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Abstract

In this paper we consider an infinite relaxation of the mixed integer linear program
with two integer variables, nonnegative continuous variables and two equality constraints,
and we give a complete characterization of its facets. We also derive an analogous char-
acterization of the facets of the underlying finite integer program.

1 Introduction

We consider the mixed 2-integer-variable linear program with two constraints

x = f +
∑k

j=1 r
jsj

x ∈ Z2

s ∈ Rk
+

(1)

where f ∈ Q2\Z2, k ≥ 1, and rj ∈ Q2\{0}. Let Rf (r
1, . . . , rk) be the convex hull of all vectors

s ∈ Rk
+ such that f +

∑k
j=1 r

jsj is integral. Rf (r
1, . . . , rk) is a polyhedron (We refer the

reader to [17] for standard definitions). Model (1) was considered by Andersen, Louveaux,
Weismantel and Wolsey [1]. They showed that the nontrivial facets of Rf (r

1, . . . , rk) are
necessarily defined by split inequalities or intersection cuts (Balas [2]) arising from triangles
or quadrilaterals in R2. A goal of this paper is to give a converse to the result in [1]: which
splits, triangles and quadrilaterals actually define facets of Rf (r

1, . . . , rk)? We present our
analysis in the more general context of the Gomory-Johnson infinite group relaxation.

∗Supported by NSF grant CMMI0653419, ONR grant N00014-97-1-0196 and ANR grant BLAN06-1-138894.
†Supported by ONR grant N00014-97-1-0196.
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Gomory [9], Gomory and Johnson [12] and Johnson [13] suggested relaxing the k-dimensional
space of variables s = (s1, . . . , sk) to an infinite-dimensional space, where the variables sr
are defined for any r ∈ Q2. We get the infinite program with two integer variables and two
constraints

x = f +
∑

rsr
x ∈ Z2

s ≥ 0 with finite support.
(2)

The vector s = (sr)r∈Q2 is said to have finite support if sr 6= 0 for a finite number of
r ∈ Q2. Let Rf be the convex hull of all vectors s ≥ 0 with finite support such that f+

∑

rsr
is integral. Note that the polyhedron Rf (r

1, . . . , rk) is obtained from Rf by setting sr = 0
for all r ∈ Q2 \ {r1, . . . , rk}. Our motivation for working with Rf is that it only has one
parameter, namely f , and therefore the results are cleaner than with Rf (r

1, . . . , rk). A
drawback of Rf is that it is not a closed set. For example, the sequence sk for k = 1, 2, . . .
defined by

skr =

{

1
k

if r = −kf
0 otherwise

is in Rf and converges to 0, but 0 6∈ Rf since f ∈ Q2 \ Z2. Throughout the paper, we relate
results obtained for the convex set Rf to those obtained for the polyhedron Rf (r

1, . . . , rk).

1.1 Minimal valid inequalities

We say that an inequality αs ≥ β is valid for Rf (resp. Rf (r
1, . . . , rk)) if it is satisfied by all

vectors in Rf (resp. Rf (r
1, . . . , rk)). Inequalities si ≥ 0 are called trivial valid inequalities.

In this paper, we discuss only nontrivial valid inequalities. The solution s = 0 is not feasible
for Rf . Any valid inequality for Rf that cuts off the vector s = 0 is of the form

∑

ψ(r)sr ≥ 1 , (3)

where ψ : Q2 → R∪ {+∞} and, as above, we only consider vectors s with finite support. To
avoid ambiguity, the product +∞ · 0 is defined to be 0.

Any valid inequality for Rf yields a valid inequality for Rf (r
1, . . . , rk) by simply restrict-

ing it to the space r1, . . . , rk. Furthermore, a full description of the polyhedron Rf (r
1, . . . , rk)

is obtained from the set of valid inequalities for Rf by adding the constraints sr = 0
for r 6= r1, . . . , rk. Therefore we will assume in the remainder that valid inequalities for
Rf (r

1, . . . , rk) are restrictions of valid inequalities for Rf .
An inequality

∑

ψ(r)sr ≥ 1 valid for Rf is minimal if there is no valid inequality
∑

ψ′(r)sr ≥ 1 where ψ′ ≤ ψ and ψ′(r) < ψ(r) for at least one r ∈ Q2. Note that when
ψ(r) = +∞ we have ψ′(r) < ψ(r) if and only if ψ′(r) is finite. If ψ defines a minimal valid
inequality

∑

ψ(r)sr ≥ 1, we also say that the function ψ is minimal. In [4], it was shown
that a minimal valid function ψ is nonnegative, positively homogeneous, piecewise linear, and
convex. Recall that a function ψ is positively homogeneous if ψ(λr) = λψ(r) for all λ ≥ 0.
Since ψ is always nonnegative in this paper, we simply say homogeneous to mean positively
homogeneous. Define

Bψ := {x ∈ Q2 : ψ(x− f) ≤ 1} . (4)
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The convexity of ψ implies that Bψ is a convex set in Q2. The following result was proved in
[4].

Theorem 1.1. Let f ∈ Q2. A minimal valid function ψ for Rf is nonnegative, homo-
geneous, piecewise linear, and convex. Furthermore, the closure of the set Bψ in R2 is a
full-dimensional polyhedron with 2, 3 or 4 edges, it contains no integral point in its interior
but each edge contains at least one integral point in its relative interior.

We will simply say in the interior of an edge to mean in its relative interior. Next we
describe the different sets Bψ arising in Theorem 1.1.
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Figure 1: Representation of Bψ for nondegenerate cases.

The point f is in Bψ since ψ(0) = 0. The nondegenerate case is obtained when f is in the
interior of Bψ (see Figure 1). In this case, an extension of ψ to R2 is obtained by defining
ψ(x − f) = 1 for all points on the boundary of the closure of Bψ, denoted by clBψ. Indeed,
the knowledge of f and of the boundary of clBψ together with the homogeneity of ψ is enough
to compute the value of ψ(r) for any vector r ∈ R2 \ {0}: If there is a positive scalar λ such
that the point f +λr is on the boundary of clBψ, we get that ψ(r) = 1/λ. Otherwise, if there
is no such λ, r is an unbounded direction of clBψ and ψ(r) = 0. Note that this extension of
ψ to R2 is a continuous function.
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Figure 2: Level curves of ψ(r) for nondegenerate cases.

We use the graphic representation of Bψ to describe ψ when possible. The inequalities
corresponding to the three cases of Figure 1 will be called split, triangle and quadrilateral
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inequalities. They are special cases of the intersection cuts of Balas [2]. Split inequalities in
higher dimensions were studied by Cook, Kannan and Schrijver [6], who coined the name.
These inequalities are equivalent to Gomory’s mixed integer inequalities [10] (see [5] for a

proof). In Figure 2, we represent the function ψ in the (r1, r2)-space where r =

(

r1
r2

)

∈ R2.

Solid lines give level curves of ψ(r) with values 0 and 1 for the three examples of Figure 1.
The degenerate case is obtained when f is a vertex of clBψ or when f lies on one of its

edges (see Figure 3 for three examples). Then ψ is not finite everywhere [4]. An extension
of ψ to R2 ∪ {+∞} is obtained by defining ψ(x − f) = 1 for all points on the boundary of
clBψ, except for directions (x− f) supporting edges of clBψ containing f : For any direction
0 6= r ∈ R2 such that the half-line Lr = {x = f + λr for λ > 0} is entirely outside clBψ,
we have ψ(r) = +∞. For the directions such that the half-line Lr goes through the interior
of clBψ, let f + λr be the point where Lr intersects the boundary of clBψ; then we get
ψ(r) = 1/λ. Finally, when Lr supports an edge E of clBψ, assume that y = f + λr is the
first integral point encountered on Lr starting from f (such a point exists since E contains
an integral point and f is rational, implying that Lr contains infinitely many integral points)
and let x = f + µr be the first vertex of clBψ encountered (if any); if y is encountered first,
we get ψ(r) = 1/λ and if x is encountered first, we get ψ(r) = 1/µ. The resulting extension
of ψ to R2 ∪ {+∞} is not continuous, even in the region where ψ is finite. Dey et al. [7]
showed in a more general context that, if ψ(r) < +∞ everywhere, then ψ is continuous, and
therefore ψ is nondegenerate.

There are five different degenerate inequalities, depending on the type of set clBψ and
the position of f on its faces: degenerate split, vertex-degenerate triangle, edge-degenerate
triangle, vertex-degenerate quadrilateral and edge-degenerate quadrilateral inequalities. Solid
lines in Figure 4 give level curves of ψ(r) with value 1 for the three examples of Figure 3.

f

f

f

Bψ

BψBψ

Figure 3: Representation of Bψ for degenerate cases.

A convex set with no integral point in its interior is called lattice-free. Maximal lattice-free
convex sets in Rn are polyhedra with at most 2n facets (Bell [3], Scarf [18] and Lovász [14]).
The complete list of all maximal lattice-free convex sets in the plane is known:

Theorem 1.2. (Lovász [14]) A maximal lattice-free convex set in the (x1, x2)-plane R2 is
one of the following:

i) A line ax1 + bx2 = c, where a/b is irrational;

4



0
0

0

1

1

1

1
1

1

1

11

1 1

r1

r1
r1 r2

r2
r2

+∞

+∞

+∞

+∞

+∞

Figure 4: Level curves of ψ(r) for degenerate cases.

ii) A strip c ≤ ax1 + bx2 ≤ c+ 1 where a and b are coprime integers and c is an integer;

iii) A triangle with a least one integral point in the interior of each of its edges;

iv) A quadrilateral containing exactly four integral points, with exactly one of them in
the interior of each of its edges; Moreover, these four integral points are vertices of a
parallelogram of area 1.

The polyhedra referred to in Theorem 1.1 correspond to the last three cases of Theorem
1.2. The first case does not play a role here as we only consider rational vectors f and r in
the definition of Rf . Note that if we had defined Rf and Rf (r

1, . . . , rk) for parameters in
R2 instead of Q2, the strict inequality

∑

r 6=r0 sr > 0 would be valid when r01/r
0
2 is irrational

and the line f + λr0 contains no integral point (this inequality corresponds to the first case
of Theorem 1.2 and it is not implied by the valid inequalities of Theorem 1.1 since these
inequalities all have ψ(r0) > 0). In particular Rf (r

1, . . . , rk) would not be a polyhedron
anymore. Thus the assumption that the vectors f and r are rational is important in the
definitions of Rf and Rf (r

1, . . . , rk).
On the other hand, extending the definition of ψ and Bψ to R2 is useful since the maximal

lattice-free triangles and quadrilaterals in cases ii) and iii) of Theorem 1.2 may have irrational
corner vertices. In the remainder of the paper, ψ and Bψ are always assumed to be defined
over R2.

1.2 Facets

A valid inequality
∑

ψ(r)sr ≥ 1 for Rf is extremal, or defines a facet of Rf if there does not
exist two distinct valid inequalities

∑

ψj(r)sr ≥ 1, j = 1, 2, such that ψ = 1
2ψ1 + 1

2ψ2. By
extension, we also say that the function ψ itself defines a facet of Rf . Note that, although
we only use nontrivial inequalities in this definition, including them would give an equivalent
definition.

Remark 1.3. The definition of a facet implies that if ψ defines a facet of Rf then ψ is
minimal.
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Remark 1.4. If a valid function ψ is not facet defining for Rf , then ψ ≥ 1
2ψ1 + 1

2ψ2 where
ψ1 and ψ2 are both minimal valid functions and ψ 6= ψ1 or ψ2.

Gomory [11] recently noted that triangle inequalities define facets of Rf and raised the
question of completely describing the facets of Rf . In this paper, we give such a characteri-
zation. It is summarized in the next theorem.

Theorem 1.5. The facets of Rf are all split inequalities, all triangles inequalities, all quadri-
lateral inequalities that satisfy a certain ratio condition, all degenerate split inequalities, some
degenerate triangle inequalities (see Theorems 4.9 and 4.10 for details) but no degenerate
quadrilateral inequalities.

A valid inequality
∑k

i=1 ψ(ri)si ≥ 1 for Rf (r
1, . . . , rk) defines a facet of Rf (r

1, . . . , rk)

if there does not exist two distinct valid inequalities
∑k

i=1 ψj(r
i)si ≥ 1, j = 1, 2, such that

ψ(ri) = 1
2ψ1(r

i) + 1
2ψ2(r

i) for i = 1, . . . , k. This definition of a facet of Rf (r
1, . . . , rk) is

consistent with the usual definition of a facet of a polyhedron only if the polyhedron is full
dimensional. The next lemma shows that this is the case.

Lemma 1.6. If Rf (r
1, . . . , rk) is non empty, then it is full dimensional.

Proof. The recession cone of Rf (r
1, . . . , rk) is Rk

+.

In the remainder, we assume that Rf (r
1, . . . , rk) 6= ∅. Note that this is easy to check. In

particular, this is always the case when the rays rj for j = 1, . . . , k span R2.
In [1], Andersen, Louveaux, Weismantel and Wolsey study Rf (r

1, . . . , rk) and they prove
that, when nonnegative combinations of r1, . . . , rk span R2, all the nontrivial facets of
Rf (r

1, . . . , rk) are split inequalities or are triangle or quadrilateral inequalities where the
vertices of Bψ are on the rays f+λri, λ > 0, for i = 1, . . . , k. They do not, however, describe
precisely which triangles and quadrilaterals generate facets. Some of the polyhedra Bψ they
use are maximal lattice-free but, in order to have vertices of Bψ on rays f + λri, λ > 0, they
also use polyhedra Bψ that are not maximal lattice-free. See Figure 5.

f ff

r1 r1r1 r2 r2r2

r3 r3r3

r4 r4r4

Bψ Bψ

Figure 5: Data, a non maximal lattice-free quadrilateral defining a facet, and a maximal
lattice-free triangle defining the same facet.

In addition to Theorem 1.5, the other main result of this paper is a characterization of
the facets of Rf (r

1, . . . , rk).
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Theorem 1.7. The facets of Rf (r
1, . . . , rk) are

i) split inequalities where the infinite direction of Bψ is rj for some j = 1, . . . , k and the
line f + λrj contains no integral point; or where Bψ satisfies a certain ray condition
(see Theorem 3.12 for details)

ii) triangle inequalities where the triangle Bψ has its corner points on three half-lines f+λrj

for some j = 1, . . . , k and λ > 0; or where the triangle Bψ satisfies a certain ray
condition (see Section 3.2.1 for details),

iii) quadrilateral inequalities where the corners of Bψ are on four half-lines f+λrj for some
j = 1, . . . , k and λ > 0, and Bψ satisfies a certain ratio condition (see Theorem 3.10
for details).

iv) None of the degenerate cases are needed to define the facets of Rf (r
1, . . . , rk).

The paper is organized as follows. In Section 2, we give simple technical results that are
useful in the remainder of the paper. In Section 3 we prove Theorem 1.7 and in Section 4 we
prove Theorem 1.5.

2 Preliminaries

The three lemmas in this section collect simple properties that will be used in the remainder
of the paper.

The first lemma is a characterization of maximal lattice-free triangles that was observed
by Dey and Wolsey [8].

Lemma 2.1. If T is a maximal lattice-free triangle in R2, then

i) T has exactly three integral points on its boundary, one in the interior of each edge, or

ii) T has exactly six integral points on its boundary, the three vertices and one in the middle
of each edge, or

iii) T has exactly one edge E with at least two integral points in its interior. The vertex
opposite edge E is nonintegral.

Proof. Suppose T has an edge E1 with at least two integral points y1, y2 in its interior, and
another edge E2 with two integral points y3, y4 distinct from the point x3 = E1 ∩ E2. Say
x3, y1, y2 appear in this order in E1 and x3, y3, y4 appear in this order in E2. Then the points
y2 +(y3− y1) and y4 +(y1− y3) are integral points and at least one of them is in the triangle
x3y2y4 and thus in the interior of T , a contradiction. This shows that either iii) holds or
every edge of T has exactly one integral point in its interior.

In the latter case, either i) holds or T has an integral corner point x3. Let E1 and E2 be
the edges of T containing x3 and let yi be the integral vertex in the interior of Ei for i = 1, 2.
Let xi be the symmetric of x3 relative to yi. Since xi is integral and therefore not interior
to Ei by our assumption, T is contained in the triangle x1x2x3. It is easy to verify that
the triangle x1x2x3 only contains six integral points, namely the xis, y1, y2 and the middle
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y3 of x1 and x2: Indeed, the only integral points in triangle x3y1y2 are its corners and by
translation and symmetry the same holds for x1y1y3, y1y2y3 and x2y2y3. By maximality, T
is the triangle x1x2x3. Therefore ii) holds.

Lemma 2.2. Let f ∈ Q2 and let ψ be valid and minimal for Rf . Let x1, x2, x3 ∈ R2 be three
distinct points such that x2 = µx1 + (1 − µ)x3 for some 0 < µ < 1.

i) If ψ(x1 − f) ≤ 1 and ψ(x2 − f) = 1 then ψ(x3 − f) ≥ 1;

ii) If ψ(x1 − f) ≤ 1, ψ(x2 − f) = 1, and ψ(x3 − f) ≤ 1 then ψ(x1 − f) = ψ(x3 − f) = 1;

iii) If ψ(x1 − f) = ψ(x2 − f) = ψ(x3 − f) = 1 then ψ(x − f) = 1 for all x on the line
segment µ′x1 + (1 − µ′)x3 for 0 ≤ µ′ ≤ 1.

Proof. i) By Theorem 1.1, ψ is convex and thus 1 = ψ(x2−f) ≤ µψ(x1−f)+(1−µ)ψ(x3−f) ≤
µ+ (1 − µ)ψ(x3 − f).

ii) Using i), we have ψ(x3−f) ≥ 1 and thus ψ(x3−f) = 1. Symmetry implies ψ(x1−f) =
1.

iii) Without loss of generality, assume that x = µ′x1 + (1− µ′)x3 = µ′′x2 + (1− µ′′)x3 for
some 0 ≤ µ′′ ≤ 1. Convexity of ψ then implies that ψ(x− f) ≤ µ′′ψ(x2 − f)+ (1−µ′′)ψ(x3 −
f) = 1. Applying ii) to the triplet x1, x2, x, we get ψ(x− f) = 1.

Lemma 2.3. Let f ∈ Q2 and let ψ be valid for Rf . Assume that ψ ≥ 1
2ψ1 + 1

2ψ2 where ψj
is valid and minimal for j = 1, 2.

i) If ψ(y − f) = 1 for an integral point y then ψj(y − f) = 1 for j = 1, 2.

ii) Let y1 and y2 two distinct integral points. Let E be a line segment with y1, y2 ∈ E and
with y1 in the interior of E. If ψ(x − f) = 1 for all x ∈ E then ψj(x − f) = 1 for all
x ∈ E, j = 1, 2.

iii) Let x1 and y1 be two distinct points, with y1 integral. Let E be a line segment with
x1, y1 ∈ E and with y1 in the interior of E. If ψ(x − f) = 1 for all x ∈ E and
ψ1(x

1 − f) = ψ2(x
1 − f) = 1 then ψj(x− f) = 1 for all x ∈ E, j = 1, 2.

iv) Let L be a line with direction d ∈ Q2 and containing integral points. If ψ(x − f) = 1
for all x ∈ L, then ψj(x− f) = 1 for all x ∈ L, j = 1, 2.

Proof. i) Since y is an integral point and ψj is valid, ψj(y − f) ≥ 1. As ψ(y − f) = 1 and
ψ ≥ 1

2ψ1 + 1
2ψ2, we get ψj(y − f) = 1 for j = 1, 2.

ii) Let x ∈ E with x outside the line segment y1y2 with y1 between x and y2. Such an x
exists as y1 is in the interior of E. We claim that ψj(x− f) = 1 for j = 1, 2. If x is integral,
point i) proves it. Assume now that x is not integral. Lemma 2.2 i) for ψj and the triplet
y2, y1, x shows that ψj(x−f) ≥ 1. As ψ(x−f) = 1 and ψ ≥ 1

2ψ1 + 1
2ψ2, we get ψj(x−f) = 1.

This proves the claim.
Using Lemma 2.2 iii), we get that ψj(z − f) = 1 for all z on the line segment xy2 for

j = 1, 2.
If there exists a point x outside the segment y1y2 with y2 between x and y1, a similar

reasoning can be used to get ψj(z − f) = 1 for all z on the line segment xy1 for j = 1, 2.
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iii) Similar to ii) with x1 replacing y2.
iv) Let x̄ ∈ L. Observe that since d ∈ Q2, there exist infinitely many integral points on

L. It it thus possible to find three distinct integral points y1, y2, y3 ∈ L such that both y2

and x̄ are in the interior of the line segment E = y1y3. Since ψ(x − f) = 1 for all x ∈ E,
point ii) above implies that ψj(x− f) = 1 for all x ∈ E (and thus for x̄), for j = 1, 2.

3 Facets of Rf(r
1, . . . , rk)

In this section we prove Theorem 1.7. We first show that degenerate cases can be ignored
when dealing with Rf (r

1, . . . , rk). We then characterize when triangle and quadrilateral
inequalities define facets. Finally we give conditions for split inequalities to define facets of
Rf (r

1, . . . , rk).

3.1 Degenerate cases are not needed for Rf (r
1, . . . , rk)

Theorem 3.1. Let f, r1, . . . , rk ∈ Q2 with k ≥ 1. Every nontrivial facet of Rf (r
1, . . . , rk)

can be obtained from a nondegenerate minimal valid function ψ.

Proof. It suffices to show that any degenerate minimal valid function ψ is identical to a
nondegenerate minimal valid function ψ′ in the k directions r1, . . . , rk. Without loss of
generality, assume that ψ(ri) < +∞ if and only if i ≤ ` for some 0 ≤ ` ≤ k. We consider the
five possible degenerate cases for ψ.

i) ψ defines a degenerate split inequality. Let L0 be the infinite edge of clBψ containing
f and let y1 and y2 be the first integral points on L0 encountered starting from f in each
direction, respectively. Let L1 be the other infinite edge of clBψ and let y3 and y4 be two
distinct integral points on L1. For i = 1, . . . , `, if there exists µi > 0 such that f + µir

i

is a point on L1, let wi be this point. Otherwise, define wi = f . The convex hull of
{wi | i = 1, . . . , `}∪{y1, . . . , y4} is a lattice-free quadrilateral Q with no integral point in the
interior of the edge E containing f . Replacing E by an edge parallel to E arbitrarily close
to E, enlarging slightly Q gives a lattice-free quadrilateral Q′ with f in its interior. Let ψ′

be the minimal valid function corresponding to Q′. We have ψ′(ri) ≤ ψ(ri) for i = 1, . . . , k,
proving the result.

ii) ψ defines a vertex-degenerate triangle or quadrilateral inequality. Let E1 and E2 be the
two edges of clBψ incident with f and let y1 and y2 be the first integral points encountered on
these edges starting from f . Let x be a point arbitrarily close to f with ψ(x− f) = +∞ and
such that the cone K with vertex x and generated by the vectors xy1 and xy2 contains all
positive multiples of the rays r1, . . . , r` except, possibly, those in directions fy1 or fy2. If ψ
defines a triangle inequality, let L1 be the line supported by the edge of clBψ not containing
f and let H be the half-space limited by L1 and containing x. Otherwise, ψ defines a
quadrilateral inequality, and let H be the cone formed by the two edges of the quadrilateral
not containing f . The intersection of K with H is a lattice-free triangle T or quadrilateral
Q with f in its interior. Let ψ′ be the minimal function corresponding to T or Q. We have
ψ′(ri) ≤ ψ(ri) for i = 1, . . . , k, proving the result.

iii) ψ defines an edge-degenerate triangle or quadrilateral inequality. Consider first the
case where the edge E1 containing f also contains an integral point interior to E1 on each side
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of f . This situation can only occur when clBψ is a triangle by Theorem 1.2 iv). Let y1 and y2

be the first integral points on E1 encountered starting from f in each direction, respectively.
Let x be a point arbitrarily close to f with ψ(x − f) = +∞ and such that the cone K with
vertex x and generated by the vectors xy1 and xy2 contains all the positive multiples of the
rays r1, . . . , r` except, possibly, those in directions fy1 or fy2. The intersection of K with
the cone formed by the two edges of clBψ not containing f is a lattice-free quadrilateral Q
with f in the interior of Q. Let ψ′ be the minimal valid function corresponding to Q. We
have ψ′(ri) ≤ ψ(ri) for i = 1, . . . , k, proving the result.

Finally consider the case where the interior of the edge E1 that contains f has all its
integral points on one side of f . Let y be the closest integral point of f in the interior of E1.
By tilting the edge E1 around y by a small angle we modify the original triangle T (resp.,
quadrilateral Q) into a new triangle T ′ (resp. quadrilateral Q′) with f in its interior. Let
L′

1 be the line containing this tilted edge. Choose the tilting angle small enough so that all
rays r1, . . . , r` except, possibly, those in the direction fy point in the half-space limited by
L′

1 and containing T ′ (resp., Q′). Let ψ′ be the minimal valid function corresponding to T ′

(resp., Q′). We have ψ′(ri) ≤ ψ(ri) for i = 1, . . . , k, proving the result.

3.2 Triangle and quadrilateral inequalities for Rf (r
1, . . . , rk)

Let us turn now to the nondegenerate cases, i.e. f is in the interior of Bψ. We distinguish
two cases depending on whether Bψ is unbounded or a polytope. We deal with the polytopes
in this section and with the unbounded case in the next section.

3.2.1 Reducing the dimension k

Let f, r1, . . . , rk ∈ Q2 with k ≥ 1. Let Bψ be a maximal lattice-free triangle or quadrilateral
with f in its interior. In this section we reduce the question of whether ψ defines a facet of
Rf (r

1, . . . , rk) to a problem on at most four rays rj.
For j = 1, . . . , k, let pj be the intersection of the half-line f + λrj, λ ≥ 0, with the

boundary of Bψ. The point pj is called the boundary point for rj. Let P be a set of boundary
points. We say that a point p ∈ P is active if it can have a positive coefficient in a convex
combination of points in P generating an integral point. Note that p ∈ P is active if and only
if p is integral or there exists q ∈ P such that the segment pq contains an integral point in its
interior. We say that an active point p ∈ P is uniquely active if it has a positive coefficient
in exactly one convex combination of points in P generating an integral point.

We apply the following Reduction Algorithm:

0.) Let P = {p1, . . . , pk}.

1.) While there exists p ∈ P such that p is active and p is a convex combination of other
points in P , remove p from P . At the end of this step, P contains at most two active
points on each edge of Bψ and all points of P are distinct.

2.) While there exists a uniquely active p ∈ P , remove p from P .

3.) If P contains exactly two active points p and q (and possibly inactive points), remove
both p and q from P .

10



We say that the ray condition holds for a triangle or a quadrilateral if P = ∅ at termination
of the Reduction Algorithm.

Lemma 3.2. At termination of the Reduction Algorithm, the set of active points in P is
either empty or consists of the corner points of Bψ.

Proof. Let Q be the set of active points in P at termination of the Reduction Algorithm.
Suppose the lemma does not hold.

Observation 1: Step 1 implies that Q has at most two points on each edge.
Observation 2: Step 2 implies that every point of Q is involved in at least two distinct

convex combinations.
Observation 3: Let E be an edge of Bψ with a unique integral interior point. By Obser-

vations 1 and 2, Q cannot contain a point interior to E.
Observation 4: Step 3 and Observation 2 imply that |Q| ≥ 3.
Suppose Bψ is a triangle of Type i) or ii) of Lemma 2.1. Observation 3 and the fact that

Q misses at least one corner of Bψ implies that all the points of Q are on the same edge.
This contradicts Observations 1 and 4.

Suppose Bψ is a triangle of Type iii) of Lemma 2.1. By Observations 3 and 4, Q has two
points in the edge with multiple integral points and one in the corner of Bψ opposite that
edge. This last point contradicts Observation 2 since Q misses at least one corner of Bψ.

Suppose Bψ is a quadrilateral. By Observation 3, the points of Q are corner points of Bψ.
Since Q misses at least one corner of Bψ, there is a point q ∈ Q such that only one of the
two edges containing q also contains another point of Q. But then q contradicts Observation
2.

Let x1, . . . , xh denote the corner points of Bψ. We define the corner rays of Bψ to be the
rays rj = xj − f for j = 1, . . . , h.

Theorem 3.3. Let f, r1, . . . , rk ∈ Q2 with k ≥ 1. Let Bψ be a maximal lattice-free triangle
or quadrilateral with f in its interior. Let h = 3 when Bψ is a triangle and h = 4 when Bψ
is a quadrilateral. Then ψ defines a facet of Rf (r

1, . . . , rk) if and only if either

i) the set {r1, . . . , rk} contains rays ri1, . . . , rih that are positive multiples of the corner
rays of Bψ and ψ defines a facet of Rf (r

i1 , . . . , rih), or

ii) the ray condition holds.

Proof. The function ψ defines a face of Rf (r
1, . . . , rk). We study its dimension. Let S =

{s1, . . . , st} in Rf (r
1, . . . , rk) be a maximum cardinality set of affinely independent points

that satisfy the inequality
∑k

j=1 ψ(rj)sj ≥ 1 as an equality.

Let R be the 2× k matrix whose column j is rj for j = 1, . . . k. Let S be the k× t matrix
whose column i is si for i = 1, . . . t. Let D be the k × k diagonal matrix whose (j, j) entry is
ψ(rj) for j = 1, . . . k. Observe that D is invertible and let

R̄ = R ·D−1 and S̄ = D · S .

Let us denote column j of R̄ by r̄j and column i of S̄ by s̄i. Observe that for j = 1, . . . , k
we have ψ(r̄j) = 1 implying that the point pj = f + r̄j is on the boundary of Bψ. As
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multiplying each component of all the vectors in S by a positive number does not change its
affine dimension, the column set of S̄ has the same affine dimension as the column set of S.

Claim 1: For i = 1, . . . , t, the coordinates of the vector s̄i are the coefficients of a convex
combination of the points in P that yields an integral point on the boundary of Bψ.

Indeed, we have

k
∑

j=1

s̄ij =

k
∑

j=1

ψ(rj)sij = 1

Moreover, s̄i ≥ 0 and f +
∑k

j=1 r
jsij ∈ Z2. Thus

k
∑

j=1

pj s̄ij =

k
∑

j=1

(f + r̄j)s̄ij = f +

k
∑

j=1

rjsij ∈ Z2 .

Therefore the coordinates of s̄i are the coefficients of a convex combination of points in P
that yields an integral point. Since the only integral points in Bψ are on its boundary, the
claim follows.

Claim 1 implies that the columns of S̄ are affinely independent if and only if they are
linearly independent.

Claim 2: Suppose that the Reduction Algorithm removes point pk ∈ P in Step 1. If
k = 1, then ψ defines a facet of Rf (r

1, . . . , rk). Otherwise, ψ defines a face of dimension w
of Rf (r

1, . . . , rk) if and only if ψ defines a face of dimension w − 1 of Rf (r
1, . . . , rk−1).

The boundary point pk is a convex combination of other points in P , say pk =
∑k−1

j=1 αj p
j.

Define the k-vector v by

vj =

{

αj for j = 1, . . . , k − 1
−1 for j = k

.

As pk is active, there exists a nonzero entry in row k of S̄. We can assume without loss
of generality that s̄tk > 0. The vector s̄t+1 = s̄t + s̄tkv is in Rf (r

1, . . . , rk) and satisfies the

inequality
∑k

j=1 ψ(rj)sj ≥ 1 as an equality. Therefore it belongs to the affine space generated

by the columns of S̄. The vectors s̄t, s̄t+1 are linearly independent. It is thus possible to find
a set S̄′ of t linearly independent vectors in {s̄1, . . . , s̄t+1} and containing s̄t, s̄t+1. Then
replacing s̄i by s̄i + s̄ikv for all s̄i ∈ S̄′ except s̄t is just doing elementary column operations
and does not change the rank, since v = 1

s̄t
k

(s̄t+1 − s̄t). As the resulting vectors have a zero

entry in component k except s̄tk > 0, by removing s̄t from S̄′ and deleting row k in S̄′, we
reduce by one both the dimension of the whole space and the dimension of the affine space
spanned by S̄. The converse is proved analogously, adding one zero component to the columns
in S̄ and one new column in S̄ corresponding to a convex combination where pk is active. The
dimension of the space is increased by one as is the number of affinely independent points on
the face. This proves the claim.
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Claim 3: Suppose that the Reduction Algorithm removes point pk ∈ P in Step 2. If
k = 1, then ψ defines a facet of Rf (r

1, . . . , rk). Otherwise, ψ defines a face of dimension w
of Rf (r

1, . . . , rk) if and only if ψ defines a face of dimension w − 1 of Rf (r
1, . . . , rk−1).

Point pk is involved in a single convex combination s̄i. If k = 1, pk is integral and the
result clearly holds. Otherwise, removing s̄i and component k in S̄, we reduce by one both
the dimension of the whole space and the dimension of the affine space spanned by S̄. The
converse is proved as above. This proves the claim.

Claim 4: Suppose that k = 2 and the Reduction Algorithm removes points p1, p2 ∈ P in
Step 3. Then ψ defines a facet of Rf (r

1, r2).

Points p1, p2 are involved in two distinct convex combinations s̄1, s̄2, and the result clearly
holds.

Using Claims 2, 3 and 4 recursively, we get that ψ defines a facet of Rf (r
1, . . . , rk) if and

only the ray condition holds or ψ defines a facet of Rf (r
i1 , . . . , rik′ ) where P ′ = {pi1 , . . . , pik′}

is the set of remaining boundary points at termination of the Reduction Algorithm.
Let S′ be the k′ × t′ matrix obtained from S̄ while applying the Reduction Algorithm. If

some p ∈ P ′ is not active, then the row of S′ corresponding to p has only zero entries. This
implies t′ < k′, proving that ψ does not define a facet of Rf (r

i1 , . . . , rik′ ). Therefore ψ defines
a facet of Rf (r

1, . . . , rk) if and only if all points in P ′ are active and either the ray condition
holds or ψ defines a facet of Rf (r

i1 , . . . , rik′ ). Now the theorem follows from Lemma 3.2.

3.2.2 Rationality of the triangles and quadrilaterals that define facets of Rf (r
1, . . . , rk)

We say that a triangle or quadrilateral is rational if its boundary lines have rational equations,
or equivalently, if the coordinates of its corner points are rational.

Lemma 3.4. Let f, r1, . . . , rk ∈ Q2. The maximal lattice-free triangles and quadrilaterals of
Theorems 3.3 i) are rational.

Proof. By a theorem of Meyer [16], the rationality of f, r1, . . . , rk implies that Rf (r
1, . . . , rk)

is a rational polyhedron. Therefore its facets
∑k

j=1 ψ(rj)sj ≥ 1 have rational coefficients

ψ(rj). For triangles and quadrilateral inequalities, these coefficients are strictly positive.
Therefore xj = f + 1

ψ(rj)
rj has rational coordinates for j = 1, . . . , k. In particular, the

coordinates of the corner points are rational.

As usual, let f, r1, . . . , rk ∈ Q2. Suppose that Bψ is a maximal lattice-free triangle or
quadrilateral with f in its interior such that the ray condition holds. By Theorem 3.3, ψ
defines a facet of Rf (r

1, . . . , rk). It may happen that Bψ is irrational, but there exists a maxi-
mal lattice-free rational triangle or quadrilateral Bψ′ defining the same facet of Rf (r

1, . . . , rk)
as Bψ. The proof of this claim is straightforward, since the only edges of Bψ that can possibly
be irrational have only one integral point y in their interior and no ray intersects them except
possibly at y. Pivoting the edge slightly around y, we can make the edge rational.
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3.2.3 Corner rays

In this section, we assume that Bψ is a maximal lattice-free triangle or quadrilateral and that
f is in its interior.

Let x1, . . . , xh be the vertices of Bψ and let r1, . . . , rh be the corner rays of Bψ with
rj = xj − f . We always assume that the vertices are topologically ordered so that the edges
of the boundary of Bψ are convex combinations of xi and xi+1 with indices taken modulo h.
Let yi be an integral point that can be obtained as a nontrivial convex combination of xi and
xi+1 for i = 1, . . . , h (indices are always implicitly taken modulo h).

Define Y as the 2×h matrix whose column i is the vector yi for i = 1, . . . , h (Recall that
h = 3 or 4). Define X as the 2 × h matrix whose column i is the vector xi for i = 1, . . . , h.
Let S be the h × h matrix whose column i is the vector corresponding to the coefficients in
the convex combination of xi and xi+1 giving yi for i = 1, . . . , h.

We then have

Y = X · S (5)

with

S =





α 0 1 − γ
1 − α β 0

0 1 − β γ



 or S =









α 0 0 1 − δ
1 − α β 0 0

0 1 − β γ 0
0 0 1 − γ δ









where α, β, γ and δ are all strictly between 0 and 1.
Since we are interested in the dimension of faces of polyhedra, which requires checking

affine independence of points, we add a third row full of 1s to the matrices Y (resp. X) to
obtain matrix Ȳ (resp., X̄). Due to the specific form of the matrix S, we still have

Ȳ = X̄ · S . (6)

Let A be an m × n matrix. The nullspace of A is N (A) = {x ∈ Rn | Ax = 0} and the
columnspace of A is C(A) = {z ∈ Rm | z = Ax for some x ∈ Rn}.

The following three results are classical results of linear algebra [15]:

Lemma 3.5. Let A be an m× n matrix and B be an n× p matrix. Then

rank(A ·B) = rank(B)− dim(N (A) ∩ C(B)) .

Corollary 3.6. Let A be an m× n matrix and B an n× p matrix. If rank(A) = n, then

rank(A ·B) = rank(B) .

Proof. If rank(A) = n, then N (A) = {0} and has dimension 0. Applying Lemma 3.5 yields
the result.

Corollary 3.7. Let A be an m× n matrix and B an n× p matrix. Then

rank(A ·B) ≤ min{rank(A), rank(B)} .
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Proof. Apply Lemma 3.5 to A ·B and its transpose.

Triangle inequalities

Theorem 3.8. Triangle inequalities define facets of Rf (r
1, r2, r3) when r1, r2, r3 are the

corner rays.

Proof. Since h = 3 and Bψ is a triangle, both Ȳ and X̄ have rank 3. By Corollary 3.6,
S has rank 3 too. It implies that the columns of S are affinely independent. Since they
all satisfy with equality the inequality

∑3
i=1 ψ(ri)si ≥ 1, this inequality defines a facet of

Rf (r
1, r2, r3).

Putting together Theorems 3.3 and 3.8, we get:

Theorem 3.9. A triangle inequality defines a facet of Rf (r
1, . . . , rk) if and only if one of

the following holds:

i) the set {r1, . . . , rk} contains rays ri1, . . . , ri3 that are positive multiples of the corner
rays of the triangle;

ii) the ray condition holds.

Quadrilateral inequalities

When k = 4, both Ȳ and X̄ have rank 3. By Lemma 3.5, we have

3 = rank(Ȳ ) = rank(X̄ · S) = rank(S) − dim(N (X̄) ∩ C(S)) .

Since rank(X̄) = 3, we have that N (X̄) is a one-dimensional linear space. Hence
dim(N (X̄) ∩ C(S)) ≤ 1 and rank(S) = 4 if and only if N (X̄) ⊆ C(S).

Theorem 3.10. Consider a maximal lattice-free quadrilateral with vertices xi, integral point
yi on edge xixi+1 (indices taken modulo 4) and corner rays ri, i = 1, . . . , 4. The corresponding
quadrilateral inequality defines a facet of Rf (r

1, r2, r3, r4) if and only if there is no t ∈ R+

such that the point yi divides the edge joining xi to xi+1 in a ratio t for odd i and in a ratio
1/t for even i, i.e.

||yi − xi||

||yi − xi+1||
=

{

t for i = 1, 3
1
t

for i = 2, 4
. (7)

Proof. Let F be the face of Rf (r
1, . . . , r4) defined by

∑4
i=1 ψ(ri)si = 1. As f + ri = xi is on

the boundary of Bψ, we have ψ(ri) = 1 for i = 1, . . . , 4. Hence, if s ∈ F then
∑4

i=1 si = 1.
Recall that Rf (r

1, . . . , rk) is the convex hull of vectors in the set H := {s ∈ R4
+ | f +

∑4
i=1 r

isi is integral}. Thus, if F is a facet, then there exist four affinely independent vectors
sj, for j = 1, . . . , 4, in H with

4
∑

i=1

sji = 1 and zj = f +
4
∑

i=1

ris
j
i =

4
∑

i=1

(f + ri)s
j
i integral .
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This implies that zj is in the convex hull of x1, . . . , x4, for j = 1, . . . , 4. Theorem 1.2
shows that the only integral points in Bψ are the points y1, . . . , y4. Moreover, for each
j = 1, . . . , 4, there is a unique convex combination of x1, . . . , x4 that produces yj , namely
column j of matrix S. In other words, F is a facet if and only if the columns of S are affinely
independent. Observe that the columns of S are affinely independent if and only if they are
linearly independent since the sum of the entries in any column of S is 1. It follows that F
is a facet if and only if rank(S) = 4.

Let u = (1,−1, 1,−1)T . By Theorem 1.2 iv), the points y1, . . . , y4 are the vertices of a
parallelogram. This implies that Ȳ · u = 0. Then (6) gives X̄ · S · u = 0. We now have two
cases:

i) S · u = 0. Then rank(S) ≤ 3 and Corollary 3.7 shows that rank(S) = 3. Solving the
linear system S · u = 0 gives α = 1− β = γ = 1− δ. This is equivalent to the ratio condition
of the statement.

ii) S · u 6= 0. Then for v = S · u we have X̄ · v = 0, and as v 6= 0, we have that N (X̄)
is the linear space spanned by v. Since v is obtained as a linear combination of the columns
of S, we have N (X̄) ⊆ C(S) and by Lemma 3.5 we get rank(S) = 4. Since all the columns
of S satisfy with equality the inequality

∑4
i=1 ψ(ri)si ≥ 1, this inequality defines a facet of

Rf (r
1, r2, r3, r4).

We say that a maximal lattice-free quadrilateral satisfies the ratio condition when (7)
does not hold for any t > 0.

We illustrate the ratio condition by a couple of examples. The quadrilateral inequality gen-

erated from the square whose edges contain the integral points

(

0
0

)

,

(

1
0

)

,

(

0
1

)

,

(

1
1

)

in their middle does not define a facet of Rf , independently of the position of f in its inte-
rior. As mentioned in [4], when f is in the center of the square, the resulting quadrilateral
inequality is a convex combination of the two split inequalities whose respective unbounded
directions are the two coordinate axes. However, if one tilts just one edge of the square around

its (integral) middle point, the resulting trapezoid has three distinct ratios ||yi−xi||
||yi−xi+1||

. There-

fore the ratio condition is satisfied and Theorem 3.10 states that the resulting quadrilateral
inequality defines a facet of Rf .

We give another more complicated example, see Figure 6. Let f =

(

1
2
1
2

)

and Q the

quadrilateral with vertices x1 =

(

7
6
1
6

)

, x2 =

(

7
8
13
8

)

, x3 =

(

−7
6
1
6

)

, x4 =

(

7
8

−1
8

)

.

Edge x1x2 contains integral point y1 =

(

1
1

)

with ratio ||y1−x1||
||y1−x2||

= 4
3 .

Edge x2x3 contains integral point y2 =

(

0
1

)

with ratio ||y2−x2||
||y2−x3||

= 3
4 .

Edge x3x4 contains integral point y3 =

(

0
0

)

with ratio ||y3−x3||
||y3−x4||

= 4
3 .

Edge x4x1 contains integral point y4 =

(

1
0

)

with ratio ||y4−x4||
||y4−x1||

= 3
4 .

Theorem 3.10 states that the quadrilateral inequality obtained from Q is not a facet.
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f
x1

x2

x3

x4

y1y2

y3 y4

(a) The quadrilateral Q.

f

(b) The two triangles T1 and T2.

Figure 6: Illustration for the second example.

Indeed, it can be obtained as a convex combination of two triangle inequalities, each with a

multiplier 1
2 . The first triangle T1 has vertices

(

3
2

0

)

,

(

4
5
7
5

)

,

(

−2
0

)

. The second triangle

has vertices

(

1
−1

3

)

,

(

1
2

)

,

(

−3
4
1
4

)

. Both triangles have all four points y1, y2, y3, y4 on

their boundaries. The corner rays of Q are r1 =

(

2
3

−1
3

)

, r2 =

(

3
8
9
8

)

, r3 =

(

−5
3

−1
3

)

,

r4 =

(

3
8

−5
8

)

. Triangle T1 has corner rays positive multiples of r1, r2 and r3. Triangle T2

has corner rays positive multiples of r2, r3 and r4. If ψ, ψ1 and ψ2 denote the functions
defined by Q, T1 and T2 respectively, it is easy to verify that ψ = 1

2ψ1 + 1
2ψ2 in each of the

cones riri+1 (indices defined modulo 4). Indeed, each of these functions is linear in each of
the cones. So it is sufficient to verify the equality ψ(r) = 1

2ψ1(r) + 1
2ψ2(r) in each of the

directions ri, i = 1, . . . , 4. In direction r1 we have ψ1

(

1
−1

2

)

= 1 and ψ2

(

1
2

−1
4

)

= 1.

This implies ψ1(r
1) = 2

3 and ψ2(r
1) = 4

3 . Therefore ψ(r1) = 1
2ψ1(r

1) + 1
2ψ2(r

1) as required.
Similarly, for the other rays, we find ψ1(r

2) = 5
4 and ψ2(r

2) = 3
4 ; ψ1(r

3) = 4
3 and ψ2(r

3) = 2
3 ;

ψ1(r
4) = 3

4 and ψ2(r
4) = 5

4 .

Putting together Theorems 3.3 and 3.10, we get:

Theorem 3.11. A quadrilateral inequality defines a facet of Rf (r
1, . . . , rk) if and only if

one of the following holds:

i) the set {r1, . . . , rk} contains rays ri1, . . . , ri4 that are positive multiples of the corner
rays of the quadrilateral, and the ratio condition is satisfied;

ii) the ray condition holds.
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When the ray condition holds for a quadrilateral Bψ, the half-lines f + λrj , λ ≥ 0, can
only intersect the boundary of Bψ at integral points. When this happens, it is easy to find a
maximal lattice-free triangle producing the same facet. Therefore we do not need to mention
the ray condition in iii) of Theorem 1.7.

3.3 Split inequalities for Rf(r
1, . . . , rk)

When Bψ is unbounded, ψ defines a split inequality for Rf by Theorem 1.1. We will see in
Theorem 4.1 that split inequalities always define facets of Rf . The situation for Rf (r

1, . . . , rk)
is a little bit more complicated, as the next theorem shows.

When ψ(ri) > 0 for i = 1, . . . , k, we can define the boundary point for ri similarly to the
case of triangles and quadrilaterals, and we can apply the Reduction Algorithm of Section
3.2.1. We say that the ray condition holds for a split if, at termination of the Reduction
Algorithm, either P = ∅, or P = {p1, q1, p2, q2} with p1, q1 on one of the boundary lines and
p2, q2 on the other and both line segments p1q1 and p2q2 contain at least two integral points.

Theorem 3.12. Let f, r1, . . . , rk ∈ Q2 with k ≥ 1. Let ψ define a split inequality. The
inequality

∑k
i=1 ψ(ri)si ≥ 1 defines a facet of Rf (r

1, . . . , rk) if and only if

i) ψ(ri) = 0 for some i = 1, . . . , k; or

ii) ψ(ri) > 0 for all i = 1, . . . , k and the ray condition holds.

Proof. Suppose that ψ(ri) = 0 for some i ∈ {1, . . . , k}. By Theorem 1.1, the only minimal
valid inequality having the coefficient of si equal to 0 is the split inequality defined by ψ.
Therefore ψ ≥ 1

2ψ1 + 1
2ψ2 where ψ1 and ψ2 are both valid and minimal implies that ψ = ψ1 =

ψ2. Remark 1.4 proves that ψ is a facet of Rf (r
1, . . . , rk).

Suppose now that ψ(ri) > 0 for i = 1, . . . , k. Using arguments similar to those used in
the proof of Lemma 3.2, we obtain that at termination of the Reduction Algorithm, the set Q
of active points is either empty, or it contains exactly two points p1, q1 in L1 and two points
p2, q2 in L2 where L1, L2 are the boundary lines of Bψ, and both line segments p1q1 and p2q2
contain at least two integral points. Using arguments similar to those used in the proof of
Theorem 3.3, we obtain that ψ defines a facet if and only if, at termination of the Reduction
Algorithm, the set P is empty or only contains active points. In other words, ψ defines a
facet if and only if the ray condition holds.

4 Facets of Rf

4.1 Split inequalities define facets of Rf

4.1.1 Nondegenerate case

Let f ∈ Q2. Consider a direction r0 ∈ Q2 \{0} such that the line L0 := {x = f+αr0, α ∈ R}
contains no integral point. Let L1 and L2 be parallel lines to L0, each containing integral
points, such that the set of points between L1 and L2 contains no integral point in its interior
and contains L0. (See Figure 7.) Define ψ(r0) = ψ(−r0) = 0, ψ(x−f) = 1 for any x ∈ L1∪L2.

Theorem 4.1. Let f ∈ Q2. Split inequalities define facets of Rf .
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f

Bψ

L1

L2

Figure 7: Illustration for Theorem 4.1.

Proof. Suppose not. By Remark 1.4, ψ ≥ 1
2ψ1+ 1

2ψ2 where ψ1, ψ2 are minimal valid functions
and ψ 6= ψ1 or ψ2.

By Theorem 1.1, ψj(r0) ≥ 0 for j = 1, 2. Since ψ(r0) = 0, we have ψj(r0) = 0 for j = 1, 2.
Similarly ψj(−r0) = 0.

Lemma 2.3 iv) for Li proves that ψj(x− f) = 1 for all x ∈ Li, for all i = 1, 2, j = 1, 2.
By homogeneity, ψj is therefore defined over all of R2. But then ψ1 = ψ2 = ψ, a

contradiction.

4.1.2 Degenerate case

Consider a direction r0 ∈ Q2 \ {0} such that the line L0 := {x = f + αr0, α ∈ R} contains
integral points. Let L1 be a line parallel to L0 that contains integral points, such that the
set of points between L0 and L1 contains no integral point in its interior. Let y1 and y2 be
the first integral points encountered on the half-lines f + αr0, α ≥ 0, and f − αr0, α ≥ 0
respectively. (See Figure 8.) Define ψ(y1 − f) = ψ(y2 − f) = 1 and ψ(x − f) = 1 for any
x ∈ L1. Since ψ is homogeneous, this defines ψ(r) for all r ∈ Q2 in the closed half-space
limited by L0 and containing L1. For all other r ∈ Q2\{0}, define ψ(r) = +∞. The inequality
∑

ψ(r)sr ≥ 1, a degenerate split inequality, is valid for Rf .

f

Bψ

L0

L1

y1

y2

Figure 8: Illustration for Theorem 4.2.

Theorem 4.2. Let f ∈ Q2. Degenerate split inequalities define facets of Rf .
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Proof. Suppose not. Then ψ ≥ 1
2ψ1 + 1

2ψ2 where ψ1, ψ2 are minimal valid functions and
ψ 6= ψ1 or ψ2.

Lemma 2.3 i) proves that ψj(y
1 − f) = 1 for j = 1, 2 and Lemma 2.3 iv) for L1 proves

that ψj(x− f) = 1 for all x ∈ L1, j = 1, 2.
By homogeneity, ψj(x− f) is therefore defined for all x ∈ R2 that are in the closed half-

space H limited by L0 and containing L1. Observe that ψ(x− f) = ψj(x− f) for all x ∈ R2

and in H.
Suppose that there exists x1 6∈ H with ψj(x

1 − f) < +∞ for j = 1 or j = 2. Then
ψj(x − f) ≤ ψ(x − f) for all x ∈ R2 with strict inequality for x1, a contradiction to the
minimality of ψ.

It follows that ψ1 = ψ2 = ψ, a contradiction.

4.2 Nondegenerate triangle and quadrilateral inequalities

Let f ∈ Q2. Nondegenerate minimal valid inequalities that are not split inequalities are
generated by a function ψ such that Bψ is either a triangle or a quadrilateral and f is in the
interior of Bψ. Let x1, . . . , xk be the vertices of Bψ with k = 3 or k = 4. Note that these
vertices may have irrational coordinates. Let {r1, . . . , rk} be the corner rays of Bψ, namely
ri = xi − f .

Given a valid and minimal function ψ for Rf and rays r1, . . . , rk we say that two valid
and minimal functions ψ1 and ψ2 for Rf dominate ψ restricted to {r1, . . . , rk} if ψ(ri) ≥
1
2 ψ1(r

i) + 1
2 ψ2(r

i) for i = 1, . . . , k and ψ(ri) = ψ1(r
i) and ψ(ri) = ψ2(r

i) does not hold for
all i = 1, . . . , k.

The next theorem will allow us to extend the proof of earlier results to cover the case of
possibly irrational corner rays.

Theorem 4.3. Let f ∈ Q2 and let ψ be a minimal valid function for Rf . Assume that Bψ is
a polytope with f in its interior and let r1, . . . , rk be the corner rays of Bψ. Then there exist
two minimal valid functions ψ1 and ψ2 dominating ψ restricted to {r1, . . . , rk} if and only if
ψ is not facet defining for Rf .

Proof. Let x1, . . . , xk be the vertices of Bψ. Let Ei denote the edge of Bψ between vertices xi

and xi+1 for i = 1 . . . , k and let yi be an integral point that can be obtained as a nontrivial
convex combination of xi and xi+1 for i = 1, . . . , k (indices are implicitly taken modulo k).

Assume first that the two functions ψ1, ψ2 of the statement of the theorem exist. Let
ψ̄ = 1

2 ψ1 + 1
2 ψ2. Consider the edge joining xi to xi+1. Since ψ1 and ψ2 are valid functions

and yi is integral, we have ψ1(y
i − f) ≥ 1 and ψ2(y

i − f) ≥ 1. This implies ψ̄(yi − f) ≥ 1.
On the other hand, convexity of ψ̄ implies ψ̄(yi−f) ≤ λψ̄(xi−f)+ (1−λ)ψ̄(xi+1 −f) where
0 < λ < 1 is the convex combination of xi, xi+1 producing yi. Since ψ1 and ψ2 dominate ψ
restricted to {r1, . . . , rk}, we get ψ̄(yi− f) ≤ λψ(xi− f)+ (1−λ)ψ(xi+1 − f) = 1. Therefore
ψ̄(yi − f) = 1. Applying Lemma 2.2 i) to ψ̄ and the triple xiyixi+1, we get ψ̄(ri+1) ≥ 1. But
as 1 = ψ(ri+1) ≥ ψ̄(ri+1), we get ψ̄(ri+1) = 1. Applying Lemma 2.2 iii) to ψ and the triple
xiyixi+1, we get that ψ̄(x−f) = ψ(x−f) for all x in the segment xixi+1. A similar reasoning
shows that ψ̄(x − f) = 1 for all x on the boundary of Bψ, proving that ψ̄ = ψ. But then ψ
does not define a facet of Rf as it is a convex combination of ψ1 and ψ2.
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For the converse, assume that ψ does not define a facet of Rf and let ψ1 6= ψ2 be two
valid and minimal functions such that ψ ≥ 1

2 ψ1 + 1
2 ψ2 with ψ1(z − f) 6= 1 for some

z ∈ Bψ. Then either ψ1(z − f) < 1 or ψ2(z − f) < 1. Assume without loss of generality that
ψ1(z − f) < 1 and that z ∈ Ei. Applying Lemma 2.3 i) to yi, we get ψ1(y

i − f) = 1. If we
have ψ1(r

i) = ψ1(r
i+1) = 1, applying Lemma 2.2 iii) to ψ1 and the triple xiyixi+1, we get

that ψ1(x−f) = 1 for all x in the segment xixi+1. This is a contradiction with ψ1(z−f) < 1.
Hence, either ψ1(r

i) 6= ψ(ri) = 1 or ψ1(r
i+1) 6= ψ(ri+1) = 1 and ψ1, ψ2 are two valid minimal

functions dominating ψ restricted to {r1, . . . , rk}.

The following is an extension of Theorem 3.8 to cover the case of triangles with possibly
irrational corner rays.

Lemma 4.4. Let ψ be valid and minimal such that Bψ is a triangle with corner rays r1, r2, r3

and f in its interior. Then ψ restricted to {r1, r2, r3} cannot be dominated by two valid and
minimal functions ψ1 and ψ2.

Proof. The proof of Theorem 3.8 can be used as is. The definitions of Ȳ , X̄ and S are not
affected by the possible irrationality of some of the rays. It shows that the rank of S is 3, i.e.
the face F of {s ∈ R3 | f +

∑3
j=1 r

jsj ∈ Z2, s ≥ 0} defined by
∑

ψ(rj)sj ≥ 1 has dimension

2. Its equation is uniquely defined. This implies that ψ restricted to {r1, r2, r3} cannot be
dominated by two valid and minimal functions ψ1, ψ2.

Similarly, the following is an extension of Theorem 3.10 to cover the case of quadrilaterals
with possibly irrational corner rays.

Lemma 4.5. Let ψ be valid and minimal such that Bψ is a quadrilateral with corner rays
r1, r2, r3, r4 and f in its interior. Then ψ restricted to {r1, r2, r3, r4} cannot be dominated by
two valid and minimal functions ψ1 and ψ2 if and only if the quadrilateral satisfies the ratio
condition.

Proof. The proof of Theorem 3.10 can be used as is. The definitions of Ȳ , X̄ and S are
not affected by the possible irrationality of some of the rays. It shows that, depending
on the ratio condition being satisfied or not, the rank of S is 4 or 3, i.e. the face F of
{s ∈ R4 | f +

∑4
j=1 r

jsj ∈ Z2, s ≥ 0} defined by
∑

ψ(rj)sj ≥ 1 has dimension 3 or 2.
If the ratio condition is satisfied, then a proof similar to the one for Lemma 4.4 shows

that ψ restricted to {r1, r2, r3, r4} cannot be dominated by two valid and minimal functions.
If the ratio condition is not satisfied, there exists an hyperplane containing F ∪ {0}

with equation
∑4

j=1 hjsj = 0. For ε > 0, define ψ1, ψ2 by ψ1(r
j) = ψ(rj) + εhj and

ψ2(r
j) = ψ(rj) − εhj. As ψ is valid, we have ψ(y − f) ≥ 1 for all y ∈ Z2 and Theorem 1.2

iv) implies that equality holds only for the four integral points on the boundary of Bψ, that
is the four integral points obtained according to the convex combinations corresponding to
the columns of S. This shows that for ε > 0 small enough, the two functions ψ1, ψ2 can
be seen as restrictions of two valid quadrilateral inequalities. As ψ(rj) = 1

2ψ1(r
j) + 1

2ψ2(r
j)

for j = 1, . . . , 4, it follows that ψ restricted to {r1, r2, r3, r4} is dominated by two valid and
minimal functions.

As a consequence of the last three lemmas, we immediately get the following two results.
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Theorem 4.6. All maximal lattice-free triangles with f in their interior define facets of Rf .

Theorem 4.7. A maximal lattice-free quadrilateral having f in its interior defines a facet of
Rf if and only if it satisfies the ratio condition.

Although only rational triangles and quadrilaterals are needed to define the facets of
Rf (r

1, . . . , rk) when f and the rays rjs are in Q2 (see Section 3.2.2), irrational triangles and
quadrilaterals are needed to define some of the facets of Rf for f ∈ Q2.

4.3 Degenerate triangle inequalities

In this section, we use the following notation:

Notation 4.8. Let T be a maximal lattice-free triangle in R2. Let x1, x2, x3 be the vertices
of T such that edge Ei of T is the convex combination of xi and xi+1 for i = 1, 2, 3 (indices
are taken modulo 3). Let yi be an integral point in the interior of Ei for i = 1, 2, 3.

Note that the existence of yi for i = 1, 2, 3 follows from Theorem 1.2.

4.3.1 f is a vertex of the triangle

Here, we assume also that f is a vertex of T . Without loss of generality, we assume f = x2.
Then edges E1 and E2 of T contain f . (See Figure 9.)

Define ψ(y1 − f) = ψ(y2 − f) = 1. By homogeneity, this defines ψ(x − f) for all x
on the half-lines L1 and L2 starting from f and containing y1 and y2 respectively. Define
ψ(x − f) = 1 for any x in E3 \ {E1 ∪ E2}. By homogeneity, this defines ψ in the open cone
C limited by L1 and L2. Finally, define ψ(x− f) = +∞ for any x outside C ∪L1 ∪L2. Then
ψ defines a vertex-degenerate triangle inequality.

Bψ x1

x3

y1

y2

y3

y4

x2 = f

Figure 9: Illustration for Theorem 4.9.

Theorem 4.9. A vertex-degenerate triangle inequality defines a facet of Rf if and only if
the edge of T opposite f contains at least two integral points in its interior.

Proof. Suppose first that the edge E3 contains only one integral point y3 in its interior.
Construct maximal lattice-free triangles T ′ and T ′′ from T by keeping the half-lines L1 and
L2 unchanged, and tilting the edge E3 around the integral point y3 so that the new edges E′

1

(E′′
1 respectively) are slightly shorter (longer respectively) than E1. The same construction

used to define the function ψ from T can be used to define functions ψ′ and ψ′′ from T ′ and
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T ′′ respectively. The functions ψ′ and ψ′′ are linear in the open cone C limited by L1 and L2

and ψ(y3) = ψ′(y3) = ψ′′(y3) = 1. Therefore, we can write ψ as a convex combination of ψ′

and ψ′′. This shows that ψ does not define a facet in this case.
Now consider the case where E3 contains two integral points y3 and y4 in its interior.

Suppose that ψ does not define a facet of Rf . Then ψ ≥ 1
2ψ1 + 1

2ψ2 where ψj is valid and
minimal for j = 1, 2. Lemma 2.3 ii) shows that ψj(x− f) = 1 for all x in the interior of E3.

By Lemma 2.3 i), ψj(y
1 − f) = 1, for j = 1, 2. By homogeneity, this defines ψj(x− f) for

all x on the half-line L1. Similarly ψj(y
2 − f) = 1 and by homogeneity, this defines ψj(x− f)

for all x on the half-line L2. Observe that ψ(x − f) = ψj(x − f) for all x ∈ R2 and in
C ∪ L1 ∪ L2.

Suppose that there exists x4 6∈ C ∪ L1 ∪ L2 with ψj(x
4 − f) < +∞ for j = 1 or j = 2.

Then ψj(x− f) ≤ ψ(x − f) for all x ∈ R2 with strict inequality for x4, a contradiction with
the minimality of ψ. It follows that ψ1 = ψ2 = ψ, a contradiction. Therefore ψ define a facet
of Rf .

4.3.2 f is on an edge of the triangle

Here we use Notation 4.8 and we assume that f is in the interior of an edge of T . Without
loss of generality, we assume f ∈ E1 and that y1 is between f and x1. (See Figure 10.)

Define ψ(x − f) = 1 for any x ∈ (E2 \ {x2}) ∪ (E3 \ {x1}). Let L1 denote the line
containing the segment E1. Since ψ is homogeneous, ψ(x− f) is defined for all x ∈ R2 in the
open half-space H limited by L1 and containing x3.

Define ψ(y1 − f) = 1. On the half-line from f that goes through x2, let y4 be the first
integral point encountered, starting from f . If y4 is reached before x2, then set ψ(y4−f) = 1.
Otherwise set ψ(x2 − f) = 1. By homogeneity, this defines ψ(x− f) for all x ∈ L1.

For all x ∈ R2 \ (L1 ∪ H), define ψ(x − f) = +∞. Then ψ defines an edge-degenerate
triangle inequality.

f

Bψ

x1

x2

x3

y1

y2

y3

Figure 10: Illustration for Theorem 4.10.

Theorem 4.10. An edge-degenerate triangle inequality defines a facet of Rf if and only if
at least one of the two edges not containing f contains at least two integral points y with
ψ(y − f) = 1.

Proof. Suppose first that E2 and E3 each contain only one integral point, y2 and y3 respec-
tively. Let x4 and x5 be points on the line fx3 such that x3 is their middle point and the
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distance between x4 and x5 is very small. Let T ′ ((resp. T ′′) denote the triangle with one side
contained in L1, one side containing x4y2 (resp. x5y2) and one side containing x4y3 (resp.
x5y3). The convex sets T ′ and T ′′ define valid functions ψ′ and ψ′′ as above. Furthermore ψ
is a convex combination of ψ′ and ψ′′, showing that ψ is not facet defining.

Suppose now that edge Ei contains at least two integral points for i = 2 or 3. Without
loss of generality, we can assume i = 2. Suppose that ψ does not define a facet of Rf . Then
ψ ≥ 1

2ψ1 + 1
2ψ2 where ψj are valid and minimal for j = 1, 2. Lemma 2.3 ii) shows that

ψj(x− f) = 1 for all x ∈ E2 \ E1. In particular ψj(x
3 − f) = 1. for j = 1, 2.

The edge E3 contains the integral point y3 in its interior and the point x3. Lemma 2.3 iii)
shows that ψj(x−f) = 1 for all x ∈ E3\E1. This shows that ψ1(x−f) = ψ2(x−f) = ψ(x−f)
for all x ∈ R2 in the open half-space H containing x3 limited by L1.

Lemma 2.3 i) shows that ψj(y
1−f) = 1, for j = 1, 2. On the half-line of L1 going through

x2 there are two cases. If an integral point y4 is encountered starting from f before reaching
x2, Lemma 2.3 i) yields ψj(y

4 − f) = 1, for j = 1, 2. So suppose that no integral point is
encountered starting from f before reaching x2. In this case ψ(x2) = 1 and Lemma 2.3 iii)
for E2 and with x3 playing the role of x1 of the lemma shows that we have ψj(x

2) = 1. By
homogeneity, this defines ψj(x− f) for all x ∈ L1, for j = 1, 2.

Finally, the discontinuity of ψj on the half-line of L1 from f in the direction of y1 implies
that ψj(x − f) = +∞ for all x 6∈ H ∪ L1, using a similar argument as in the proof of
Theorem 4.9.

4.4 Degenerate quadrilateral inequalities

In this section, we use the following notation:

Notation 4.11. Let Q be a maximal lattice-free quadrilateral in R2. Let x1, . . . , x4 be the
vertices of Q such that edge Ei of Q is the convex combination of xi and xi+1 for i = 1, . . . , 4
(indices are taken modulo 4). Let yi be the unique integral point in the interior of Ei for
i = 1, . . . , 4.

Note that the existence and unicity of yi for i = 1, . . . , 4 follows from Theorem 1.2.

4.4.1 f is a vertex of the quadrilateral

Here, we assume that f is a vertex of Q. Without loss of generality, we assume f = x2. (See
Figure 11.)

Define ψ(y1 − f) = ψ(y2 − f) = 1. By homogeneity, this defines ψ(x − f) for all x
on the half-lines L1 and L2 starting from f and containing y1 and y2 respectively. Define
ψ(x − f) = 1 for any x in E3 ∪ E4 \ {x

1 ∪ x3}. By homogeneity, this defines ψ in the open
cone C limited by L1 and L2. Finally, define ψ(x− f) = +∞ for any x outside C ∪L1 ∪L2.
Then ψ defines a vertex-degenerate quadrilateral inequality.

Theorem 4.12. A vertex-degenerate quadrilateral inequality never defines a facet of Rf .

Proof. Let x5 and x6 be points on the line fx4 such that x4 is their middle point and the
distance between x5 and x6 is very small. Let Q′ denote the quadrilateral with vertices x5,
f and two others on lines fx1 and fx2 respectively, and containing the integral points yi for
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x3
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y2

y3

y4

x2 = f

Figure 11: Illustration for Theorem 4.12.

i = 1, . . . , 4 in the interior of its edges. Quadrilateral Q′′ is defined similarly except that it
has vertex x6 instead of x5. The convex sets Q′ and Q′′ define valid functions ψ′ and ψ′′ as
above. Furthermore ψ is a convex combination of ψ′ and ψ′′ with ψ1 6= ψ2, proving that the
vertex-degenerate inequality is not a facet.

4.4.2 f is on an edge of the quadrilateral

Here, we use Notation 4.11 and we assume that f is on one of the edges of Q. Without loss
of generality, we assume f ∈ E1 and that y1 is between f and x1.

Define ψ(y1 − f) = 1. By homogeneity, this defines ψ(x− f) for all x on the half-line of
L1 starting from f and containing y1. Define ψ(x− f) = 1 for any x in E2 ∪E3 ∪E4 \ {x

1}.
By homogeneity, this defines ψ in the rest of the closed half-plane H limited by the line
L1. Finally, define ψ(x − f) = +∞ for any x outside C. Then ψ defines an edge-degenerate
quadrilateral inequality.

Theorem 4.13. An edge-degenerate quadrilateral inequality never defines a facet of Rf .

Proof. As in the proof of Theorem 4.12, we can perturb Q into two quadrilaterals Q′ and Q′′

going through f and yi for i = 1, . . . , 4 and vertices on the lines fx3 or fx4 and construct
the corresponding functions ψ′ and ψ′′ as above. Then ψ is a convex combination of ψ′ and
ψ′′ proving that the edge-degenerate inequality is not a facet.
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