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Abstract. We present a GA–based feature selection algorithm in which
feature subsets are evaluated by means of a separability index. This index
is based on a filter method, which allows to estimate statistical properties
of the data, independently of the classifier used. More specifically, the
defined index uses covariance matrices for evaluating how spread out the
probability distributions of data are in a given n−dimensional space.
The effectiveness of the approach has been tested on two satellite images
and the results have been compared with those obtained without feature
selection and with those obtained by using a previously developed GA–
based feature selection algorithm.

1 Introduction

In the last years, the interest about the feature selection problem has been
increasing. In fact, new applications dealing with huge amounts of data have
been developed, such as data mining [1] and medical data processing [2]. In
this kind of applications, a large number of features is usually available and the
selection of an effective subset of them, i.e. a subset that allows to maximize the
performance of the subsequent clustering or classification process, represents a
very important task. The feature selection problem plays also a key role when
set of features belonging to different domains are used: this typically happens in
applications such as remote sensing [3] or handwriting recognition [4].

In a classification task in which the objects to be classified are represented
by means of a set of features, the feature selection problem consists in selecting,
from the whole set of available features, the subset of them providing the most
discriminative power. The choice of a good feature subset is a crucial stage in
any classification process since:

– If the considered set features does not include all the information needed
to discriminate patterns belonging to different classes, the achievable per-
formances may be unsatisfactory regardless the effectiveness of the learning
algorithm employed.



– The features used to describe the patterns determine the search space to
be explored during the learning phase. Then, irrelevant and noisy features
make the search space larger, increasing both the time and the complexity
of the learning process;

– The computational cost of classification depends on the number of features
used to describe the patterns. Then, reducing such number results in a sig-
nificant reduction of this cost.

When the cardinality N of the candidate feature set Y is high, the problem of
finding the optimal feature subset, according to a given evaluation function, be-
comes computationally intractable because of the resulting exponential growth
of the search space, made of all the 2N possible subsets of Y . Many heuristic
algorithms have been proposed for finding near–optimal solutions [5]. Among
these algorithms, greedy strategies that incrementally generate feature subsets
has been proposed. Since these algorithms do not take into account complex in-
teractions among several features, in most of the case they lead to sub–optimal
solutions.
GA’s, which have demonstrated to be an effective search tools for finding near–
optimal solutions in complex and non–linear search spaces [6] as is the case of
feature selection problems, have been widely used to solve feature selection prob-
lems [7, 8]. Moreover, comparative studies have demonstrated the superiority of
GA’s in feature selection problems involving large numbers of features [9].

We propose a GA–based feature selection approach in which each individual,
whose genotype encode the selection of a feature subset, is evaluated by means of
a separability index. This index is based on a filter method which takes into ac-
count statistical properties of the input data in the subspace represented by that
individual and is independent of the used classification scheme. The proposed
index uses covariance matrices, which are the generalization of the variance of a
scalar variable to multiple dimensions. These matrices estimate how spread out
the probability distributions are in the considered n−dimensional space. Given
a feature subset X, the proposed index estimates the separability of the classes
in X by evaluating two aspects: (i) how patterns belonging to a given class are
spread out around the corresponding class mean vector (the centroid); (ii) dis-
tances among class mean vectors.
The effectiveness of the proposed approach has been tested on two datasets
extracted from satellite images. In both datasets image pixels are represented
by feature vectors in high–dimensional spaces. These vectors describe textural
measurements based on grey–level co–occurrence matrices (GLCM) [10]. The ef-
fectiveness of the selected features has been tested on a neural network classifier.
The obtained results have been compared with those obtained without feature
selection and with those obtained by using a previously presented approach [11].

The remainder of the paper is organized as follows: in Section 2 the problem
of feature selection is described, Section 3 illustrates the GA–based method im-
plemented, while the separability index used for subset evaluations is presented
in Section 4. In Section 5 the experimental results are detailed. Finally, Section
6 is devoted to conclusions.



2 The Feature Selection Problem

Feature Selection (FS) is one of the first stages in any classification process in
which data are represented by feature vectors. Its role is to reduce the number of
features to be considered later in the classification stage. This task is performed
by removing irrelevant and noisy features from the set of the available features.
Feature selection is accomplished by reducing as much as possible the informa-
tion loss due to the feature set reduction. Moreover, this selection process should
not reduce classification performances.

In a classification process involving a dataset D, in which patterns are repre-
sented by means of a set Y = {1, 2, . . . , N} of N features, the feature selection
problem can be formulated as follows: find the subset S ⊆ Y of n features which
optimizes the function J . Given a generic subset X ⊆ Y , J(X) measures how
well the patterns in D, belonging to different classes, are discriminated by using
the n features in X. The methods implemented by the function J can be divided
in two wide class:

- filter methods which evaluate a feature subset independently of the classifier
but are usually based on some statistical measures of distance between the
patterns belonging to different classes.

- wrapper methods which are based on the classification results achieved by a
certain classifier.

Filter methods are usually faster than wrapper ones, as the latter requires the
training of the classifier used for each evaluation and this process may make this
approach unfeasible when a large number of features is involved. Moreover, while
filter–based evaluations are more general, as they give statistical information on
the data, wrapper–based evaluations may give raise loss of generality because
they depend on the specific classifier used.

Once the evaluation function J(X) has been chosen, the feature selection
problem becomes an optimization problem whose search space is the set of all
the subsets of Y . The size of this search space is exponential (2N ). As a con-
sequence, the exhaustive search for the optimal solution is unfeasible for those
problems involving a large number of features (N > 50). Search strategies like
branch and bound [12] have been proposed to strongly reduce the amount of
evaluations, but the exponential complexity of the problem still remains. The
exponential size of the search space for the feature selection problem makes
appropriate the use of heuristic algorithms, for finding near–optimal solutions.
Among these search algorithms, greedy search strategies are computationally
advantageous but may lead to suboptimal solutions. They come in two flavours:
forward selection and backward elimination. Forward selection strategies gener-
ate near–optimal feature subsets by a stepwise procedure which starts with an
empty set and adds to the so far built subset the feature, among those not yet se-
lected, that more increases the evaluation function J , this procedure is repeated
until a stop criterion is not satisfied. In backward elimination, instead, the whole
subset of feature is initially considered, and at each step the feature that least re-
duce the evaluation function is eliminated. Both procedures are optimal at each



step, but they cannot discover complex interactions among several features, as
is the case in most of the real world feature selection problems. Then heuristic
search algorithms, like genetic algorithms and simulated annealing seems to be
appropriate for finding near–optimal solutions which take into account multiple
interactions among several features.

3 Genetic Algorithms for Feature Selection

The principles governing the phenomena of natural evolution have been widely
studied by mathematicians and computer scientist since the end of the 50’s of
the last century. These studies have led to the development of a new compu-
tational paradigm named evolutionary computation [6], which during the last
decades has shown to be very effective as methodology for solving optimization
problems whose search space are discontinuous and very complex. In this field,
genetic algorithms (GA’s in the following) represent a subset of these optimiza-
tion techniques, in which solutions are represented as binary strings. To these
strings, operators such as selection, crossover and mutation are applied to a pop-
ulation of competing individuals (problem’s solutions). GA’s have been applied
to a wide variety of both numerical and combinatorial optimization problems
[7].

GA’s can be easily applied to the problem of feature selection, as given a set
Y having cardinality equal to N , a subset X of Y (X ⊆ Y ) can be represented
by a binary vector b having N elements whose i-th element is set to 1 if the
i-th features is included in X, 0 otherwise. Besides the simplicity in the solution
encoding, GA’s are well suited for these class of problems as the search in this
exponential space is very hard since interactions among features can be highly
complex and strongly nonlinear. Some studies on the GA’s effectiveness in solving
features selection problems can be found in [7, 8].

The system presented here has been implemented by using a generational
GA, which starts randomly generating a population of P individuals. Each in-
dividual’s chromosome is a binary vector encoding a feature subset that repre-
sents an allowed solution of the problem. The value of the i-th element is set to
1 according a given probability (called one prob), which represents a parameter
algorithm and is usually set to 0.1 at the aim to force the early stage of the search
toward solutions having a small number of features. Afterwards, the fitness of
the generated individuals is evaluated. This fitness takes into account two terms,
the former measures the separability of the patterns belonging to the different
classes in the problem at hand, in the feature subset encoded by the individual,
while the latter terms measures the cardinality of the subset so as to favour
solutions containing a smaller number of features. After this evaluation phase a
new population is generated, by first copying the best e individuals of the initial
population in order to implement an elitist strategy. Then (P − e)/2 couples of
individuals are selected using the tournament method, to control loss of diversity
and selection intensity. The one point crossover operator is applied to each of
the selected couples, according to a given probability factor pc. Afterwards, the



mutation operator is applied. As regards this operator, two different probability
factor p0 and p1 have been defined. These factors represent the mutation prob-
ability respectively of the 0’s and 1’s in the chromosome. These two different
probability factors have been adopted since in a chromosome the 0’s and 1’s
occurrences can be very different: typically in a chromosome 0’s are much more
than 1’s. This fact is due to both the generation procedure of the individuals in
the initial population and the fitness function, which favours the individuals with
a smaller number of features. As a consequence, as in an individual the number
of the 1’s is much smaller than the that of 0’s the value of p1 is set much smaller
than that of p0. The purpose is to make, on average, the probability mutation
of the 1’s about equal to that of the 0’s. Finally these individuals are added to
the new population. The process just described is repeated for Ng generations.

4 The Separability Index

In any EC–based algorithm the design of a suitable fitness function for the prob-
lem to be solved is a crucial task. To be successful in feature selection problems,
the fitness function must be able to effectively evaluate how well patterns be-
longing to different classes are discriminated in the subspace represented by the
solution to be evaluated. The fitness function adopted is based on a well known
class separability index J , which is usually adopted in Multiple Discriminant
Analysis for finding a linear transformation that allows to reduce the dimension
of the data.

According to so-called Fisher Criterion, the separability index J has been de-
fined by using covariance matrices, which measure how spread out the probability
distribution of the data is in the considered space. In a particular n−dimensional
space, given a set of patterns belonging to different classes, the i−th class can be
described by using its covariance matrix Σi, which is obtained only considering
the patterns belonging to class i. Note that the covariance matrix Σi contains
information about variability of data points belonging to the i–th class around
their mean value µi.

The separability index J used for finding the most discriminative features,
makes use of this dispersion concept. In particular, the classes information is
condensed in two scatter matrices ΣB and ΣW :

ΣW =
∑

i

P (ωi)Σi

ΣB =
∑

i

P (ωi)(Mi − M0)(Mi − M0)
T

where P (ωi) denotes the prior probability of the i–th class, Σi and Mi are
respectively the covariance matrix and the mean vector of i–th class, and M0

denotes the overall mean:

M0 =
∑

i

P (ωi)Mi (1)



Note that ΣW is a within-class scatter matrix, as it measures the spread of the
classes about their means, while ΣB is a between-class scatter matrix, since it
measures distances between class mean vectors, i.e. centroids.
Given a feature subset X, the separability index J(X), has been defined as
the ratio between a within-class scatter matrix ΣW and a between-class scatter

matrix ΣB :
J(X) = trace(Σ−1

W ΣB) (2)

High values of the separability index J(X) indicate that in the subspace rep-
resented by the feature subset X the class means are well separated and, at
the same time, patterns appear to be not much spread out around their means
values.

5 Experimental Results

The proposed approach has been tested on data represented by feature vectors
in high dimensional spaces (> 200). These feature vectors describe textural mea-
sures based on the grey–level co–occurrence matrices (GLCM) [10], computed
on patterns belonging to datasets extracted from Landsat Satellite images. Two
datasets have been considered and for each of them 20 runs have been performed.
The reported results are those obtained using the individual having the highest
fitness among those obtained during the 20 performed runs. Some preliminary
trials have been performed to set the basic evolutionary parameters reported in
Table 1. This set of parameters has been used for all the experiments reported
below.

Given an individual I, its fitness value F has been computed by applying the
formula:

F (I) = J(I) + k
NFT − NF (I)

NFT

(3)

where J(I) is the separability index, described in Section 4, computed on the
subset of features represented by I, while NFT is the maximum number of fea-
tures available and NF (I) is the cardinality of the subset represented by I, i.e.
number of bits equal to 1 in its chromosome. Finally, k is a constant value; this
constant is used so as to weight the second term in the (3), which is in inverse
proportion to the number of features in I. The role of this second term is es-
sential in order to avoid an excessive increase of the number of features, as may
result from the selection process because of the monotonic trend of the index.
Thanks to this term individuals having a smaller number of features are favoured.

5.1 The Datasets

The first dataset (DS1 in the following) used for testing the proposed approach
is the standard dataset Satimage included in the UCI dataset repository. This
dataset was generated from 4–band Landsat Multi-Spectral Scanner image data.



Table 1. Values of the basic evolutionary parameters used in the experiments. Note
that p0 and p1 depend on the chromosome length. For the experiments involving the
first dataset (DS1) the 0’s probability mutation has been set equal to 0.0047 (0.047
for the 1’s), while for the second dataset (DS2) this probability has been set equal to
0.003 (0.03).

Parameter symbol value

Population size P 100
Tournament size T 6
elithism size E 5
Crossover probability pc 0.4
Mutation probability of 0’s p0 1/NF

Mutation probability of 1’s p1 10/NF

Number of Generations Ng 1500

Each Landsat frame consists of four digital images of the same scene in different
spectral bands. Two of these are in the visible region (corresponding approxi-
mately to green and red regions of the visible spectrum) and two are in the (near)
infra-red. Each pixel is a 8-bit binary word, with 0 corresponding to black and
255 to white. The spatial resolution of a pixel is about 80m×80m. The patterns
belong to 6 different classes, namely: red soil, cotton crop, grey soil, damp grey
soil, soil with vegetation stubble and very damp grey soil.
DS1 contains 6435 patterns, organized in two sets of data: a training set (TR1
in the following) containing 4435 patterns and a test set (TS1 in the following)
containing 2000 patterns. Each pattern corresponds to a 3×3 square neighbour-
hood of pixels and is described by considering the pixel values in the four spectral
bands of each of the 9 pixels in that neighbourhood. To each pattern is assigned
as label the class of the central pixel. Thus, each pattern of the dataset is rep-
resented by a feature vector of 36 integer values in the range [0,255].
For each original pattern, a new feature vector has been built by computing its
Grey Level Co–occurrence Matrix (GLCM) [10] with a moving window equal
to the 3 × 3 neighbourhood. For each of the four spectral bands, 4 GLCM in
the directions (0◦, 45◦, 90◦, 135◦) has been computed. As a consequence for each
pattern 16 GLCM has been computed. Afterwards, for each GLCM 13 textural
features have been computed. Finally, to each new feature vector the values of
the 4 spectral bands and the spectral feature NDVI (Normalized Difference Veg-
etation Index) has been added. Then in our experiments each pattern in DS1 has
been described by using a feature vectors of 213 elements (13 texture features
× 4 directions × 4 spectral bands + 4 pixel values in the spectral bands + 1
NDVI). The constant k in 3 has been set to 0.2 for this dataset.

The second dataset (DS2 in the following) contains data relative to a satellite
image of a residential area (city of Anzio, Italy) and was recorded by the ETM
sensor on the Landsat 7 satellite, which has a ground spatial resolution of about
30m×30m and six spectral bands. Each pixel is a 8-bit binary word, with 0
corresponding to black and 255 to white. Each pattern corresponds to a 3×3



Table 2. Number of features found by GA1 and GA2.

Best ind. Average std. dev.
GA1 GA2 GA1 GA2 GA1 GA2

DS1 8 9 6.05 9.1 1.1 0.3

DS2 11 4 9.4 4.5 1.8 0.5

square neighbourhood of pixels and contains 54 attributes (6 spectral bands 9
pixels in the neighbourhood), resulting in a feature vector of 54 integer values
in the range [0,255]. The data were divided into a training set (say TR2) with
800 patterns and a test set (TS2) with 712 patterns, randomly extracted from
the original Landsat 7 scene. In this scene five classes must be discriminated,
namely: water, grey soil, wood, urban area, sea sand and bare soil. As for DS1,
also patterns in DS2 has been described by using the GLCM textural features
mentioned above. In this case, as six spectral bands are available, feature vectors
of 319 elements (13 texture features × 4 directions × 6 spectral bands + 6 pixel
values in the spectral bands + 1 NDVI) has been built. In this case the value of
the constant k has been set to 4.0.

5.2 Comparison Findings

In order to asses the effectiveness of the implemented system, the selected fea-
tures have been tested by using them to implement a simple and widely adopted
neural network classifier: the Multi Layer Perceptron (MLP) trained with the
Back Propagation algorithm.
The results of our GA–based method (GA2 in the following) have been com-
pared with those obtained by another GA-based feature algorithm previously
proposed in [11] (GA1 in the following), which used a different separability in-
dex for feature subset evaluations. That index was computed by using a training
set Tr, containing C classes, of labelled patterns represented as feature vectors
in the initial N -dimensional feature space. Given an individual I, representing
a subset X, its separability index was computed as follows: first, for each class
the corresponding centroid is computed in X by averaging the components of
the feature vectors belonging to that class; Then, each pattern in Tr is labelled
with the label of the nearest centroid (nearest neighbour rule) in X; Finally, the
percentage of patterns correctly labelled is assumed as separability index of X.

Table 2 shows the number of features obtained by GA1 and GA2. As regards
the results on DS1, GA1 and GA2 have found, on average, respectively 6.05 and
9.1 features. Then, on this dataset our method has found a higher number of
features. However, the number of features of the best individuals (8 for GA1
and 9 for GA2) are comparable. Probably this means that though GA2 finds, on
average, smaller feature subsets, it obtains good performances only when larger
subsets are found. Moreover, in GA2 the number of features of the best individual
is about equal to the average one. As regards the results on DS2, the average
number of features found by GA1 and GA2 is equal respectively to 9.4 and 4.5.



Then, in this case GA2 has been able to find smaller feature subsets than GA1.
Moreover, also in this case the number of features of the GA2 best individual
is lower than the average one, while for GA1 the best individual has a number
of features larger than the average. This fact seems to confirm the hypothesis
stated above that GA2 obtains good performances only when a larger number
of features is used. Finally, it is worth noting that GA2 standard deviations are
lower than those of GA1. This fact indicates that the separability index used in
GA2 is able, almost always, to find the smaller subsets providing, according to
that index, the most discriminative power.
In Table 3 the recognition rates achieved by the MLP classifier on the best

feature subsets found by GA1, GA2 and on the 3× 3 neighbourhood feature set
of the original datasets are reported. On both the databases analyzed, GA2 has
achieved better results than those obtained by GA1. As regards DS1, GA2 has
further improved the good rates obtained by GA1. Also for DS2 the MLP has
obtained better results on the features selected by GA2 than on those selected
by GA1. It is also worth noting that, for both datasets, GA2 has obtained better
results than GA1 for each value of hidden nodes. This fact demonstrates that
GA2, whatever the number of nodes in the hidden layer, always gives better
results than GA1. Finally, on both datasets, the selected features has been able
to significantly improve the performances obtained by the feature sets made of
the spectral band values in the 3 × 3 neighbourhood of each pixel.

6 Conclusions

A new GA-based algorithm for feature selection in high dimensional feature
spaces has been presented. The proposed approach uses a separability index
for evaluating feature subsets. This index is based on a filter method, which
estimates statistical properties of the data and is independent from the classifier
used. The index is able to effectively measure both the spreading of the patterns
around their mean vectors and the distances of the mean vectors of the different
classes.

Table 3. Classification rates (expressed in percentages) of the MLP classifier on DS1
(left) and DS2 (right) on the best feature subsets found by GA1, GA2 and the 3 × 3–
neighbourhood feature sets of the original datasets. The actual number of features used
is reported in parenthesis. In the column N the number of hidden nodes of the MLP
classifier is reported.

MLP results on DS1

N 3 × 3 GA1 (8) GA2 (9)
neigh. (36)

TR1 TS1 TR1 TS1 TR1 TS1

30 90.38 87.60 89.10 87.40 89.99 89.25

40 90.14 87.20 89.16 88.00 89.63 88.85

50 90.38 87.80 89.26 87.40 89.99 89.50

MLP results on DS2

N 3 × 3 GA1 (8) GA2 (9)
neigh.(54)

TR1 TS1 TR1 TS1 TR1 TS1

30 92.37 74.80 87.73 77.20 83.62 78.65

40 92.28 74.60 87.75 77.60 84.50 77.67

50 92.90 72.20 88.98 77.00 84.00 78.09



The proposed approach has been tested on two datasets extracted from satel-
lite images. From these data a wide set of GLCM textural features has been
computed and from this set the near–optimal subsets has been found by using
the GA–based method. The results have been compared with those obtained
by another GA–based method. The comparison has been done by implementing
a MLP, which has been trained and tested on the best subsets found by the
two methods. The accuracies on the test sets have been compared. For both the
datasets, the comparison has demonstrated that our method is able to found
subsets that yields better accuracies than those obtained by using the subsets
found by the other method.
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