
Spanners of Complete k-Partite Geometric Graphs

Prosenjit Bose∗ Paz Carmi∗ Mathieu Couture∗ Anil Maheshwari∗ Pat Morin∗

Michiel Smid∗

August 3, 2021

Abstract

We address the following problem: Given a complete k-partite geometric graph K whose
vertex set is a set of n points in Rd, compute a spanner of K that has a “small” stretch factor
and “few” edges. We present two algorithms for this problem. The first algorithm computes
a (5 + ε)-spanner of K with O(n) edges in O(n log n) time. The second algorithm computes a
(3 + ε)-spanner of K with O(n log n) edges in O(n log n) time. The latter result is optimal: We
show that for any 2 ≤ k ≤ n − Θ(

√
n log n), spanners with O(n log n) edges and stretch factor

less than 3 do not exist for all complete k-partite geometric graphs.

1 Introduction

Let S be a set of n points in Rd. A geometric graph with vertex set S is an undirected graph H
whose edges are line segments pq that are weighted by the Euclidean distance |pq| between p and
q. For any two points p and q in S, we denote by δH(p, q) the length of a shortest path in H
between p and q. For a real number t ≥ 1, a subgraph G of H is said to be a t-spanner of H, if
δG(p, q) ≤ t · δH(p, q) for all points p and q in S. The smallest t for which this property holds is
called the stretch factor of G. Thus, a subgraph G of H with stretch factor t approximates the

(
n
2

)
pairwise shortest-path lengths in H within a factor of t. If H is the complete geometric graph with
vertex set S, then G is also called a t-spanner of the point set S.

Most of the work on constructing spanners has been done for the case when H is the complete
graph. It is well known that for any set S of n points in Rd and for any real constant ε > 0, there
exists a (1 + ε)-spanner of S containing O(n) edges. Moreover, such spanners can be computed in
O(n log n) time; see Salowe [8] and Vaidya [9]. For a detailed overview of results on spanners for
point sets, see the book by Narasimhan and Smid [6].

For spanners of arbitrary geometric graphs, much less is known. Althöfer et al. [1] have shown
that for any t > 1, every weighted graph H with n vertices contains a subgraph with O(n1+2/(t−1))
edges, which is a t-spanner ofH. Observe that this result holds for any weighted graph; in particular,
it is valid for any geometric graph. For geometric graphs, a lower bound was given by Gudmundsson
and Smid [5]: They proved that for every real number t with 1 < t < 1

4 log n, there exists a geometric
graph H with n vertices, such that every t-spanner of H contains Ω(n1+1/t) edges. Thus, if we are
looking for spanners with O(n) edges of arbitrary geometric graphs, then the best stretch factor
we can obtain is Θ(log n).
∗School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6. Research partially sup-

ported by NSERC, MRI, CFI, and MITACS.

1

ar
X

iv
:0

71
2.

05
54

v1
 [

cs
.C

G
]

 4
 D

ec
 2

00
7

In this paper, we consider the case when the input graph is a complete k-partite geometric
graph. Let S be a set of n points in Rd, and let S be partitioned into subsets C1, C2, . . . , Ck. Let
KC1...Ck denote the complete k-partite graph on S. This graph has S as its vertex set and two points
p and q are connected by an edge (of length |pq|) if and only if p and q are in different subsets of
the partition. The problem we address is formally defined as follows:

Problem 1.1 Let k ≥ 2 be an integer, let S be a set of n points in Rd, and let S be partitioned
into k subsets C1, C2, . . . , Ck. Compute a t-spanner of the complete k-partite graph KC1...Ck that
has a “small” number of edges and whose stretch factor t is “small”.

The main contribution of this paper is to present an algorithm that computes such a t-spanner
with O(n) edges in O(n log n) time, where t = 5 + ε for any constant ε > 0. We also show that if
one is willing to use O(n log n) edges, then our algorithm adapts easily to reach a stretch factor of
t = 3+ε. Finally, we show that the latter result is optimal: For any k with 2 ≤ k ≤ n−Θ(

√
n log n),

spanners with O(n log n) edges and stretch factor less than 3 do not exist for all complete k-partite
geometric graphs.

We remark that in a recent paper, Bose et al. [2] considered the problem of constructing spanners
of point sets that have O(n) edges and whose chromatic number is a most k. This problem is
different from ours: Bose et al. compute a spanner of the complete graph and their algorithm can
choose a “good” k-partition of the vertices. In our problem, the k-partition is given and we want
to compute a spanner of the complete k-partite graph.

Possible applications of our algorithm are in wireless networks having the property that com-
municating nodes are partitioned into sets such that two nodes can communicate if and only if
they do not belong to the same set. This would be the case, for example, when Time Division
Multiplexing (TDMA) is used. Since the wireless medium prohibits simultaneous transmission and
reception at one node, two nodes communicating during the same time slots cannot communicate
with each other; see Raman and Chebrolu [7].

The rest of this paper is organized as follows. In Section 2, we recall properties of the Well-
Separated Pair Decomposition (WSPD) that we use in our algorithm. In Section 3, we provide
an algorithm that solves the problem of constructing a spanner of the complete k-partite graph.
In Section 4, we show that the spanner constructed by this algorithm has O(n) edges and that
its stretch factor is bounded from above by a constant that depends only on the dimension d. In
Section 5, we show how a simple modification to our algorithm improves the stretch factor to 5 + ε
while still having O(n) edges. In Section 6, we show how to achieve a stretch factor of 3 + ε using
O(n log n) edges. We also prove that the latter result is optimal. We conclude in Section 7.

2 The Well-Separated Pair Decomposition

In this section, we recall crucial properties of the Well-Separated Pair Decomposition (WSPD) of
Callahan and Kosaraju [4] that we use for our construction. The reader who is familiar with the
WSPD may go directly to Section 3. Our presentation follows the one in Narasimhan and Smid [6].
Intuitively, a WSPD is a partition of the edges of a complete geometric graph such that all edges
that are grouped together are approximately equal. To give a formal definition of the WSPD, we
first need to define what it means for two sets to be well-separated.

2

Definition 2.1 Let S be a set of points in Rd. The bounding box β(S) of S is the smallest
axes-parallel hyperrectangle that contains S.

Definition 2.2 Let X and Y be two sets of points in Rd and let s > 0 be a real number. We say
that X and Y are well-separated with respect to s if there exists two balls B1 and B2 such that

1. B1 and B2 have the same radius, say ρ,

2. B1 contains the bounding box of X,

3. B2 contains the bounding box of Y , and

4. the distance min{|xy| : x ∈ B1 ∩ Rd, y ∈ B2 ∩ Rd} between B1 and B2 is at least sρ.

Definition 2.3 Let S be a set of points in Rd and let s > 0 be a real number. A well-separated
pair decomposition (WSPD) of S with separation constant s is a set of unordered pairs of subsets
of S that are well-separated with respect to s, such that for any two distinct points p, q ∈ S there is
a unique pair {X,Y } in the WSPD such that p ∈ X and q ∈ Y .

Lemma 2.4 (Lemma 9.1.2 in [6]) Let s > 0 be a real number and let X and Y be two point sets
that are well-separated with respect to s.

1. If p, p′, p′′ ∈ X and q ∈ Y , then |p′p′′| ≤ (2/s)|pq|.

2. If p, p′ ∈ X and q, q′ ∈ Y , then |p′q′| ≤ (1 + 4/s)|pq|.

The first part of this lemma states that distances within one set are very small compared to
distances between pairs of points having one endpoint in each set. The second part states that all
pairs of points having one endpoint in each set have approximately the same distance.

Callahan and Kosaraju [3] have shown how to construct a t-spanner of S from a WSPD: All
one has to do is pick from each pair {X,Y } an arbitrary edge (p, q) with p ∈ X and q ∈ Y . Using
induction on the rank of the length of the edges in the complete graph KS , it can be shown that,
when s > 4, this process leads to a ((s+4)/(s−4))-spanner. Thus, by choosing s to be a sufficiently
large constant, the stretch factor can be made arbitrarily close to 1.

In order to compute a spanner of S that has a linear number of edges, one needs a WSPD that
has a linear number of pairs. Callahan and Kosaraju [4] showed that a WSPD with a linear number
of pairs always exists and can be computed in time O(n log n). Their algorithm uses a split-tree.

Definition 2.5 Let S be a non-empty set of points in Rd. The split-tree of S is defined as follows:
if S contains only one point, then the split-tree is a single node that stores that point. Otherwise,
the split-tree has a root that stores the bounding box β(S) of S, as well as an arbitrary point of S
called the representative of S and denoted by rep(S). Split β(S) into two hyperrectangles by cutting
its longest interval into two equal parts, and let S1 and S2 be the subsets of S contained in the
two hyperrectangles. The root of the split-tree of S has two sub-trees, which are recursively defined
split-trees of S1 and S2.

The precise way Callahan and Kosaraju used the split-tree to compute a WSPD with a linear
number of pairs is of no importance to us. The only important aspect we need to retain is that
each pair is uniquely determined by a pair of nodes in the tree. More precisely, for each pair {X,Y }

3

in the WSPD that is output by their algorithm, there are unique internal nodes u and v in the
split-tree such that the sets Su and Sv of points stored at the leaves of the subtrees rooted at u
and v are precisely X and Y . Since there is such a unique correspondence, we will denote pairs in
the WSPD by {Su, Sv}, meaning that u and v are the nodes corresponding to the sets X = Su and
Y = Sv. Also, although the WSPD of a point set is not unique, when we talk about the WSPD,
we mean the WSPD that is computed by the algorithm of Callahan and Kosaraju.

Before we present our algorithm, we give the statement of the following lemmas that we use
to analyze our algorithm in Section 4. If R is an axes-parallel hyperrectangle in Rd, then we use
Lmax(R) to denote the length of a longest side of R.

Lemma 2.6 (Lemma 9.5.3 in [6]) Let u be a node in the split-tree and let u′ be a node in the
subtree of u such that the path between them contains at least d edges. Then

Lmax(β(Su′)) ≤
1
2
· Lmax(β(Su)).

Lemma 2.7 (Lemma 11.3.1 in [6]) Let {Su, Sv} be a pair in the WSPD, let ` be the distance
between the centers of β(Su) and β(Sv), and let π(u) be the parent of u in the split-tree. Then

Lmax(β(Sπ(u))) ≥
2`√

d(s+ 4)
.

3 A First Algorithm

We now show how the WSPD can be used to address the problem of computing a spanner of a
complete k-partite graph. In this section, we introduce an algorithm that outputs a graph with
constant stretch factor and O(n) edges. The analysis of this algorithm is presented in Section 4.
In Section 5, we show how this algorithm can be improved to achieve a stretch factor of 5 + ε.

The input set S ⊆ Rd is the disjoint union of k sets C1, C2, . . . , Ck. We say that the elements
of Cc have “color” c. The graph K = KC1...Ck is the complete k-partite geometric graph.

Definition 3.1 Let T be the split-tree of S that is used to compute the WSPD of S.

1. For any node u in T , we denote by Su the set of all points in the subtree rooted at u.

2. We define MWSPD to be the subset of the WSPD obtained by removing all pairs {Su, Sv} for
which all points of Su ∪ Sv have the same color.

3. A node u in T is called multichromatic if there exist points p and q in Su and a node v in T ,
such that p and q have different colors and {Su, Sv} is in the MWSPD.

4. A node u in T is called a c-node if all points of Su have color c and there exists a node v in
T such that {Su, Sv} is in the MWSPD.

5. A c-node u in T is called a c-root if it does not have a proper ancestor that is a c-node in T .

6. A c-node u in T is called a c-leaf if it does not have another c-node in its subtree.

7. A c-node u′ in T is called a c-child of a c-node u in T if u′ is in the subtree rooted at u and
there is no c-node on the path strictly between u and u′.

4

All points are of the same color.

At least one set only contains points of one color
but not all points are of the same color.

Both sets are multichromatic.

Figure 1: The three cases of Algorithm 1.

8. For each color c and for each c-node u in T , rep(Su) denotes a fixed arbitrary point in Su.

9. For each multichromatic node u in T , rep(Su) and rep′(Su) denote two fixed arbitrary points
in Su that have different colors.

10. The distance between two sets Sv and Sw, denoted by dist(Sv, Sw), is defined to be the distance
between the centers of their bounding boxes.

11. Let u be a c-node in T . Consider all pairs {Sv, Sw} in the MWSPD, where v is a c-node on
the path in T from u to the root (this path includes u). Let {Sv, Sw} be such a pair for which
dist(Sv, Sw) is minimum. We define cl(Su) to be the set Sw.

Algorithm 1 computes a spanner of a complete k-partite geometric graph K = KC1...Ck . The
intuition behind this algorithm is the following. First, the algorithm computes the WSPD. Then,
it considers each pair {Su, Sv} of the WSPD, and decides whether or not to add an edge between
Su and Sv. The outcome of this decision is based on the following three cases, which are illustrated
in Figures 1 and 2.

Case 1: All points of Su ∪ Sv are of the same color. In this case, there is no edge of K to
approximate, so the algorithm ignores this pair.

Case 2: Both Su and Sv are multichromatic. In this case, the algorithm adds one edge between

5

p1

p2

p3

p4

p5

S1 = {p1, p2, p3, p4, p5}

S2 = {p1, p2} S3 = {p3, p4, p5}

S4 = {p3, p5} S5 = {p4}

cl(S1)

cl(S3)

rep

rep rep

rep rep

rep

rep

Figure 2: Handling a c-node.

Su and Sv to the spanner; see lines 28–29. Observe that the two vertices of this edge do not have
the same color. This edge will allow us to approximate each edge (p, q) of K, where p ∈ Su, q ∈ Sv,
and p and q have different colors.

Case 3: All points in Su are of the same color c. In this case, an edge is added between rep(Su) and
one of the two representatives of Sv whose color is not c; see lines 17–18. In order to approximate
each edge of K having one vertex (of color c) in Su and the other vertex (of a different color) in Sv,
more edges have to be added. This is done in such a way that our final graph contains a “short”
path between every point p of Su and the representative rep(Su) of Su. Observe that this path
must contain points whose color is not equal to c; thus, these points are not in Su. One way to
achieve this is to add an edge between each point of Su and one of the two representatives of cl(Su)
whose color is not c; we call this construction a star. However, since the subtree rooted at u may
contain other c-nodes, many edges may be added for each point in Su, which could possibly lead to
a quadratic number of edges in the final graph. To guarantee that the algorithm does not add too
many edges, it introduces a star only if u is a c-leaf; see lines 8–11. If u is a c-node, the algorithm
only adds one edge between rep(Su) and a representatives of cl(Su) whose color is not c; see lines
14–15. Then, the algorithm links each c-node u′′ that is not a c-root to its c-parent u′. This is done
through an edge between rep(Su′′) and a representative of cl(Su′) whose color is not c; see lines
21–22. This third case is illustrated in Figure 2.

4 Analysis of Algorithm 1

Lemma 4.1 The graph G computed by Algorithm 1 has O(|S|) edges.

Proof: For each color c and for each c-leaf u′, the algorithm adds |Su′ | edges to G in lines 9–10.
Since the sets Su′ , where u′ ranges over all c-leaves and c ranges over all colors, are pairwise disjoint,
the total number of edges that are added in lines 9–10 is O(|S|).

The total number of edges that are added in lines 17–18 and 28–29 is at most the number of
pairs in the MWSPD. Since the WSPD contains O(|S|) pairs (see [4]), the same upper bound holds
for the number of edges added in lines 17–18 and 28–29.

The total number of edges that are added in lines 14–15 and 21–22 is at most twice the number

6

Algorithm 1: Computing a sparse subgraph of KC1...Ck whose stretch factor is bounded by
a constant.

Input: A set S of points in Rd, which is partitioned into k subsets C1, . . . , Ck.
Output: A spanner G = (S,E) of the complete k-partite graph KC1...Ck .

compute the split-tree T of S;1

using T , compute the WSPD with respect to a separation constant s > 0;2

using the WSPD, compute the MWSPD;3

E ← ∅;4

for each color c in {1, 2, . . . , k} do5

for each c-root u in T do6

for each c-leaf u′ in the subtree of u do7

for each p ∈ Su′ do8

if rep(cl(Su′)) does not have color c then add (p, rep(cl(Su′))) to E;9

else add (p, rep′(cl(Su′))) to E;10

end11

end12

for each c-node u′ that is in the subtree of u (including u) do13

if rep(cl(Su′)) does not have color c then add (rep(Su′), rep(cl(Su′))) to E;14

else add (rep(Su′), rep′(cl(Su′))) to E;15

for for each pair {Su′ , Sv′} in the MWSPD do16

if rep(Sv′) does not have color c then add (rep(Su′), rep(Sv′)) to E;17

else add (rep(Su′), rep′(Sv′)) to E;18

end19

for each c-child u′′ of u′ do20

if rep(cl(Su′)) does not have color c then add (rep(Su′′), rep(cl(Su′))) to E;21

else add (rep(Su′′), rep′(cl(Su′))) to E;22

end23

end24

end25

end26

for each {Su, Sv} in the MWSPD for which both u and v are multichromatic do27

if rep(Su) and rep(Sv) have distinct colors then add (rep(Su), rep(Sv)) to E;28

else add (rep(Su), rep′(Sv)) to E;29

end30

return the graph G = (S,E)31

7

of nodes in the split-tree, which is O(|S|). �

Lemma 4.2 Let G be the graph computed by Algorithm 1. Let p and q be two points of S with
different colors, and let {Su, Sv} be the pair in the MWSPD for which p ∈ Su and q ∈ Sv. Assume
that u is a c-node for some color c. Then there is a path in G between p and rep(Su) whose length
is at most t′|pq|, where

t′ = 4
√
d(µd+ 1)(1 + 4/s)3,

µ =
⌈
log
(√

d(1 + 4/s)
)⌉

+ 1,

and s is the separation constant of the WSPD.

Proof: Let w be the c-leaf such that p ∈ Sw, and let w = w0, . . . , wk = u be the sequence of
c-nodes that are on the path in T from w to u.

Recall from Definition 3.1 that each set Swi , 0 ≤ i ≤ k, has a representative rep(Swi) (of color
c) associated with it. Also, recall the definition of the sets cl(Swi), 0 ≤ i ≤ k; see Definition 3.1.
If cl(Swi) is a c′-node for some color c′, then this set has one representative rep(cl(Swi)) associated
with it. Otherwise, cl(Swi) is multichromatic and this set has two representatives rep(cl(Swi)) and
rep′(cl(Swi)) of different colors associated with it. We may assume without loss of generality that,
for all 0 ≤ i ≤ k, the color of rep(cl(Swi)) is not equal to c.

Let Π be the path

p → rep(cl(Sw0)) → rep(Sw0)
→ rep(cl(Sw1)) → rep(Sw1)
...

...
→ rep(cl(Swk)) → rep(Swk) = rep(Su).

The first edge on this path, i.e., (p, rep(cl(Sw0))), is added to the graph G in lines 9–10 of the
algorithm. The edges (rep(cl(Swi)), rep(Swi)), 0 ≤ i ≤ k, are added to G in lines 14–15. Finally,
the edges (rep(Swi−1), rep(cl(Swi))), 1 ≤ i ≤ k, are added to G in lines 21–22. It follows that Π is
a path in G between p and rep(Su). We will show that the length of Π is at most t′|pq|.

Let i be an integer with 0 ≤ i ≤ k. Recall the definition of cl(Swi); see Definition 3.1: We
consider all pairs {Sx, Sy} in the MWSPD, where x is a c-node on the path in T from wi to the
root, and pick the pair for which dist(Sx, Sy) is minimum. We denote the pair picked by (Sxi , Syi).
Thus, xi is a c-node on the path in T from wi to the root, {Sxi , Syi} is a pair in the MWSPD, and
cl(Swi) = Syi . We define

`i = dist(Sxi , Syi).

Consider the first edge (p, rep(cl(Sw0))) on the path Π. Since p ∈ Sw0 ⊆ Sx0 and rep(cl(Sw0)) ∈
Sy0 , it follows from Lemma 2.4 that

|p, rep(cl(Sw0))| ≤ (1 + 4/s) · dist(Sx0 , Sy0) = (1 + 4/s)`0.

Let 0 ≤ i ≤ k and consider the edge (rep(cl(Swi)), rep(Swi)) on Π. Since rep(Swi) ∈ Swi ⊆ Sxi and
rep(cl(Swi)) ∈ Syi , it follows from Lemma 2.4 that

(1) |rep(cl(Swi)), rep(Swi)| ≤ (1 + 4/s) · dist(Sxi , Syi) = (1 + 4/s)`i.

8

Let 1 ≤ i ≤ k and consider the edge (rep(Swi−1), rep(cl(Swi))) on Π. Since rep(Swi−1) ∈ Swi−1 ⊆ Sxi
and rep(cl(Swi)) ∈ Syi , it follows from Lemma 2.4 that

|rep(Swi−1), rep(cl(Swi))| ≤ (1 + 4/s) · dist(Sxi , Syi) = (1 + 4/s)`i.

Thus, the length of the path Π is at most

k∑
i=0

2(1 + 4/s)`i.

Therefore, it is sufficient to prove that

k∑
i=0

`i ≤ 2
√
d(µd+ 1)(1 + 4/s)2|pq|.

It follows from the definition of cl(Su) = cl(Swk) that

`k = dist(Sxk , Syk) ≤ dist(Su, Sv).

Since, by Lemma 2.4, dist(Su, Sv) ≤ (1 + 4/s)|pq|, it follows that

(2) `k ≤ (1 + 4/s)|pq|.

Thus, it is sufficient to prove that

(3)
k∑
i=0

`i ≤ 2
√
d(µd+ 1)(1 + 4/s)`k.

If k = 0, then (3) obviously holds. Assume from now on that k ≥ 1. For each i with 0 ≤ i ≤ k,
we define

ai = Lmax(β(Swi)),

i.e., ai is the length of a longest side of the bounding box of Swi .
Let 0 ≤ i ≤ k. It follows from Lemma 2.4 that

Lmax(β(Sxi)) ≤
2
s
`i.

Since wi is in the subtree of xi, we have Lmax(β(Swi)) ≤ Lmax(β(Sxi)). Thus, we have

(4) ai ≤
2
s
`i for 0 ≤ i ≤ k.

Lemma 2.6 states that

(5) ai ≤
1
2
ai+d for 0 ≤ i ≤ k − d.

Let 0 ≤ i ≤ k − 1. Since wi is a c-node, there is a node w′i such that {Swi , Sw′i} is a pair in the
MWSPD. Then it follows from the definition of cl(Swi) that

`i = dist(Sxi , Syi) ≤ dist(Swi , Sw′i).

9

By applying Lemma 2.7, we obtain

dist(Swi , Sw′i) ≤
√
d(s+ 4)

2
Lmax(β(Sπ(wi)))

≤
√
d(s+ 4)

2
Lmax(β(Swi+1))

=

√
d(s+ 4)

2
ai+1.

Thus, we have

(6) `i ≤
√
d(s+ 4)

2
ai+1 for 0 ≤ i ≤ k − 1.

First assume that 1 ≤ k ≤ µd. Let 0 ≤ i ≤ k − 1. By using (6), the fact that the sequence
a0, a1, . . . , ak is non-decreasing, and (4), we obtain

`i ≤
√
d(s+ 4)

2
ai+1 ≤

√
d(s+ 4)

2
ak ≤

√
d(1 + 4/s)`k.

Therefore,

k∑
i=0

`i ≤ k
√
d(1 + 4/s)`k + `k ≤ (k + 1)

√
d(1 + 4/s)`k ≤ (µd+ 1)

√
d(1 + 4/s)`k,

which is less than the right-hand side in (3).
It remains to consider the case when k > µd. Let i ≥ 0 and j ≥ 0 be integers such that

i+ 1 + jd ≤ k. By applying (6) once, (5) j times, and (4) once, we obtain

`i ≤
√
d(s+ 4)

2
ai+1 ≤

√
d(s+ 4)

2

(
1
2

)j
ai+1+jd ≤

√
d(1 + 4/s)

(
1
2

)j
`i+1+jd.

For j = µ = dlog(
√
d(1 + 4/s))e+ 1, this implies that, for 0 ≤ i ≤ k − 1− µd,

(7) `i ≤
1
2
`i+1+µd.

By re-arranging the terms in the summation in (3), we obtain

k∑
i=0

`i =
µd∑
h=0

b(k−h)/(µd+1)c∑
j=0

`k−h−j(µd+1).

Let j be such that 0 ≤ j ≤ b(k − h)/(µd+ 1)c. By applying (7) j times, we obtain

`k−h−j(µd+1) ≤
(

1
2

)j
`k−h.

It follows that

b(k−h)/(µd+1)c∑
j=0

`k−h−j(µd+1) ≤
∞∑
j=0

(
1
2

)j
`k−h = 2`k−h.

10

Thus, we have

k∑
i=0

`i ≤ 2
µd∑
h=0

`k−h.

By applying (6), the fact that the sequence a0, a1, . . . , ak is non-decreasing, followed by (4), we
obtain, for 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ k − i,

`i ≤
√
d(s+ 4)

2
ai+1 ≤

√
d(s+ 4)

2
ai+j ≤

√
d(1 + 4/s)`i+j .

Obviously, the inequality `i ≤
√
d(1 + 4/s)`i+j also holds for j = 0. Thus, for i = k− h and j = h,

we get

`k−h ≤
√
d(1 + 4/s)`k for 0 ≤ h ≤ µd.

It follows that

k∑
i=0

`i ≤ 2
µd∑
h=0

√
d(1 + 4/s)`k = 2

√
d(µd+ 1)(1 + 4/s)`k,

completing the proof that (3) holds. �

Lemma 4.3 Assuming that the separation constant s of the WSPD is chosen sufficiently large, the
graph G computed by Algorithm 1 is a t-spanner of the complete k-partite graph KC1...Ck , where
t = 2t′ + 1 + 4/s and t′ is as in Lemma 4.2.

Proof: We denote the graph KC1...Ck by K. It suffices to show that for each edge (p, q) of K, the
graph G contains a path between p and q of length at most t|pq|. We will prove this by induction
on the lengths of the edges in K.

Let p and q be two points of S with different colors, and let {Su, Sv} be the pair in the MWSPD
for which p ∈ Su and q ∈ Sv.

The base case is when (p, q) is a shortest edge in K. Since s > 2, it follows from Lemma 2.4 that
u is a c-node and v is a c′-node, for some colors c and c′ with c 6= c′. In line 17 of Algorithm 1, the
edge (rep(Su), rep(Sv)) is added to G. By Lemma 2.4, the length of this edge is at most (1+4/s)|pq|.
The claim follows from two applications of Lemma 4.2 to get from p to rep(Su) and from rep(Sv)
to q.

In the induction step, we distinguish four cases.

Case 1: u is a c-node and v is a c′-node, for some colors c and c′ with c 6= c′.
This case is identical to the base case.

Case 2: u is a c-node for some color c and v is a multichromatic node.
In lines 17–18, the edge (rep(Su), rep(Sv)) or (rep(Su), rep(S′v)) is added to G. We may assume

without loss of generality that (rep(Su), rep(Sv)) is added. By Lemma 2.4, the length of this edge
is at most (1 + 4/s)|pq|.

By Lemma 4.2, there is a path in G between p and rep(Su) whose length is at most t′|pq|.

11

First assume that q and rep(Sv) have the same color. Let r be a point in Sv that has a color
different from q’s color. Since s > 2, it follows from Lemma 2.4 that |qr| < |pq|. Thus, by induction,
there is a path in G between q and r whose length is at most t|qr|, which, by Lemma 2.4, is at
most (2t/s)|pq|. By a similar argument, since |r, rep(Sv)| < |pq|, there is a path in G between r
and rep(Sv) whose length is at most (2t/s)|pq|. Thus, G contains a path between q and rep(Sv) of
length at most (4t/s)|pq|. If q and rep(Sv) have different colors, then, by induction, there is a path
in G between q and rep(Sv) whose length is at most (2t/s)|pq| < (4t/s)|pq|.

Thus, the graph G contains a path between q and rep(Sv) of length at most (4t/s)|pq|.
We have shown that there is a path in G between p and q whose length is at most

(8)
(
t′ + (1 + 4/s) + 4t/s

)
|pq|.

By choosing s sufficiently large, this quantity is at most t|pq|.
Case 3: u is a multichromatic node and v is a c-node for some color c.

This case is symmetric to Case 2.

Case 4: Both u and v are multichromatic nodes.
In lines 28–29, the edge (rep(Su), rep(Sv)) or (rep(Su), rep(S′v)) is added to G. We may assume

without loss of generality that (rep(Su), rep(Sv)) is added. By Lemma 2.4, the length of this edge
is at most (1 + 4/s)|pq|.

As in Case 2, the graph G contains a path between p and rep(Su) of length at most (4t/s)|pq|,
and a path between q and rep(Sv) of length at most (4t/s)|pq|.

It follows that there is a path in G between p and q whose length is at most

(9) ((1 + 4/s) + 8t/s) |pq|.
By choosing s sufficiently large, this quantity is at most t|pq|. �

Lemma 4.4 The running time of Algorithm 1 is O(n log n), where n = |S|.
Proof: Using the results of Callahan and Kosaraju [4], the split-tree T and the WSPD can be
computed in O(n log n) time. The representatives of all sets Su and all sets cl(Su) can be computed
in O(n) time by traversing the split-tree in post-order and pre-order, respectively. The time for
the rest of the algorithm, i.e., lines 3–31, is proportional to the sum of the size of T , the number of
pairs in the WSPD and the number of edges in the graph G. Thus, the rest of the algorithm takes
O(n) time. �

To summarize, we have shown the following: For any complete k-partite geometric graph K
whose vertex set has size n, Algorithm 1 computes a t-spanner of K having O(n) edges, where t is
given in Lemma 4.3. The running time of this algorithm is O(n log n). By choosing the separation
constant s sufficiently large, the stretch factor t converges to

8
√
d

(
d

⌈
1
2

log d
⌉

+ d+ 1
)

+ 1.

In the next section, we show how to modify the algorithm so that the bound in Lemma 4.2
is reduced, thus improving the stretch factor. The price to pay is in the number of edges in G,
however, it is still O(n).

12

5 An Improved Algorithm

As before, we are given a set S of n points in Rd which is partitioned into k subsets C1, C2, . . . , Ck.
Intuitively, the way to improve the bound of Lemma 4.2 is by adding shortcuts along the path from
each c-leaf to the c-root above it. More precisely, from (7) in the proof of Lemma 4.2, we know that
if we go 1 + µd levels up in the split-tree T , then the length of the edge along the path doubles.
Thus, for each c-node in T , we will add edges to all 2δ(1 + µd) c-nodes above it in T . Here, δ is an
integer constant that is chosen such that the best result is obtained in the improved bound.

Definition 5.1 Let c ∈ {1, 2, . . . , k}, and let u and u′ be c-nodes in the split-tree T such that u′ is
in the subtree rooted at u. For any integer ζ ≥ 1, we say that u is ζ levels above u′, if there are
exactly ζ − 1 c-nodes on the path strictly between u and u′. We say that u′ is a ζ-level c-child of u
if u is at most ζ levels above u′.

The improved algorithm is given as Algorithm 2. The following lemma generalizes Lemma 4.2.

Algorithm 2: Computing a sparse (5 + ε)-spanner of KC1...Ck .

Input: A set S of points in Rd, which is partitioned into k subsets C1, . . . , Ck, and a real
constant 0 < ε < 1.

Output: A (5 + ε)-spanner G = (S,E) of the complete k-partite graph KC1...Ck .

Choose a separation constant s such that s ≥ 12/ε and (1 + 4/s)2 ≤ 1 + ε/36 and choose an
integer constant δ such that 2δ

2δ−1
≤ 1 + ε/36.

The rest of the algorithm is the same as Algorithm 1, except for lines 20–23, which are
replaced by the following:

ζ ← 2δ(µd+ 1);
for each ζ-level c-child u′′ of u′ do

if rep(cl(Su′)) does not have color c then add (rep(Su′′), rep(cl(Su′))) to E;
else add (rep(Su′′), rep′(cl(Su′))) to E;
if rep(cl(Su′′)) does not have color c then add (rep(cl(Su′′)), rep(Su′)) to E;
else add (rep′(cl(Su′′)), rep(Su′)) to E;

end

Lemma 5.2 Let G be the graph computed by Algorithm 2. Let p and q be two points of S with
different colors, and let {Su, Sv} be the pair in the MWSPD for which p ∈ Su and q ∈ Sv. Assume
that u is a c-node for some color c. Then there is a path in G between p and rep(Su) whose length
is at most (2 + ε/3)|pq|.

Proof: Let w be the c-leaf such that r ∈ Sw, and let w = w0, w1, . . . , wk = u be the sequence of
c-nodes that are on the path in T from w to u. As in the proof of Lemma 4.2, we assume without
loss of generality that, for all 0 ≤ i ≤ k, the color of rep(cl(Swi)) is not equal to c.

Throughout the proof, we will use the variables xi, yi, `i, and ai, for 0 ≤ i ≤ k, that were
introduced in the proof of Lemma 4.2.

We first assume that 0 ≤ k ≤ 2δ(µd+ 1). Let Π be the path

p→ rep(cl(Sw))→ rep(Su).

13

It follows from Algorithm 2 that Π is a path in G. Since p ∈ Sw = Sw0 ⊆ Sx0 and rep(cl(Sw)) =
rep(cl(Sw0)) ∈ Sy0 , it follows from Lemma 2.4 that

(10) |p, rep(cl(Sw))| ≤ (1 + 4/s) · dist(Sx0 , Sy0) = (1 + 4/s)`0.

Since {Su, Sv} is one of the pairs that is considered in the definition of cl(Sw0), we have dist(Sx0 , Sy0) ≤
dist(Su, Sv). Again by Lemma 2.4, we have dist(Su, Sv) ≤ (1 + 4/s)|pq|. Thus, we have shown that

|p, rep(cl(Sw))| ≤ (1 + 4/s)2|pq|.

By the triangle inequality, we have

|rep(cl(Sw)), rep(Su)| ≤ |rep(cl(Sw)), p|+ |p, rep(Su)|.

Since p and rep(Su) are both contained in Su, it follows from Lemma 2.4 that |p, rep(Su)| ≤
(2/s)|pq|. Thus, we have

|rep(cl(Sw)), rep(Su)| ≤ (1 + 4/s)2|pq|+ (2/s)|pq|.

We have shown that the length of the path Π is at most(
2(1 + 4/s)2 + 2/s

)
|pq|,

which is at most (2 + ε/3)|pq| by our choice of s in Algorithm 2.
In the rest of the proof, we assume that k > 2δ(µd+ 1). We define

m = k mod (δ(µd+ 1))

and

m′ =
k −m

δ(µd+ 1)
.

We consider the sequence of c-nodes

w = w0, wδ(µd+1)+m, w2δ(µd+1)+m, w3δ(µd+1)+m, . . . , wk = u,

and define Π to be the path

p → rep(cl(Sw0)) → rep(Swδ(µd+1)+m
)

→ rep(cl(Sw2δ(µd+1)+m
)) → rep(Sw2δ(µd+1)+m

)
→ rep(cl(Sw3δ(µd+1)+m

)) → rep(Sw3δ(µd+1)+m
)

...
...

→ rep(cl(Swk)) → rep(Swk) = rep(Su).

It follows from Algorithm 2 that Π is a path in G. We will show that the length of this path is at
most (2 + ε/3)|pq|.

We have shown already (see (10)) that the length of the first edge on Π satisfies

|p, rep(cl(Sw0))| ≤ (1 + 4/s)`0.

14

The length of the second edge satisfies

|rep(cl(Sw0)), rep(Swδ(µd+1)+m
)| ≤ |rep(cl(Sw0)), p|+ |p, rep(Swδ(µd+1)+m

)|
≤ (1 + 4/s)`0 + |p, rep(Swδ(µd+1)+m

)|.

Since p and rep(Swδ(µd+1)+m
) are both contained in Su, it follows from Lemma 2.4 that

|p, rep(Swδ(µd+1)+m
)| ≤ (2/s)|pq|.

Thus, the length of the second edge on Π satisfies

|rep(cl(Sw0)), rep(Swδ(µd+1)+m
)| ≤ (1 + 4/s)`0 + (2/s)|pq|.

Let 2 ≤ j ≤ m′. We have seen in (1) in the proof of Lemma 4.2 that the length of the edge

(rep(cl(Swjδ(µd+1)+m
)), rep(Swjδ(µd+1)+m

))

satisfies

|rep(cl(Swjδ(µd+1)+m
)), rep(Swjδ(µd+1)+m

)| ≤ (1 + 4/s)`jδ(µd+1)+m.

Again, let 2 ≤ j ≤ m′. Since

rep(Sw(j−1)δ(µd+1)+m
) ∈ Swjδ(µd+1)+m

⊆ Sxjδ(µd+1)+m

and

rep(cl(Swjδ(µd+1)+m
)) ∈ Syjδ(µd+1)+m

it follows from Lemma 2.4 that the length of the edge

(rep(Sw(j−1)δ(µd+1)+m
), rep(cl(Swjδ(µd+1)+m

)))

satisfies

|rep(Sw(j−1)δ(µd+1)+m
), rep(cl(Swjδ(µd+1)+m

))| ≤ (1 + 4/s)`jδ(µd+1)+m.

We have shown that the length of Π is at most

(2/s)|pq|+ 2(1 + 4/s)

`0 +
m′∑
j=2

`jδ(µd+1)+m

 .

The definition of `0, `1, . . . , `k implies that this sequence is non-decreasing. Thus, `0 ≤ `δ(µd+1)+m

and it follows that the length of Π is at most

(2/s)|pq|+ 2(1 + 4/s)
m′∑
j=1

`jδ(µd+1)+m.

Recall inequality (7) in the proof of Lemma 4.2, which states that

`i ≤
1
2
`i+µd+1.

15

By applying this inequality δ times, we obtain

`i ≤
(

1
2

)δ
`i+δ(µd+1).

For i = jδ(µd+ 1) +m, this becomes

`jδ(µd+1)+m ≤
(

1
2

)δ
`(j+1)δ(µd+1)+m.

By repeatedly applying this inequality, we obtain, for h ≥ j,

`jδ(µd+1)+m ≤
(

1
2

)(h−j)δ
`hδ(µd+1)+m.

For h = m′, the latter inequality becomes

`jδ(µd+1)+m ≤
(

1
2

)(m′−j)δ
`k.

It follows that
m′∑
j=1

`jδ(µd+1)+m ≤
m′∑
j=1

(
1
2

)(m′−j)δ
`k

=
m′−1∑
i=0

(
1
2

)iδ
`k

≤
∞∑
i=0

(
1
2δ

)i
`k

=
2δ

2δ − 1
`k.

According to (2) in the proof of Lemma 4.2, we have

`k ≤ (1 + 4/s)|pq|.

We have shown that the length of the path Π is at most(
2/s+ 2(1 + 4/s)2

2δ

2δ − 1

)
|pq|.

Our choices of s and δ (see Algorithm 2) imply that 2/s ≤ ε/6, (1 + 4/s)2 ≤ 1 + ε/36 and
2δ

2δ−1
≤ 1 + ε/36. Therefore, the length of Π is at most(
ε/6 + 2(1 + ε/36)2

)
|pq| ≤ (2 + ε/3)|pq|,

where the latter inequality follows from our assumption that 0 < ε < 1. This completes the proof.
�

16

Lemma 5.3 Let n = |S|. The graph G computed by Algorithm 2 is a (5 + ε)-spanner of the
complete k-partite graph KC1...Ck and the number of edges of this graph is O(n). The running time
of Algorithm 2 is O(n log n).

Proof: The proof for the upper bound on the stretch factor is similar to the one of Lemma 4.3.
The difference is that instead of the value t′ that was used in the proof of Lemma 4.3, we now use
the value t′ = 2 + ε/3 of Lemma 5.2. Thus, the stretch factor for the base case of the induction
and for Case 1 is at most

(1 + 4/s) + 2t′ = 5 + 4/s+ 2ε/3,

which is at most 5 + ε, because of our choice for s in Algorithm 2. For Cases 2 and 3, the stretch
factor is at most (see (8) in the proof of Lemma 4.3, where t = 5 + ε)

t′ + (1 + 4/s) + 4t/s = 3 + ε/3 + (4/s)(6 + ε),

which is at most 5 + ε, again because of our choice for s. Finally, the stretch factor for Case 4 is at
most (see (9) in the proof of Lemma 4.3, where t = 5 + ε)

(1 + 4/s) + 8t/s = 1 + (4/s)(11 + 2ε),

which is at most 5 + ε, because of our choice for s.
The analysis for the number of edges is the same as in Lemma 4.1, except that the number of

edges that are added to each c-node in the modified for-loop is 2δ(µd + 1) instead of one as is in
Algorithm 1. Finally, the analysis of the running time is the same as in Lemma 4.4. �

We have proved the following result.

Theorem 5.4 Let k ≥ 2 be an integer, let S be a set of n points in Rd which is partitioned into k
subsets C1, C2, . . . , Ck, and let 0 < ε < 1 be a real constant. In O(n log n) time, we can compute a
(5 + ε)-spanner of the complete k-partite graph KC1...Ck having O(n) edges.

6 Improving the Stretch Factor

We have shown how to compute a (5+ε)-spanner with O(n) edges of any complete k-partite graph.
In this section, we show that if we are willing to use O(n log n) edges, the stretch factor can be
reduced to 3 + ε. We start by showing that a stretch factor less than 3, while using O(n log n)
edges, is not possible.

Theorem 6.1 Let c > 0 be a constant and let n and k be positive integers with 2 ≤ k ≤ n −
2c
√
n log n. For every real number 0 < ε < 1, there exists a complete k-partite geometric graph K

with n vertices such that the following is true: If G is any subgraph of K with at most c2n log n
edges, then the stretch factor of G is at least 3− ε.

Proof: Let D1, D2, and D3 be three disks of radius ε/12 centered at the points (0, 0), (1+ ε/6, 0),
and (2 + ε/3, 0), respectively. We place (n− k + 1)/2 red points inside D1 and (n− k + 1)/2 blue
points inside D2. The remaining k − 2 points are placed inside D3 and each of these points has a

17

distinct color (which is not red or blue). Let K be the complete k-partite geometric graph defined
by these n points. We claim that K satisfies the claim in the theorem.

Let G be an arbitrary subgraph of K and assume that G contains at most c2n log n edges. We
will show that the stretch factor of G is at least 3− ε.

Assume that G contains all red-blue edges. Then the number of edges in G is at least
((n − k + 2)/2)2. Since k ≤ n − 2c

√
n log n, this quantity is larger than c2n log n. Thus, there

is a red point r and a blue point b, such that (r, b) is not an edge in G. The length of a shortest
path in G between r and b is at least 3. Since |rb| ≤ 1 + ε/3, it follows that the stretch factor of G
is at least 3

1+ε/3 , which is at least 3− ε. �

Theorem 6.2 Let k ≥ 2 be an integer, let S be a set of n points in Rd which is partitioned into k
subsets C1, C2, . . . , Ck, and let 0 < ε < 1 be a real constant. In O(n log n) time, we can compute a
(3 + ε)-spanner of the complete k-partite graph KC1...Ck having O(n log n) edges.

Proof: Consider the following variant of the WSPD. For every pair {X,Y } in the standard
WSPD, where |X| ≤ |Y |, we replace this pair by the |X| pairs {{x}, B}, where x ranges over all
points of X. Thus, in this new WSPD, each pair contains at least one singleton set. Callahan and
Kosaraju [4] showed that this new WSPD consists of O(n log n) pairs.

We run Algorithm 2 on the set S, using this new WSPD. Let G be the graph that is computed
by this algorithm. Observe that Lemma 5.2 still holds for G. In the proof of Lemma 5.3 of the
upper bound on the stretch factor of G, we have to apply Lemma 5.2 only once. Therefore, the
stretch factor of G is at most 3 + ε. �

7 Conclusion

We have shown that for every complete k-partite geometric graph K in Rd with n vertices and for
every constant ε > 0,

1. a (5 + ε)-spanner of K having O(n) edges can be computed in O(n log n) time,

2. a (3 + ε)-spanner of K having O(n log n) edges can be computed in O(n log n) time.

The latter result is optimal for 2 ≤ k ≤ n − Θ(
√
n log n), because a spanner of K having stretch

factor less than 3 and having O(n log n) edges does not exist for all complete k-partite geometric
graphs.

We leave open the problem of determining the best stretch factor that can be obtained by using
O(n) edges.

Future work may include verifying other properties that are known for the general geometric
spanner problem. For example, is there a spanner of a complete k-partite geometric graph that has
bounded degree? Is there a spanner of a complete k-partite geometric graph that is planar? From
a more general point of view, it seems that little is known about geometric spanners of graphs other
than the complete graph. The unit disk graph received great attention, but there are a large family
of other graphs that also deserve attention.

18

References

[1] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry, 9:81–100, 1993.

[2] Prosenjit Bose, Paz Carmi, Mathieu Couture, Anil Maheshwari, Michiel Smid, and Norbert
Zeh. Geometric spanners with small chromatic number. In Proceedings of the 5th Workshop
on Approximation and Online Algorithms, Lecture Notes in Computer Science, Berlin, 2007.
Springer-Verlag.

[3] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in
higher dimensions. In Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms,
pages 291–300, 1993.

[4] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90, 1995.

[5] J. Gudmundsson and M. Smid. On spanners of geometric graphs. In Proceedings of the 10th
Scandinavian Workshop on Algorithm Theory, volume 4059 of Lecture Notes in Computer Sci-
ence, pages 388–399, Berlin, 2006. Springer-Verlag.

[6] Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University Press,
New York, NY, USA, 2007.

[7] Bhaskaran Raman and Kameswari Chebrolu. Design and evaluation of a new MAC protocol
for long-distance 802.11 mesh networks. In MobiCom ’05: Proceedings of the 11th annual
international conference on Mobile computing and networking, pages 156–169, New York, NY,
USA, 2005. ACM Press.

[8] J. S. Salowe. Constructing multidimensional spanner graphs. International Journal of Compu-
tational Geometry & Applications, 1:99–107, 1991.

[9] P. M. Vaidya. A sparse graph almost as good as the complete graph on points in K dimensions.
Discrete & Computational Geometry, 6:369–381, 1991.

19

	Introduction
	The Well-Separated Pair Decomposition
	A First Algorithm
	Analysis of Algorithm 1
	An Improved Algorithm
	Improving the Stretch Factor
	Conclusion

