations forgheued jobs. The status of
the reservation table in a given point of time is only one bfte¢ possible scheduling
outcomes and the current scheduling may change dependitige alynamicity of the
scheduling policy. Also, the accuracy of the job runtiméneation or prediction has an
impact on the dynamicity of the scheduling outcomes, maihig to the job runtime
overestimations.

The prediction of the wait time of a jof at time Ty, that requirestiime anddcpus
in a given resource, will be computed with: the earliestctaon that the job would
receive in the resource given the current outcome if it wémsrstted at timeT;. Ob-
viously, this allocation will depend on the scheduling pplused in the center, and
probably will vary in different time stamps. All the scheihg events are reflected on
the status of the reservation table. The prediction tectenforesented in this work is
mainly designed for FCFS and backfilling policies. The infation that is used for
allocating the job in the reservation table is: the numbeegtiired processors and its
estimated runtime.

Figures 5 provide two examples of how a prediction for a ndawjould be com-
puted in the two scheduling policies used in this paper. lih lBxamples the current
time isty, there is one job running@¢b 1), and three more queuedop 2 Job 3andJob
4). If a prediction for the wait time for the jolob 5was required by a given instance
of the ISIS-Dispatcher, the center would rettyr-t; in the case of FCFS (Figure 5a)
and would return 0 in the case of Backfilling (Figure 5b).

5 Simulation characteritzation

In this section we describe the simulation environment ted used to evaluate the
presented policy and architecture: first we describe the &+hnt-driven simulator that
was used to simulate local and distributed High Perform&waputing Architectures;
and second, we characterize all the experiments that wergrdsl to evaluate the cur-
rent proposal.
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5.1 The Alvio Simulator

All the experiments were conducted using the C++ eventedri&lvio simulator [24].
The simulator models the different components that intérelocal and distributed ar-
chitectures. Conceptually, it is divided into three maintgethe simulator engine, the
scheduling polices model (including the resource selrgtiicies), and the computa-
tional resource model. A simulation allows us to simulatévamgypolicy with a given ar-
chitecture. Currently, three different policies have bemueled: the First-Come-First-
Served, the Backfilling policies can be used, and finally)#i8-Dispatcher scheduling
policy. For the backfilling policies the different propesiof the wait queue and back-
filling queue are modeled (SJF, LXWF and FCFS) and differentlmers of reservations
can also be specified.

The architecture model allows us to specify different kiddarchitectures. Cur-
rently, cluster architectures can be modeled, where theifaomposed of a set of
computational nodes, where each node has a set of consuneablerces (currently
Memory Bandwidth, Ethernet Bandwidth and Network band)idAlthough the use
of these consumable resources can be simulated in a higHdstéon, for the experi-
ments presented in this paper it has not been used.

The local scheduling policies (all excluding the ISIS-Gisgher) use a set of job
queues and a reservation to schedule the jobs. The resertalkile that is linked to a
given architecture has the running jobs allocated to tHerifit processors during the
time. One allocation is composed of a set of buckets thatatdithat a given jolx is
using the processofsfrom dstariTimeUntil dengtime Depending on the policy configu-
ration, the scheduling policy will temporarily allocateetqueued jobs (for instance, to
estimate the wait time for the jobs). The distributed scliaduSIS-Dispatcher policy
does not have a reservation table because it does not alldwjobs to the proces-



sors. Furthermore, the local scheduling policies mustigeoa functionality that allows
querying metrics concerning the current state of the loggtesn. This functionality will
be used by the dispatcher to decide where to submit the jobs.

5.2 Experiments

In this section we present the workloads used in the sinmuatand the scenarios that
were designed to evaluate the proposal.

5.3 Workloads

The design and evaluation of our experiments were conttastd based on the analyt-
ical studies available for each of the workloads that we usedir simulations:

— The San Diego Supercomputer Center (SDSC) Blue Horizon1d4-0ode IBM
SP, with 8 processors per node)

— The San Diego Supercomputer Center (SDSC-SP2) SP2 logid@81BM SP2)

— The Cornell Theory Center (CTC) SP2 log [16] (512-node IBM2EP

For the simulation we used traces generated with the fuditredirst four months
of each trace (FUSION). The following section describessihaulation: first we sim-
ulated the four months for each trace independently; seassidg the unique fusion
trace, different configurations of a distributed scenadmposed by the three centers
were simulated. We chose these workloads because theyircgoita with different
levels of parallelism and with run times that vary substdiytiMore information about
their properties and characteristics can be found in thé&lead archive of Dror Feitel-
son [12].

5.4 Simulation Scenarios

In all the scenarios presented below, all the metrics pteden section 4 were evalu-
ated. In the second and third scenarios we also evaluatedhappens when the charac-
teristics of the underlying systems have different configjons, in terms of scheduling
policies and computational resource configurations.

The characteristics of each of the evaluated scenarios are:

1. In the first scenario (ALL-SJF), all the centers used tmespolicy: Shortest Job
Backfilled First. The number of processors and computati@smurces were con-
figured in exactly the same way as the original.

2. In the second scenario (CTC/4), the SFJ-Backfilled first alao used for all the
centers. However, in this case we emulated what would hajjplea CTC center
performed four times slower than the two others. In this cabéhe jobs that ran to
this center spent four times longer than the runtime spédifiehe runtime of the
original workload?. The main goal is to evaluate the impact of having resources
with different computational power.

2 This is only a first approximation. Future studies may use more detaileélmod



3. In the last scenario (CTC-FCFS), the SDSC and SDSC-Bk® uded the SJF-
Backfilled First policy. However, the CTC center used the BGEheduling policy.
As in the first scenario, the computational resource cordiium was exactly the
same as the original.

The first scenario evaluates situations where all the hastitable have the same
scheduling policy. Thus, each computational host is mahégethe same scheduling
policy and each computational unit (the processors) ohalhtosts has the same power.
We defined the two other scenarios to evaluate how the pextenheduling policy be-
haves with heterogeneous computational resources andliffghent scheduling poli-
cies. In the second scenario we evaluated the impact of héreterogeneous resources.
In this situation the CTC processors perform four times slothan the processors of
the other two centers. In the last scenario we evaluatechipadt of having different
scheduling policies in the local hosts.

Center Estimator BSLD| SLD |WaitTime
Mean 8,66 | 129 | 2471
SDSC STDev 47,7 | 86,07 8412
954 Percentile 17,1 | 18,92| 18101
Mean 6,8 | 7,6 1331
SDSC-BlugSTDev 29 36 5207,2
954 Percentile 28,5 | 29 8777
Mean 2,8 | 3,03| 1182
CTC STDev 23 | 27,1| 4307,3
954 Percentile 2,3 | 2,5 6223
Mean 19,8 (20,467 9664
CTC/4 STDev 57,23|58,203 20216
95 Percentile 114,3| 116,3| 54450
Mean 12,833 14,04/ 3183,3
CTC FCFSSTDev 66,54| 77,03 9585
954 Percentilg32,403 32,65| 32996,4

Table 1: Performance Variables for each workload

6 Evaluation

6.1 The Original Workloads

Table 1 presents the performance metrics for the simulatfdhe workloads used in
this paper (CTC, SDSC and SDSC-Blue) with SJF Backfillinganhecenter. We also
include the simulations for the CTC with the other two diffiet configurations that
were used in the experiments of the distributed scenatiesfitst includes the CTC,
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and the second also includes the CTC simulation, but usiad-@FS policy. As can

be observed, the workload that has the best slowdown andimaitis the CTC. The
SDSC and SDSC-Blue have a similar average bounded slowdmwever, the 95
percentile of the SDSC-Blue is one order of magnitude greéasm the SDSC. In terms

of wait time, jobs remain longer in the wait queue in the wodd of the SDSC than
the other two. In terms of Q5percentile the jobs spend three times longer in the SDSC
than in the CTC.

The performance obtained when reducing the computatianaépand the policy
of the CTC center (Table 1) is not surprising. Using FCSC ducing by four the
computational power of the CTC significantly increases fbevdown and wait time
for the CTC workload. The capacity of the resource of exeth#esame workload was
reduced four times. Thus, the original scenario cannot edgffethe same job stream.
The main concern was to evaluate later this configuratioherdistributed scenario.

Center Estimator Ratio BSLD|Ratio SLD|Ratio WaitTime
Mean 5,44 7,5 10,98
SDSC STDev 51 9,27 4,36
954 Percentile 14,1 14,92 53,2
Mean 4,2 4.4 5,9
SDSC-BlueSTDev 3,1 3,6 2,7
954 Percentile 23,5 22 25,8
Mean 1,8 1,7 5,2
CTC STDev 25 291 2,3
95 Percentile 1,6 1,6 18

Table 2: Ratio: Original Job Perf. / ISIS Less-WaitTime J&lofP

6.2 The first scenario: all centers with SJF-Backfilled First

Figure 6 presents the average ang, @rcentile for the average slowdown in the three
presented scenarios and the different task assignmewigzo$itudied. In thecenario

1 (all centers with SJF), the Less-JobQueuedJobs and LegFiva policies showed
the best performance. However, the first one obtains a slewdi,7) twice as small
as the second one (3,9). The other two policies performestantially worst. The av-
erage slowdown and the §5ercentile are three or even ten times greater than in the
others. For instance the average slowdown of the Less™#i around two while the
same slowdown for the Less-WorkLeft in the same scenarimisral ten. The average
wait time in this scenario (see Figure 7) presented simigdrabior to the slowdown.
However, the percentile shows that in the case of the LebsaBiedJobs and Less-
WorkLeft the wait time of the jobs has a high variance. Thig faalso corroborated by
the standard deviation that the wait time experiments ih poticies (see Figure 11).



The Less-WorkLeft policy takes into account the amount afdieg work and the
Less-JobsInQueue not. Therefore, we expected that th@diisy one would perform
much better than the second one. However, the presentdtsreisowed the contrary.
Analyzing both simulations we have stated that in some titns the Less-WorkLeft
policy unbalances excessively the number of submitted. jdbsshown in table 3 it
submits around 800 jobs more to the SDSC center than the JadsdnQueue. The
figures 8 and 9 show that the amount of queued jobs in the SDSM&antially bigger
in the Less-WorkLeft policy in this specific interval of thieilation. This unbalance is
caused by the characteristics of the stream of jobs that@raitted during this interval
to the system. The initial part of this stream is composeddweal jobs that requires
from 256 processors until 800 processors and that have targiene. Because of the
capacity of the SDSC center (128 processors), these jobserdgrbe allocated to the
CTC center (412 processors) and the SDSC-Blue (1152 prarss$his causes that an
important amount of smaller jobs (with less than 128 prazesgshave to be submitted
to the SDSC center for accumulate the same amount of pendirigthat are assigned
to the other two centers. Thus, as we state in [25], this strefjobs composed by
jobs that requires all the processors of the host and jolisehaires small number of
processors causes an important fragmentation in the slihgad the SDSC. These
situations occurs several times in the simulation and themyrehse substantially the
performance achieved by the Less-WorkLeft policy.

What the results suggest is that the Less-SubmittedJobsyfads the worst per-
formance of all the assignment policies, since the choicgtwre the job is submitted
does not depend on the static properties of the job (estihratgime and processors).
Regarding the other two policies, the Less-JobsinQueueyppérforms substantially
better than the Less-WorkLeft.

Table 2 provides the ratio for the job performance variabidhe original scenario
(where jobs where submitted to the independent centerisighe performance for
the jobs in the ALL-SJF scenario using the Less-WaitTimécgolThe results show
that the jobs of all the centers obtained substantiallyebsttrvice in the new scenario.
For instance, the average bounded slowdown in SDSC is Srkktgreater than the
average bounded slowdown for the jobs in dinal workloads On the other hand,
the resource usage achieved by the Less-WaitTime policyoéas improved. As the
table 4 shows, the average of used processors per hour iartkers has been improved.
Although the SDSC-Blue has experimented a soft drop in @isgssors usage, the CTC
has experimented a notoriously increment in its processgage. Also, as can be been
seen in the number of running jobs per hour the packing ofliassbeen improved.

6.3 Second and third scenarios: CTC/4 and CTC with FCFSC

The other two scenarios analyzed in the paper show that tBeD&pacher scheduling
policy is able to react in heterogeneous environments wihereomputational capabil-
ities of the different centers can vary (in theenario 2with a resource with less compu-
tational power and in thecenario 3with a resource with different scheduling policy).
Compared to thecenario lthe performance shown in both scenarios experienced only
a small drop. Thus, the system was able to schedule the jabs different resources
adapting to the different capabilities of each of the abddaenters. This fact can be
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Resource |Less-JobsInQuelieess-WorkLe
CTC 10788 10912
SDSC 1953 2560
SDSC-Blug 9550 8819

Table 3: Number of submitted jobs per host

Center Variable Original Workload |Less-WaitTime Scenarig
Running Jobs 51 6,02
SDSC Number of used CPUs 52,3 58,3
|Running Jobs 4,5 4
SDSC-Blugyumber of used CPUs ~ 492,8 435,2
cTC Running Jobs 148,5 282,7
Number of used CPUs 18,2 23,4

Table 4: Average of processors used and running jobs per hour
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Fig. 9: Number of queued jobs in the SDSC

observed in figure 12 where the normalized amount of worktlate by each center is
described foscenarios 1 and .2Clearly, in the situation where the CTC center used a
scheduling policy with lower performance, the amount of oad was automatically
balanced from this center to the SDSC-Blue and to the SDSteicésimilar properties
were found in thescenario 3. Regarding the performance achieved by each of the task
assignment policies used in the experiments, the reswdis similar behaviors to those
we observed in the first scenario.

Clearly, independently of the configuration used, usinglLtegs-WaitTime assign-
ment policy in the ISIS-Dispatcher scheduling policy ob&al the best performance
results in all the scenarios that were evaluated. It has dstraged that it is better able
to adapt to the difference configuration of the local centarsl to provide a similar
service to all the jobs.

7 Conclusions and future Work

In this paper we have presented the use of a job-guided slihgdechnique designed
to be deployed in distributed architectures composed afef semputational resources
with different architecture configurations and differeaheduling policies. Similar to
the AppLeS project, the main goal of the technique presehésd is to provide the
user with a scheduling entity that will decide the most appaie computational re-
source to submit his/her jobs to. We support the interadi&tveen the job dispatcher
and the local schedulers. Thus, the presented work proplosesage of two level of
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scheduling layers: at the top, the job is scheduled by theattiber (the schedule is
based on the information provided by the local scheduledstheir capabilities); and
once the resource is selected and the job submitted, theegjodintie scheduled by the
local resource scheduler.

The scheduling policy presented here uses a set of tasknassig policies to de-
cide where the jobs are finally submitted. This paper hasalatuated how the most
representative task assignment scheduling policies pres@ the literature performin
the policy presented here (including the Less-WorkLefgd-kess-SubmittedJobs and
Less-JobsInQueue policies). Furthermore, a task seteptiticy using the wait time
prediction and focused on reducing the wait time for jobskeen proposed.

We have evaluated the proposal in three different scenasosy the workloads
CTC, SDSC and SDSC-Blue from the Workload Log Archive. Thst ficenario was
composed of a set of centers with the same scheduling polane different com-
putational resources (different numbers of processang);second was composed of
a set of centers with different scheduling policies (twohan#&JF-Backfilled First and
one with FCFS) and different computational resources ; amallyi the last one was
composed of centers with the same policies and differenpctational resources with
different computational power (one of the centers perfatfioar times slower than the
other two). Although the scheduling proposal presentetismgaper is non-centralized
and the dispatcher does not store any information regattmgrogress of the global
scheduling, it has been shown that using the appropriakeassignment policy (in
this analysis the Less-Waittime policy showed the most jsng results) it is able to
achieve good global performance, adapting to the undeylygmter resource character-
istics and to the local scheduling policies. Furthermocg,amly the job wait time has
been improved, the resource usage and the job packing hameats® improved.

In future work we plan to use prediction techniques to edeneb runtime rather
than user estimates. We are currently working on prototygese the run time of jobs
is estimated using C45 algorithms and discretization tieghes (and other datamining
techniques). In such scenarios, users will only have toidesthe number of requested
processors and the static description of the job. We wilehtavevaluate the impact of
prediction and user runtime estimation errors on such gactires.



We will extend the current submission algorithm includinyey negotiation mech-
anisms between the local centers and the dispatcher, fianite using Service Level
Agreement negotiations or advanced reservations. Funtirer, the ISIS-Dispatcher
will be alive during the complete job cycle of life monitogthe job evolution. It will be
able to decide to migrate the job to other resources or ty carrother scheduling de-
cisions to achieve better performance. In the current errdie dispatching algorithm
contacts to all the schedulers that matches the job reqeireno gathering the schedul-
ing information. Future version of this algorithm will ine user and job heuristics for
reduce the amount of schedulers to be queried. Thus, the erupfiltommunications
will be reduced.
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