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Abstract. In this paper we propose a new method to improve the performance 
of hierarchical classification. We use a swarm intelligence algorithm to select 
the type of classification algorithm to be used at each “classifier node” in a 
classifier tree. These classifier nodes are used in a top-down divide and conquer 
fashion to classify the examples from hierarchical data sets. In this paper we 
propose a swarm intelligence based approach which attempts to mitigate a ma-
jor drawback with a recently proposed local search-based, greedy algorithm. 
Our swarm intelligence based approach is able to take into account classifier in-
teractions whereas the greedy algorithm is not. We evaluate our proposed 
method against the greedy method in four challenging bioinformatics data sets 
and find that, overall, there is a significant increase in performance. 
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1   Introduction 

Hierarchical classification is a challenging area of data mining. In hierarchical classi-
fication the classes are arranged in a hierarchical structure, typically a tree or a DAG 
(Directed Acyclic Graph). In this paper we consider classes arranged in a tree struc-
ture where each node (class) has only one parent – with the exception of the root of 
the tree, which does not have any parent and does not correspond to any class. Hierar-
chical class datasets present two main new challenges when compared to flat class 
datasets. Firstly, many (depending on the class depth) more classes must be assigned 
to the examples. Secondly, the prediction of a class becomes increasingly difficult as 
deeper class levels are considered, due to the smaller number of examples per class. 

In this paper we address the problem of hierarchical protein function prediction, a 
very active research topic in bioinformatics. The prediction of protein function is one 
of the most important challenges faced by biologists in the current “post-genome” era. 
The challenge lies in the fact that the number of proteins discovered each year is 
growing at a near exponential rate [1] (with the vast majority of them having un-
known function) and advances in the understanding of protein function are critical for 
more effective diagnosis and treatment of disease, also helping in the design of more 
effective medical drugs etc. 
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In this paper we propose a new method to increase the accuracy of classification 
when using the top-down divide and conquer (TDDC) approach for hierarchical 
 classification (as described in section 2). The new method is based on a swarm intel-
ligence algorithm, more precisely a hybrid particle swarm optimisation/ant colony 
optimisation (PSO/ACO) algorithm. 

The remainder of this paper is organised as follows: Section 2 introduces hierarchi-
cal classification. Section 3 describes an approach proposed by Secker at al. [3] for 
improving hierarchical classification accuracy and critiques it. Section 4 describes the 
proposed novel method for hierarchical classification using a swarm intelligence 
(PSO/ACO) algorithm. Section 5 describes experimental set-up. Section 6 describes 
the experimental data from four challenging “real-world” biological data sets and sec-
tion 7 draws conclusions based on the results of the experiments and suggests future 
research directions. 

2   A Brief Review of Hierarchical Classification 

This paper focuses on hierarchical classification problems where the classes to be pre-
dicted are organized in the form of a tree, hereafter referred to as a class tree populated 
by class nodes. An example of a hierarchical classification problem might be the predic-
tion of what species and then breed a pet is. In the first case we wish to known whether 
the given animal is of the class node (species) dog or cat, and in the second case if the 
animal is of the class node (breed) Burmese, British Blue, Jack Russell or Golden Re-
triever. In this paper the species would be considered the first class level and the breed 
the second class level. The TDDC approach is based on the principle that only sibling 
class nodes need be considered at any point in the hierarchical tree. So at the first set of 
sibling class nodes (cat or dog) if we decide cat, then at the second set of class nodes we 
must only decide between the sibling class nodes Burmese or British Blue. Notice that 
this has a major drawback, which is that if the pet is in fact a dog we are guaranteed to 
guess the breed wrong if we predict cat at the first class level. 

 

Fig. 1. A Hierarchical classification problem using the TDDC approach 

This top-down approach has the important advantage of using information associ-
ated with higher-level classes in order to guide the prediction of lower-level classes. 
This has shown to increase accuracy over other basic approaches [4]. For instance, 
(from Figure 1), if class 1.X (where X denotes any digit) is predicted at the first level 
and that class node only has the child nodes 1.1 and 1.2, only these two class nodes 
should be considered and not the children belonging to node 2.X, 2.1 and 2.2. In 
Figure 1 the classifier nodes are shown by the grey boxes. There would be classifiers 
to distinguish between classes 1.X and 2.X, 1.1 and 1.2 etc. It is important to distin-
guish between two conceptually distinct – though clearly related – trees, namely a 
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class tree and a classification tree. In the class tree every node represents a class (to be 
predicted by a classifier). By contrast, in the TDDC tree each node represents a classi-
fier that discriminates between sibling classes. The nodes of a classifier tree are here-
after referred to as classifier nodes. The terms classifier tree and TDDC tree are used 
interchangeably in this paper. 

3   The Greedy Selective Top Down Divide and Conquer Approach 

In the conventional top-down approach for hierarchical classification, in general, the 
same classification algorithm is used for each classifier node. Intuitively, this is a 
suboptimal approach because each classifier node is associated with a different classi-
fication problem – more precisely, a different training set, associated with a different 
set of classes to be predicted. This suggests that the predictive accuracy of the classi-
fier tree can be improved by selecting, at each classifier node, the classification algo-
rithm with best performance in the classification problem associated with each node, 
out of a predefined list of candidate classification algorithms. Indeed it was found in 
[3] by Secker et al. that by varying the classification algorithm at each classifier node 
in the Top-Down Divide and Conquer (TDDC) tree, classification accuracy could, in 
general, be somewhat improved.  

In Secker’s work the training set at each classifier node is divided into two non 
overlapping sub sets, a building set – used to train the classification algorithms – and 
a separate validation set – which is used to assess the predictive accuracy of the mod-
els constructed by the classification algorithms. At every classifier node in the TDDC 
tree, multiple classifiers are built using the building set, each using a different classi-
fication algorithm. The classification accuracy of each of these classifiers is measured 
using the validation set at each classifier node, and then the best classifier (according 
to classification accuracy in the validation set) is chosen. This process is repeated at 
each classifier node to select a set of classifiers to populate the TDDC classification 
tree, which is then used to classify the test instances (unseen during training). A sim-
ple example of a classification tree constructed by this method, showing a different 
classifier chosen at each node, is shown in Figure 2. 

 

Fig. 2. A TDDC tree using classification algorithm selection 

In this way Secker’s work uses a greedy selective approach to try and maximise 
classification accuracy. It is described as greedy because, when it selects a classifier at 
each classifier node, it maximises accuracy only in the current classifier node, using 
local data. Therefore, the greedy selective approach ignores the effect of this local 
selection of a classifier on the entire classifier tree. In other words, this procedure is 
“short sighted”, and so it does not consider the interaction between classifiers at dif-
ferent classifier nodes.  
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Fig. 3. Classifier interaction scenario where 
|B∩C| > |A∩C| 

Fig. 4. Classifier interaction scenario where 
|B∩C| < |A∩C| 

Figures 3 and 4 show two possible scenarios demonstrating interactions between 
classifiers at different classifier nodes during classifier evaluation. A and B are the 
two possible parent classifiers trying to discriminate between classes 1 and 2. C is the 
child classifier that attempts to discriminate between classes 1.1 and 1.2 – as shown in 
Figure 5. Figures 3 and 4 show the sets of correctly classified examples for each clas-
sifier in the TDDC tree. Notice that BAC ∪⊆  for the three classifiers A, B and C. 
This is due to the fact that in the standard TDDC tree once a misclassification has 
been made, by classifiers A or B at the first classifier node, it cannot be rectified by C 
at the child classifier node. 

 

Fig. 5. A class tree used to illustrate the discussion on classifier interaction 

 

As mentioned earlier, the greedy approach chooses the best classifier at each node 
according to the classification accuracy, in the validation set, at that node. In the sce-
narios shown in both Figures 3 and 4 classifier A would be chosen to discriminate 
between classes 1 and 2, as it is more accurate when compared to classifier B, i.e. its 
circle has a bigger area, denoting a greater number of correctly classified examples. 
Let us now discuss how appropriate the choice of classifier A (made by the greedy 
approach) is in each of the different scenarios shown in Figures 3 and 4, taking into 
account the interactions between classifiers A and C, and between B and C, in the 
context of the class tree shown in Figure 5. 

Recall that in the TDDC approach an example is correctly assigned to class 1.1 or 
1.2 if and only if the two following events occur: the example is correctly classified 
by the root classifier (A or B); and the example is correctly classified by classifier C. 
Therefore, the individual accuracy of each classifier is not necessarily the most impor-
tant factor when selecting a candidate classifier; rather it is the number of examples 
correctly classified by both the parent and child classifiers (the intersection between 
their sets of correctly classified examples). In the case of Figure 5, in order to maxi-
mise the classification accuracy at the leaf class nodes 1.1 and 1.2, if |A∩C| > |B∩C| 
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then classifier A should be chosen; if it is not, B should be chosen. For this reason, the 
greedy approach produces a good selection in the case of Figure 4, where |A∩C| > 
|B∩C|. However, the greedy approach would not produce an optimal selection in the 
case of Figure 3. This is due to the fact that although A has a greater area (higher ac-
curacy) in Figure 3, |B∩C| > |A∩C|. 

4   Global Search-Based Classifier Selection with a Particle Swarm 
Optimisation/Ant Colony Optimisation Algorithm 

Given the discussion in the previous section it is quite clear that there is a potential to 
improve the classification accuracy of the entire classifier tree by using a more “intel-
ligent” classifier selector – a classifier selector that (unlike the greedy one) takes into 
account interaction among classifiers at different classifier nodes. As there is an obvi-
ous objective function to be optimised – the classification accuracy of the entire 
TDDC tree on the validation set – and also a collection of elements whose optimal 
combination has to be found – the type of classifier at each classifier node, it seems 
appropriate to use a combinatorial optimisation algorithm.  

We propose to optimise the selection of a classifier at each classifier node with a 
PSO/ACO algorithm, adapted from the PSO/ACO algorithm described in [4] [5]. The 
choice of this algorithm was motivated by the following factors. Firstly PSO/ACO has 
been shown to be an effective classification-rule discovery algorithm [4] [5] across a 
wide variety of data sets involving mainly nominal attributes. Secondly, the 
PSO/ACO algorithm can be naturally adapted to be used as a classifier selector, 
where instead of finding a good combination of attribute-values for a rule, it finds 
good combinations of classifiers for all the nodes of the classifier tree. This is because 
a combination of classifiers is specified by a set of nominal values (types of classifi-
cation algorithms). Due to size restrictions this section assumes the reader is familiar 
with standard PSO [6] and ACO algorithms [7]. 

A hybrid (PSO/ACO) method was developed to discover classification rules from 
categorical (nominal) data [4] [5]. In essence, this algorithm works with a population of 
particles. Each containing multiple pheromone vectors – each pheromone vector is used 
to probabilistically decide which value of a nominal attribute is best in each dimension 
of the problem’s search space. In the original PSO/ACO for discovering classification 
rules these dimensions correspond to predictor attributes of the data being mined, so 
there is one pheromone vector for each nominal attribute. The entries in each individual 
pheromone vector correspond to possible values the attribute can take, and each phero-
mone value denotes the “desirability” of including the corresponding attribute value in a 
rule condition. We now describe in detail how this algorithm was adapted to act as a 
classifier selector, rather than discovering classification rules. 

To optimise the classifier selection at each classifier node the problem must be re-
duced to a set of dimensions and possible values in each dimension. Hence, in the 
proposed PSO/ACO for classifier selection each decoded particle (candidate solution) 
consists of a vector with n components (dimensions), as follows: 

Decoded Particle = w1,w2,…,wn 

Where wd (d=1,..,n) is the classifier selected at the dth classifier node in the TDDC 
tree and n is the number of classifier nodes in the tree. Each wd can take one of the 
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nominal (classifier ids) values c1,..ck where k is the number of different candidate 
classifiers at each node. 

It must also be possible to assess how good an individual solution created from an 
individual particle is. To do this the validation set is classified by the TDDC tree 
composed of the classifiers specified by the particle, and that tree's average classifica-
tion accuracy (the mean of the accuracy from each class level) on the validation set is 
taken. The mean classification accuracy across all the class levels is used as the “fit-
ness” (evaluation) function for evaluating each particle’s quality. 

Note that the only increase in computational time for this approach (over the 
greedy selective approach) is in the time spent classifying examples at each fitness 
evaluation. The classifiers are trained using the same data at each fitness evaluation 
and so can be cached and reused without the need for retraining. 

Initialize population 
REPEAT for MaxInterations 

FOR every particle P 
/* Classifier Selection */ 
FOR every dimension w

d
 in P 

Use fitness proportional selection on pheromone vector 
corresponding to w

d
 to choose which state (classifier 

id) c
1
,..c

k 
should be chosen for this w

d 

END FOR 
Construct a classifier tree by using the classifiers se-
lected from the particle's pheromone vectors 
Calculate fitness F of this set of classifiers w

1
,..w

n 

/* Set the past best position */ 
IF F > P’s best past combination’s (P

b
) fitness F

b 

F
b
= F 

P
b
 = the current combination of classifiers w

1
,..w

n 

END IF 
END FOR 
FOR every particle P 

Find P’s best Neighbour Particle N according to each 
neighbour’s best fitness (F

b
)
 

FOR every dimension w
d
 in P 

/* Pheromone updating procedure */ 
f = N's best fitness F

b 

y = N's best state P
b 
in dimension d 

/* Add an amount of pheromone proportional to f to the 
pheromone entry for particle P corresponding to y (the 
best position held by P's best Neighbour) */ 
τpdy= τpdy + (f  × á) 
Normalize τpd 

END FOR 
END FOR 

END REPEAT 

Pseudocode 1. The Hybrid PSO/ACO Algorithm for Classifier Selection 

Pseudocode 1 shows the hybrid PSO/ACO algorithm for classifier selection. At 
each iteration each pheromone vector for each particle produces a state in a probabil-
istic manner. That is, the probability of choosing a given classifier (c1,..ck) for a given 
classifier node (w1,..wn) is proportional to the amount of pheromone (a number be-
tween 0 and 1) in the corresponding entry in the corresponding pheromone vector 
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(τpd is the pheromone vector corresponding to particle P and classifier node d), see 
Figure 6. More precisely, the selection of a classifier at each classifier node is imple-
mented by a fitness proportional (roulette-wheel) selection mechanism [8]. 

 

Fig. 6. An encoded particle with n dimensions, each with k classifier ids 

Figure 6 shows an encoded particle P. Each section labelled c1,c2,..ck (in each di-
mension w1,w2,..,wn) represents an amount of pheromone. The probability of choosing 
each classifier ci (i=1,..,k) in each dimension wd (d=1,..,n) is proportional to the 
amount of pheromone (τ) in the corresponding pheromone entry τpdi. 

The “decoded” state is then evaluated, and if it is better than the previous personal 
best state (Pb), it is set as the personal best state for the particle. A particle finds its 
best neighbour (N) according to the fitness of each neighbour's best state (Pb). In this 
paper the particles are arranged in a Von-Neumann topology [6], so that each particle 
has four neighbours. 

A slightly different pheromone updating approach is taken with the PSO/ACO al-
gorithm for classifier selection when compared to the PSO/ACO algorithm for rule 
discovery. As detailed in the pheromone updating procedure in Pseudocode 1, the 
approach simply consists of adding an amount of pheromone proportional to f to the 
pheromone entry corresponding to τpdy. Where f is the fitness of the best neighbour's 
best state, y is the best neighbour’s best state (c1,..ck) in the particular dimension d 
(w1,..wn) and P is the current particle. Although not used in this paper the amount of 
pheromone added can be modified to slow down (or speed up) convergence, this is 
achieved using the constant á. The closer this constant is set to 0 the slower the con-
vergence achieved. The pheromone vectors are normalised after pheromone has been 
added, so that the pheromone entries of each pheromone vector add up to 1. 

5   Experimental Setup 

5.1   Bioinformatics Data Sets 

The hierarchical classification methods discussed above were evaluated in four chal-
lenging datasets involving the prediction of protein function. The protein functional 
classes to be predicted in these data sets are the functional classes of GPCRs 
(G-Protein-Coupled Receptors). GPCRs  [9] are proteins involved in signalling. They 
span cell walls so that they influence the chemistry inside the cell by sensing the 
chemistry outside the cell. More specifically, when a ligand (a substance that binds to 
a protein) is received by the part of the GPCR on the outside of the cell, it (usually) 
causes an attached G-protein to activate and detach. GPCRs are very important for 
medical applications because 40%-50% of current drugs target GPCR activity [9]. 
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Predicting GPCR function is particularly difficult because the types of function GPCRs 
facilitate are extremely varied, from detecting light to managing brain chemistry. 

The GPCR functional classes are given unique hierarchical indexes by [10]. The 
GPCRs, examples (proteins) have up to 5 class levels, but only 4 levels are used in the 
datasets created in this work, as the data in the 5th level is too sparse for training – 
i.e., in general there are too few examples of each class at the 5th level. In any case, it 
should be noted that predicting all the first four levels of GPCR’s classes is already a 
challenging task. Indeed, most works on the classification of GPCRs limit the predic-
tions to just one or two of the topmost class [11], [12], [13], [14]. 

The data sets used in our experiments were constructed from data in UniProt [15] 
and GPCRDB [10]. UniProt is a well known biological database, containing sequence 
data and a rich annotation about a large number of proteins. It also has cross-
references for other major biological databases. It was extensively used in this work 
as a source of data for creating our data sets. Only the UniProtKB/Swiss-Prot was 
used as a data source, as it contains a higher quality, manually annotated set of pro-
teins. Unlike Uniprot, GPCRDB is a database specialised on GPCR proteins. 

We performed experiments with four different kinds of predictor attributes, each of 
them representing a kind of “protein signature”, or “motif”, namely: FingerPrints 
from the Prints [17] database, Prosite patterns [16], Pfam [18] and Interpro entries 
[19]. The four GPCR data sets each use predictor attributes from one of either the 
Prints, Prosite, Interpro or Pfam databases. They also contain two additional attrib-
utes, namely the protein's molecular weight and sequence length. 

Any duplicate examples (proteins) in a data set are removed in a pre-processing 
step, i.e., before the hierarchical classification algorithm is run, to avoid redundancy. 
If there are fewer than 10 examples in any given class in the class tree that class is 
merged with its parent class. If the parent class is the root node, the entire small class 
is removed from the data set. This process ensures there is enough training and test 
data per class to carry out the experiments. (If a class had less than 10 examples, dur-
ing the 10-fold cross-validation procedure there would be at least one iteration where 
there would be no example of that class in the test set). 

After data pre-processing, the final datasets used in the experiments have the num-
bers of attributes, examples (proteins) and classes per level (expressed as level 1/ 
level 2/level 3/level 4) indicated in Table 1.  

Table 1. Main characteristics of the datasets used in the experiments 

 GPCR/Prints GPCR/Prosite GPCR/Interpro GPCR/Pfam 

#Attributes 283 129 450 77 

#Examples 5422 6261 7461 7077 

#Classes 8/46/76/49 9/50/79/49 12/54/82/50 12/52/79/49 

5.2   Data Set Partitioning and Algorithmic Details 

The data sets were split into two main subsets at each iteration of the 10-fold cross valida-
tion process, one test set and one training set. The test set is used to assess the performance 
of the approach in question; therefore the true class of each test example remains unseen 
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during the training process, only to be revealed to measure the predictive accuracy of the 
approach. The training set is split into a further two subsets. Firstly 75% of the training set 
was used as the building set; this building set is used to train the classifiers. Secondly the 
validation set, which consists of the remaining 25% of the training examples. The valida-
tion set is used to compute the quality of the classifiers, and so particle fitness in the 
PSO/ACO algorithm. After the best solution (according to accuracy in the validation set) 
has been found in a single PSO/ACO run, the classifiers at every classifier node specified 
in that best particle are trained using the entire training set. This procedure attempts to 
maximise the individual classifier’s accuracy and so the final accuracy in the test set. 

As a baseline it is important to evaluate the proposed method by comparing its pre-
dictive accuracy with the predictive accuracy of the greedy selective top-down ap-
proach. The baseline should also include each of the individual classification algorithms 
used in the greedy selective top-down approach. Therefore the first experiments are to 
build standard TDDC trees using one type of classification algorithm throughout.  

The classification algorithms used in the experiments presented in this paper were 
implementations from the WEKA [20] package. These algorithms were chosen to 
include a diverse set of paradigms, while having high computational efficiency: 

• HyperPipes is a very simple algorithm that constructs a “hyperpipe” for every class 
in the data set; each hyperpipe contains each attribute-value found in the examples 
from the class it was built to cover. An example is classified by finding which hy-
perpipe covers it the best. 

• NaiveBayes uses Bayes' theorem to predict which class an example most likely 
belongs to, it is naïve because it assumes attribute independence. 

• J48 is a decision tree algorithm, being WEKA's modified version of the very well 
known C4.5 algorithm.  

• ConjunctiveRule is another very simple algorithm that only produces two rules to 
classify the entire data set. A “default” rule is produced that predicts the class with 
the greatest numbers of records in the training set. The other rule is constructed us-
ing information gain to select attribute-values for the antecedent. 

• BayesNet uses a Bayesian network to classify examples and can theoretically com-
pletely take into account attribute dependency.  

Although some of these algorithms are clearly more advanced than the others, all 
were selected for some classifier nodes by the classifier selection method (greedy 
approach or PSO/ACO) during training, confirming that all of them perform best in 
certain circumstances. All experiments were performed using 10-fold cross validation 
[20] with á set to 1 for the PSO/ACO algorithm. 

6   Computational Results 

The predictive accuracy for each method (the five baseline clasifiers used thoughout the 
TDDC tree, the greedy and PSO/AOCO methods for classifier selection) are shown in 
Tables 2 through 5 for each dataset. The values after the “±” symbol are standard devia-
tions (calculated using the WEKA statistics classes). Tables 2 through 5 are shown for 
the sake of completeness, but, to simplify the analysis (and due to paper size restric-
tions) we focus mainly on a summary of the results (Table 6). Table 6 shows the 
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summary of the number of cases where there is a statistically significant difference in 
the predictive accuracy of the 2 methods according to the WEKA corrected two-tailed 
student t-test (with a significance level 1%). Each cell shows the number of times the 
labelled approach (Greedy or PSO/ACO) significantly beats the baseline classification 
algorithm (HP – HyperPipes, NB – NaiveBayes, CR – ConjunctiveRule, BN – Bayes-
Net), in each data across all four class levels. Totals across all data sets are shown at the 
bottom of the table. 

Table 2. Percentage accuracy for each approach in the Prints data set 

Percentage accuracy at each level in the class hierarchy 
TDDC Type 

1st  2nd   3rd  4th 
HyperPipes 90.76±0.34 76.79±0.55 49.99±1.1 75.42±2.11 
NaiveBayes 87.74±0.71 72.72±1.11 41.3±0.99 63.85±1.89 
J48 91.68±0.51 83.35±1.0 58.34±1.26 85.14±1.8 
ConjunctiveRule 80.16±0.31 49.63±0.46 17.03±0.84 24.8±0.87 
BayesNet 88.34±1.39 77.41±1.25 48.0±0.93 74.53±2.94 
Greedy 91.68±0.51 83.06±0.88 58.21±1.23 84.66±2.09 
PSO/ACO 91.59±0.52 82.67±1.13 57.99±1.52 84.8±2.34 

 

Table 3. Percentage accuracy for each approach in the Interpro data set 

Percentage accuracy at each level in the class hierarchy 
TDDC Type 

1st  2nd   3rd  4th 
HyperPipes 83.74±1.14 73.77±1.01 48.21±0.95 82.62±2.5 
NaiveBayes 87.88±0.59 74.78±0.78 38.59±1.07 51.25±1.85 
J48 90.36±0.34 80.68±0.66 51.06±0.93 79.86±2.68 
ConjunctiveRule 73.68±0.18 47.73±0.48 17.76±0.47 24.84±0.68 
BayesNet 89.18±0.67 78.99±0.83 46.4±0.94 67.3±2.62 
Greedy 90.36±0.34 80.41±0.81 54.36±1.33 83.58±2.46 
PSO/ACO 90.36±0.34 80.4±0.78 54.43±1.27 84.24±2.27 

 

Table 4. Percentage accuracy for each approach in the Pfam data set 

Percentage accuracy at each level in the class hierarchy 
TDDC Type 

1st  2nd   3rd  4th 
HyperPipes 92.02±0.44 25.4±0.75 9.8±0.82 4.58±1.22 
NaiveBayes 89.59±0.72 59.23±1.41 19.6±1.43 16.27±2.39 
J48 92.98±0.48 70.77±1.39 37.03±1.07 48.97±3.98 
ConjunctiveRule 75.55±0.13 51.4±0.53 13.49±2.0 6.97±4.63 
BayesNet 90.35±1.1 62.7±1.45 23.25±1.46 23.43±2.42 
Greedy 92.98±0.48 70.54±1.29 36.97±1.2 48.24±3.55 
PSO/ACO 92.98±0.48 70.5±1.35 36.97±1.21 48.5±3.58 
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Table 5. Percentage accuracy for each approach in the Prosite data set 

Percentage accuracy at each level in the class hierarchy 
TDDC Type 

1st  2nd   3rd  4th 
HyperPipes 82.14±0.71 46.03±1.28 23.1±1.62 32.16±2.82 
NaiveBayes 85.34±1.14 60.63±1.25 24.86±1.3 23.94±2.11 
J48 84.71±0.57 61.02±1.12 29.31±1.63 39.58±3.35 
ConjunctiveRule 78.68±0.15 41.38±0.25 14.79±0.45 10.0±0.89 
BayesNet 85.93±0.88 62.17±1.06 26.68±1.35 31.14±2.47 
Greedy 85.93±0.88 62.54±0.91 31.46±1.25 40.73±4.21 
PSO/ACO 85.93±0.88 62.8±1.33 32.18±1.48 43.11±3.71 

Table 6. Summation of the number of statistically significant resutlts 

Classification Algorithm 
Dataset  

Classif. Selection 
Approach HP NB J48 CR BN 

Greedy Selective 4 4 0 4 4 
GPCR/Prints 

PSO/ACO 4 4 0 4 4 

Greedy Selective 3 4 1 4 4 
GPCR/InterPro 

PSO/ACO 3 4 2 4 4 

Greedy Selective 4 4 0 4 4 
GPCR/Pfam 

PSO/ACO 4 4 0 4 4 

Greedy Selective 4 2 1 4 2 
GPCR/Prosite 

PSO/ACO 4 3 3 4 2 

Greedy Selective 15 14 2 16 14 
Totals  

PSO/ACO 15 15 5 16 14 
 

Both the greedy and PSO/ACO approach for classifier selection were very success-
ful in improving predictive accuracy with respect to four of the base classification 
algorithms (HP, NB, CR, BN), as shown by the totals in Table 6. These two ap-
proaches were less successful in improving accuracy with respect to J48, but even in 
this case the classifier selection approaches improved upon J48’s accuracy several 
times, whilst never decreasing upon J48’s accuracy. 

The PSO/ACO classifier selection approach significantly improves upon the per-
formance of the greedy approach in four cases overall. PSO/ACO improves on the 
performance of J48 in five cases, three more than the greedy approach. These im-
provements are in the third and fourth level of the Prosite dataset and there is also an 
improvement in the InterPro dataset at the fourth level. As J48 is the hardest classifi-
cation algorithm to beat, these results show the most difference. However, the 
PSO/ACO algorithm also scores better against NaiveBayes when compared to the 
greedy approach in one case – in the Prosite dataset at the second class level. 

The results imply that both the PSO/ACO algorithm and greedy approaches benefit 
more from more “difficult” data sets. The data set in which the base classification 
algorithms perform worst is the Prosite data set. This data set also yields the biggest 
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improvement in accuracies when using the greedy (1 significant win over J48), and 
more so the PSO/ACO (3 significant wins over J48) approach. Indeed for either of 
these approaches to increase predictive accuracy above that of a base classifier, the 
base classifier must make an error that is not made by another base classifier. The 
more mistakes made by a certain classification algorithm (due to a more difficult data 
set) the higher the probability of another classification algorithm not making the same 
set of mistakes. Furthermore, it was observed that overfitting is sometimes a limiting 
factor with the PSO/ACO approach, since increases in validation set accuracy (over 
the baseline classification algorithms) did not always result in a similar increase in 
test set accuracy. 

7   Conclusions and Future Research 

Our experiments show that both the greedy and PSO/ACO approaches for classifier 
selection significantly improve predictive accuracy over the use of a single fixed algo-
rithm throughout the classifier tree, in the majority of cases involving our data sets. 
Overall, the PSO/ACO approach was somewhat more successful (significantly better 
in four cases) than the greedy approach. We believe that the use of a more advanced 
approach (as discussed in this paper) is more appropriate in more difficult data sets, 
where classification algorithms are more likely to make mistakes. Estimating a priori 
how likely a classification algorithm is to make a mistake is an open problem and this 
topic is left for future research. In this work the proposed PSO/ACO was compared 
only with Secker et al’s greedy selective approach, so one direction for future re-
search is to compare the PSO/ACO with another population-based meta-heuristics for 
optimisation, e.g. evolutionary algorithms. 
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