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Abstract We investigate the natural situation of the dissemination of information on
various graph classes starting with a random set of informed vertices called active.
Initially active vertices are chosen independently with probability p, and at any stage
in the process, a vertex becomes active if the majority of its neighbours are active,
and thereafter never changes its state. This process is a particular case of bootstrap
percolation. We show that in any cubic graph, with high probability, the information
will not spread to all vertices in the graph if p < 1

2 . We give families of graphs in
which information spreads to all vertices with high probability for relatively small
values of p.

Authors acknowledge the support of CONICYT via Anillo en Redes ACT08 (I.R., K.S.), Fondecyt
1090156 (I.R.), ECOS-CONICYT (I.R., I.T.), Fondap on Applied Mathematics (I.R.), French ANR
projects STAL-DEC-OPT and ALADDIN (I.T.) and an Alfred P. Sloan Fellowship (J.V.).

I. Rapaport
Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Universidad
de Chile, Santiago, Chile
e-mail: rapaport@dim.uchile.cl

K. Suchan
Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Santiago, Chile
e-mail: karol@suchan.info

K. Suchan
Faculty of Applied Mathematics, AGH–University of Science and Technology, Cracow, Poland

I. Todinca (�)
LIFO, Université d’Orléans, Orléans, France
e-mail: Ioan.Todinca@univ-orleans.fr

J. Verstraete
University of California, San Diego, CA, USA
e-mail: jverstra@math.ucsd.edu

mailto:rapaport@dim.uchile.cl
mailto:karol@suchan.info
mailto:Ioan.Todinca@univ-orleans.fr
mailto:jverstra@math.ucsd.edu


Algorithmica (2011) 59: 16–34 17

Keywords Bootstrap percolation · Cubic graphs · Information dissemination

1 Introduction

Let G = (V ,E) be a simple undirected graph. A configuration C of G is a func-
tion that assigns to every vertex in V a value in {0,1}. The value 1 means that the
corresponding vertex is active while the value 0 represents passive vertices.

We investigate the natural situation in which a vertex v needs a strong majority
of its neighbours, namely strictly more than 1

2d(v) neighbours, to be active in order
to become an active vertex. Therefore, consider the following rule of dissemination
that acts on configurations: a passive vertex v whose strict majority of neighbours
are active becomes active; once active, a vertex never changes its state. The initial
configuration of a dissemination process is called an insemination. Since the set of
active vertices grows monotonically in a finite set V , a fixed point has to be reached
after a finite number of steps. If the fixed point is such that all vertices have become
active, then we say that the initial configuration overruns the graph G. A community
[12] in G is a subset of nodes X ⊆ V each of which has at least as many neighbours
in X as in V \ X, i.e. for every v ∈ X, |N(v) ∩ X| ≥ |N(v) ∩ (V \ X)|. Notice that a
configuration overruns G if and only if it contains no community of passive vertices.

Dissemination has been intensively studied in the literature, using various dissem-
ination rules (see e.g. [18] for a survey). Among other types of rules we can cite
models in which a vertex becomes active if the total weight of its active neighbours
exceeds a fixed value [16], or symmetric majority voting rules, for which an active
vertex may also become passive if the number of passive neighbours outweights the
number of active neighbours [18]. One of the main questions for each of these mod-
els is to find small sets of active vertices which overrun the network. Several authors
considered the problem of finding small communities in arbitrary graphs or special
graph classes [7, 9, 12, 13].

In this work we consider a probabilistic framework. A random configuration
in which each vertex is active with probability p and passive with probability
1 − p is called a p-insemination. We are interested in the probability θp(G) that
a p-insemination overruns G. It is clear that θp(G) is a monotonic increasing
function of p. We investigate the majority dissemination process starting with a
p-insemination for various graph classes. Such random dissemination processes, with
different types of dissemination rules, have been studied in the literature in the con-
text of cellular automata or in bootstrap percolation [14].

One of the basic questions is to determine the ratio of active vertices (in other
words, the critical value of p) one needs in order to overrun the whole graph with
high probability. Without any restriction on the structure of the underlying graph,
it appears to be difficult to determine this ratio. It is therefore more instructive to
consider whole classes of graphs. If G is a class of graphs, let G = (Gn)n∈N denote
a generic sequence of graphs Gn ∈ G such that |V (Gn)| < |V (Gn+1)| for all n ∈ N.
We define dissemination half-thresholds p+

c and p−
c of class G by

p+
c (G) = inf{p | ∃G : lim θp(Gn) = 1},

p−
c (G) = sup{p | ∀G : lim θp(Gn) = 0}.
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In words, for p < p−
c and any increasing sequence G in G , the probability that a

random p-insemination overruns the graph tends to zero.
For example, for the class K of all complete graphs, it is straightforward to see that

p+
c (K) = p−

c (K) = 1
2 . If for a class G the two half-thresholds are equal, we say that

pc(G) = p+
c (G) = p−

c (G) is the dissemination threshold of class G . It is convenient to
introduce the following terminology: throughout the paper, if (An)n∈N is a sequence
of events in a probability space such that limn→∞ P[An] = 1, we write An a.a.s.
(asymptotically almost surely). For example, if p < p−

c (G) then a.a.s. Gn ∈ G is not
overrun by a p-insemination.

In this paper, we consider dissemination on regular graphs and particular classes
of irregular graphs. First we consider regular graphs, for which we give simple lower
bounds for the dissemination half-threshold p−

c , and we prove that the threshold pc is
exactly 1

2 for cubic graphs. In the second part, we give simple explicit constructions of
graph classes with relatively small dissemination half-threshold p+

c (G). This counters
the naive intuition that one should need about half of the vertices to overrun the whole
graph.

Regular Graphs The dissemination process, as we have mentioned, has been stud-
ied for specific families of graphs, such as integer lattices, hypercubes, and so on,
all of which are almost regular graphs. More generally, let Gr be the family of r-
regular graphs. We observe that pc(G2) = 1, since a p-insemination overruns a cycle
if and only if there are no two consecutive passive vertices. A more interesting case is
the class Q of hypercube graphs: these are regular graphs but with growing degrees.
Following from more general results on families of regular graphs with growing de-
grees, Balogh, Bollobás and Morris [6] showed pc(Q) = 1

2 . Balogh and Pittel [5]
considered dissemination on random r-regular graphs. Consider Gn,r , a graph cho-
sen uniformly at random from the family of all r-regular graphs on n vertices, so
G(r) = {Gn,r : n ∈ N}. It turns out that pc(G(r)) a.a.s. exists and equals

pr := 1 − inf
y∈(0,1)

y

F (r − 1,1 − y)

where F(r, y) is the probability of obtaining at most r/2 successes in r independent
trials with the success probability equal y. Let us have a look at the values of pr for
small r :

r 3 4 5 6 7

pr 0.5 0.667 0.275 0.397 0.269

Also note that pr → 0.5 when r → ∞. The determination of the dissemination
threshold pc(Gr ) for the family of r-regular graphs Gr remains, nevertheless, an open
question.

Conjecture 1 We conjecture that the dissemination thresholds pc(Gr ) exist and
equal pr .

In words, this conjecture says that amongst all r-regular graphs, dissemination
occurs most easily on a random r-regular graph. We will prove the conjecture in the
case r = 3:
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Theorem 1 pc(G3) = 1
2 .

Towards Conjecture 1, we give the following modest results:

Theorem 2 For all positive integers r , p−
c (Gr ) ≤ pr and

p−
c (Gr ) ≥

{
1
r
, if r is odd,

2
r
, if r is even.

Irregular Graphs It is natural to search for graph classes G for which p+
c (G) is

small. If, as we conjecture, regular graphs behave like random regular graphs, then
regular graphs cannot have very low thresholds. One should consider graphs whose
vertices have varying degrees—we refer to these loosely as irregular graphs. To this
end, we consider the class of wheels and toroidal graphs. Let Cn denote the cycle on
n vertices and C2

n denote the toroidal grid on n2 vertices. Notice that C2
n is, indeed,

the Cartesian square of Cn. In general, let Ck
n denote the k-dimensional torus. Let

u ∗ Ck
n denote the k-dimensional torus augmented with a single universal vertex u.

We will consider the class of wheels—i.e. the family W = {u ∗ Cn | n ∈ N}—and the
class of toroidal grids plus a universal vertex—i.e. T = {u ∗ C2

n | n ∈ N}. Our main
result is that for both classes the dissemination threshold is small:

Theorem 3 For the class W , we have p+
c (W ) = 0.4030 . . . , where 0.4030 . . . is the

unique root in the interval [0,1] of the equation p + p2 − p3 = 1
2 . For the class T of

toroidal grids plus a universal vertex, we have 0.35 ≤ p+
c (T ) ≤ 0.372.

Since our goal is to find graph classes with small dissemination thresholds, clearly
the second result is stronger than the first. Nevertheless, we shall present their proofs
in parallel. For establishing the bounds on toroidal grids plus a universal vertex we
need (a small amount of) computer-aided computations, while on wheels all compu-
tations are easy to check by hand. Note that for both classes the half-threshold p−

c is
zero. Indeed for any p > 0 we have probability p that the universal vertex is initially
active, and in this case, as we shall see, the graph is overrun a.a.s.

The results of Balogh and Pittel on 7-regular graphs imply the existence of graph
classes with half-threshold p+

c < 0.27. Although this bound is smaller than in our
case, our result has the advantage of giving explicit constructions of graph classes
with small half-threshold p+

c . We also believe that our proof techniques might give
new tools for constructing classes with even smaller values of p+

c . Let us remark that
computer simulations for higher dimension tori with a universal vertex u∗Ck

n indicate
even lower thresholds. In simulations, a random p-insemination overruns u ∗ C2

n the
graph a.a.s. already with p = 0.37, which fits within the bounds shown in this paper.
For k equal 3, 4 and 5 the graph u ∗ Ck

n is a.a.s. overrun by a random p-insemination
already with p equal 0.35, 0.32 and 0.3, respectively. We leave the following as an
open problem:

Question 1 Is there a family G of graphs such that pc(G) = 0?
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In words, is there a family of graphs on which any p-insemination overruns the
graph a.a.s. for any p > 0? A final observation is that if such a family G exists,
then the graphs in G should be sparse: if Gn ∈ G is an n-vertex graph of minimum
degree at least 10 logn, then θp(Gn) → 1 whenever p > 1

2 and θp(Gn) → 0 when-
ever p < 1

2 —by the Chernoff Bound [2], a.a.s. no vertices have more than half of
their neighbours active when p < 1

2 , and a.a.s. all vertices do when p > 1
2 and a

p-insemination a.a.s. overruns the graph in one step—see Carvajal et al. [7] for the
details. For this class of graphs, the dissemination threshold is 1

2 .

2 Regular Graphs

In this section we outline the proof of Theorem 2. Balogh and Pittel [5] showed that
for the class of random r-regular graphs, the dissemination threshold is a constant
pr a.a.s. where p3 = 1

2 , p4 = 2
3 and so on. This establishes the upper bound in The-

orem 2. For the lower bound, we use the following easy observation. The average
degree of a graph G is 2e(G)/|V (G)|.

Lemma 1 Let G be a graph of average degree more than 2k − 2, where k ∈ N. Then
G has a subgraph of minimum degree at least k.

Proof Let G be such a graph. We recursively remove vertices of degree at most k−1.
Each step this removes at most k − 1 edges, thus at the end of this process we must
obtain a non-empty subgraph of G. This subgraph has the required property. �

Let I be the set of active vertices of a p-insemination of G ∈ Gr , and I c = V (G)\ I .
Then

E[|I c|] = (1 − p)n and E[e(I c)] = r

2
(1 − p)2n

where e(I c) is the number of edges of G with both ends in I c . Note that |I c| is a
binomial random variable, in particular the Chernoff Bound [2] implies:

|I c| ∼ (1 − p)n a.a.s. (2.1)

We also need to prove that

e(I c) ∼ r

2
(1 − p)2n a.a.s. (2.2)

This is proved using the Independent Bounded Differences (IBD) inequality
(see [11]).

Theorem 4 [11] Let X = (X1,X2, . . . ,Xq) be a family of independent random vari-
ables with Xi taking values in a set Ai for each i. Suppose that the real-valued func-
tion f defined on

∏
Ai satisfies

|f (x) − f (x′)| ≤ ci



Algorithmica (2011) 59: 16–34 21

whenever vectors x and x′ only differ on the ith coordinate. Let μ be the expected
value of f (X). Then for any t ≥ 0,

P(|f (X) − μ| ≥ t) ≤ 2e−2t2/
∑

c2
i .

Note that e(I c) can be considered as a function of the independent variables Xv ,
for all vertices v of the graph, where Xv = 1 if v is active in the initial configuration,
and Xv = 0 if v is initially passive. By changing the value of only one variable Xv , we
simply move vertex v from I to I c or vice-versa. Thus the value of e(I c) changes by
at most r since G ∈ Gr . By applying Theorem 4 to e(I c), we obtain (2.2). If p < 1/r

for r odd and p < 2/r for r even, by (2.1) and (2.2), we have

e(I c) >

(⌈
r

2

⌉
− 1

)
|I c| a.a.s.

Lemma 1 with k = �r/2� implies that the graph G[I c] induced by I c a.a.s. has a
subgraph of minimum degree at least �r/2�, and so I c a.a.s. contains a community.
This gives θp(G) → 0, as required.

3 Cubic Graphs

In this section, we prove Theorem 1, which determines the dissemination threshold
for cubic graphs. We observe that a community in a cubic graph contains a cycle, and
therefore the obstruction to a p-insemination overrunning a cubic graph is a cycle of
passive vertices.

3.1 Random Cubic Graphs

In this section, we outline the proof of Theorem 1. To prove that pc(G3) ≤ 1
2 we

shall find a family of cubic graphs G such that θp(G) → 1 as |V (G)| → ∞ for all
p > 1

2 . Note that the existence of such a family is implied by the work of Balogh and
Pittel [5]. Nevertheless, our proof is short, self-contained and can be easily turned into
an explicit construction of such a family. This family of cubic graphs is generated by
considering cubic graphs chosen at random from all cubic graphs, and then showing
that such a random graph has the required properties. A survey of random regular
graphs is found in Wormald [20]. The specific property we shall require of such
graphs G is that the length of the shortest cycle in G tends to infinity as |V (G)| tends
to infinity, and G contains no more than 2i cycles of length i for every i ≤ |V (G)|.
We call such graphs cycle-sparse. The following fundamental result on short cycles
in random regular graphs was proved by Bollobás [3]:

Proposition 1 Let Xi denote the number of cycles of length i in a random cubic
graph on n vertices, for i ≤ n. Then, for any fixed integer g > 3,

lim
n→∞ P[∀i ≤ g : Xi = 0] = exp

(
−

g∑
i=1

i−12i−1

)
.
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This result was recently extended to longer cycles in random cubic graphs by
Garmo [10]. Omitting technical details, the results of Garmo show that for any i ≤ n,
P[Xi > 2i] = O(i−2). Since the Euler sum converges, we deduce that with positive
probability Xi ≤ 2i for all i. A few more technical considerations show that we can
ensure that with positive probability, Xi = 0 for i ≤ g and Xi ≤ 2i for i > g, no
matter what constant value of g we prescribe. It follows that there are infinitely many
cycle-sparse cubic graphs.

To finish the proof that pc(G3) ≤ 1
2 , we fix p > 1

2 and apply the Harris-Kleitman
inequality [2]. For this inequality we consider the probability space Qn, whose un-
derlying sample space is the n-dimensional Boolean lattice {0,1}n endowed with the
natural product probability measure

P(ω) :=
n∏

i=1

pωi (1 − p)1−ωi for ω ∈ {0,1}n.

We may consider ω ∈ {0,1}n as the incidence vector of a subset of {1,2, . . . , n}.
Taking this stance, a downset in Qn is an event A ⊂ {0,1}n such that if ω ∈ A and
ω′ ⊆ ω, then ω′ ∈ A. An event is an upset if its complement is a downset.

Proposition 2 Let A1,A2, . . . ,Ar be downsets in Qn. Then

P[A1 ∩ A2 ∩ · · · ∩ Ar ] ≥
r∏

i=1

P[Ai].

The same holds if the events are all upsets.

In the current context, we take a p-insemination of a cycle-sparse n-vertex cubic
graph Gn (seen as a {0,1}n vector), and observe that the events AC that all vertices of
a cycle C ⊂ Gn are passive are downsets in Qn. By the Harris-Kleitman inequality,

P

[ ⋂
C⊂Gn

AC

]
≥

∏
C⊂Gn

P[AC]

where the products and intersections are over all cycles C ⊂ G. Observe that AC has
probability (1 − (1 − p)�) if C has length �. Using the cycle-sparse property of Gn,
we see ∏

C⊂Gn

P[AC] ≥
∏
i>g

(1 − (1 − p)i)2i

.

Since p > 1
2 , 1 − (1 − p)i > e−2(1−p)i . Consequently,

∏
C⊂Gn

P[AC] > exp

(
2
∑
i>g

(2(1 − p))i
)

> exp

(
−2(2(1 − p))g

1 − 2p

)
.
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We conclude that for any p > 1
2 and any constant g,

lim sup
n→∞

θp(Gn) ≤ 1 − lim
n→∞ exp

(
−2(2p)g

1 − 2p

)
.

Since g was an arbitrary constant,

lim
n→∞ θp(Gn) = 1

and this shows pc(G3) ≤ 1
2 .

3.2 pc(G3) ≥ 1
2

The harder part of the proof of Theorem 1 is that pc(R3) ≥ 1
2 . Let p < 1

2 and let I

be the set of active vertices of a p-insemination. It is straightforward to see that for
G ∈ R3, if G has many short vertex-disjoint cycles, the set I c of passive vertices of
the insemination contains a cycle—which is a community—with high probability. To
see this, define

g =
⌊

logn

8 log 2

⌋

and suppose that G has at least n1/2/2g disjoint cycles of length at most 2g. Let
t denote the number of these short cycles. Then the probability that none of these
cycles is in I c is

(1 − (1 − p)2g)t ≤ exp(−t · (1 − p)2g)

≤ exp(−t · 2−2g)

≤ exp

(
−n1/4

2g

)
→ 0.

So we may assume that we have a graph G ∈ R3 which has less than n1/2/2g disjoint
cycles of length at most 2g.

Let G0 = G and Gi = Gi−1 − V (Ci−1) while there exists a cycle Ci−1 ⊂ Gi−1
with |Ci−1| ≤ 2g. Let F := Gt be the last graph, whose shortest cycle has length
more than 2g (it is possible that t = 0 here). Since we have removed t < n1/2/2g

cycles of length at most 2g, |F | > n − n1/2. In other words, we are able to remove at
most n1/2 vertices from G to obtain a graph F all of whose cycles have length more
than 2g. Note that the number of vertices of degree less than three in F is at most
4n1/2, so F is an almost three-regular graph, in the sense that it has n − o(n) vertices
of degree three.

Let Cλ(F ) denote the number of sets of λ vertices of F through which F contains
a cycle of length λ; we shall call these cyclic sets. Note that, in general, Cλ(F ) is less
than the number of cycles of length λ in F . The key idea in showing θp(F ) → 0 is
the following technical proposition:
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Proposition 3 For some λ satisfying λ = �(logn),

Cλ(F ) = �(λ−42λ).

An intuitive way to see this is via eigenvalues: the number of closed walks of
length k in F is exactly n

∑n
i=1 ρk

i , where ρi is the ith largest eigenvalue of the ad-
jacency matrix of F . Since F is cubic, ρ1 = 3. Now it is possible, although fairly
detailed, to show by subtracting walks on trees, that about 2k/k of these walks con-
tain cycles provided k is a large enough constant times logn. A similar computation
is carried out in [17] (see Proposition 4.2). Putting k = λ, and using the girth condi-
tion, one arrives at the bound on Cλ(F ) in Proposition 3. We also observe that in a
random cubic graph, the expected number of cycles of length λ is roughly 2λ/λ, so
in the sense of counting cycles, F is close to a random cubic graph, and these were
discussed in the last section.

The proof of Proposition 3 is based on a series of technical lemmas. They are
stated in terms of almost r-regular graphs, for arbitrary r . Here an almost r-regular
graph denotes a graph with n − o(n) vertices of degree r , the other vertices being of
degree less than r .

A non-returning walk in a graph G is a sequence of vertices (v1, v2, . . . , v�) such
that {vi, vi+1} ∈ E(G) and vi+2 �= vi for all i. The walk is open if v1 �= v�. Let
ws(G) denote the number of open non-returning s-walks (i.e. walks of length s)
in G. A closed walk is cyclic if it consists of the union of two non-returning open
walks of the same length. Let w◦

s (G) be the number of cyclic s-walks in G.

Lemma 2 Let G be an n-vertex almost r-regular graph and let s ≥ 2 logr−1 n. Sup-
pose that G has O(n1/2) vertices of degree less than r . Then

w◦
2s(G) = �

(
(r − 1)2s

)
.

Proof Take two vertex-disjoint copies of G and add edges between the copies until
an r-regular graph H is obtained. For any integer s,

ws(H) ≥ 2nr(r − 1)s−2(r − 2).

Since m = e(H) − 2e(G) = O(n1/2), at most sm(r − 1)s−1 non-returning walks
contain one of these edges. For s = 2 logr−1 n, we obtain

ws(G) ≥ nr(r − 1)s−2(r − 2) − sm(r − 1)s−1 = �
(
n(r − 1)s

)
.

The union of two open non-returning s-walks in G with same start and end-points
is a cyclic walk of length 2s in G. If ws(u, v) is the number of open non-returning
s-walks from u to v in G, then

w◦
2s(G) =

∑
u,v∈G

(
ws(u, v)

2

)
≥ N

( 1
N

ws(G)

2

)

where N = (
n
2

)
. Since s ≥ 2 logr−1 n, we obtain

w◦
2s(G) = �

(
(r − 1)2s

)
. �
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For a set X ⊂ V (G), G[X] is the subgraph of G induced by X. Denote by e(X)

the number of edges in G[X] and cλ(X) the number of distinct cycles of length λ

in X. Let c(G) be the number of distinct cycles in G and e(G) the number of edges
in G.

Lemma 3 Let G be an n-vertex almost r-regular graph. Then there exists an integer
λ ≤ 4 logr−1 n such that

cλ(G) = �

(
1

λ4
(r − 1)λ

)
.

Proof Let W1 and W2 be open non-returning s-walks in G with the same endpoints.
Then the cyclic walk W = W1 ∪ W2 contains a cycle CW of the form P1 ∪ P2 where
P1 ⊂ W1 and P2 ⊂ W2 are internally disjoint paths. By Lemma 3 and the pigeonhole
principle, there exists an integer λ ≤ 2s such that the number c̃λ(F ) of (not necessar-
ily distinct) cycles CW of length λ is

c̃λ(F ) = �

(
(r − 1)2s

λ2

)
.

Fixing a cycle C of length λ, we now give an upper bound on the number of cyclic
walks W = W1 ∪ W2 such that CW = C. Since CW has length λ, there are at most
(r − 1)2s−λ ways to choose W1\C and W2\C given W1 ∩ C and W2 ∩ C. There are
at most λ2 choices for W1 ∩ C and W2 ∩ C, since these are internally disjoint paths
whose union is C. So the number of choices of W such that CW = C is at most
λ2(r − 1)2s−λ. The required bound on cλ(G) follows since λ ≤ 2s. �

Note that if G is a random r-regular graph on n vertices, then the expected value
of cλ(G) is asymptotically 1

2λ
(r − 1)λ—see [19]. We require the following lemma

due to Bollobás and Szemerédi [4]:

Lemma 4 Let G be a graph with n vertices and n + t edges where t > 0. Then G

has a cycle of length at most ( n
t
+ 1) log(2t).

We now come back to the proof of Proposition 3.

Claim 1 For every set X ⊂ V (F) of size at most 4 log2 n, c(X) = O(1).

Proof of Claim 1 If e(X) = |X| + t , where t > 0, then Lemma 4 shows that F [X]
has a cycle of length at most (

|X|
t

+ 1) log(2t). Since F [X] has no cycles of length
at most 2g, this shows t = O(1) and therefore e(X) − |X| = O(1). In particular,
c(X) = O(1). �

Recall that Cλ(F ) is the number of sets X of size λ such that F [X] contains an
λ-cycle in F .
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Claim 2 There exists an integer λ with 2g < λ ≤ 4 log2 n such that

Cλ(F ) = �

(
2λ

(logn)4

)
.

Proof of Claim 2 By Lemma 3, for some integer λ with 2g < λ ≤ 4 log2 n,

cλ(F ) = �

(
2λ

(logn)4

)
.

Since g = �(logn)/8 log 2�, λ = �(logn). If C is a λ-cycle and X = V (C), then
cλ(X) = O(1), by Claim 1. Since

Cλ(F ) ≥ cλ(F )

max|X|=λ cλ(X)
,

this proves Claim 2 and Proposition 3. �

We consider the events AX that all vertices in a cyclic set X of size λ are passive.
The Harris-Kleitman Inequality—Proposition 2—gives a lower bound on the proba-
bility that no AX occurs, whereas we require an upper bound. The requisite inequality
for such an upper bound is Janson’s Inequality [15]:

Proposition 4 Let A1,A2, . . . ,Ar be downsets in the probability space Qn, and de-
fine

	 =
∑
i∼j

P[Ai ∩ Aj ]

where i ∼ j means the events Ai and Aj are dependent and μ is the expected number
of Ai which occur. Then

P

[
r⋂

i=1

Ai

]
≤ e−μ2/2	.

Showing θp(F ) → 0 for p < 1
2 is equivalent to showing that some AX occurs

a.a.s., and we shall establish this with Janson’s Inequality by showing that for the
events AX , 	/μ2 → 0 in a very strong sense: we show that for some absolute con-
stant a > 0, 	/μ2 = O(n−a).

To prove this, note that from Proposition 3,

μ = (1 − p)λCλ(F ) = �

(
(2 − 2p)λ

λ4

)
.

To estimate 	, observe that the intersection of two cycles in F is a (possibly
empty) union of vertex disjoint paths, since every vertex of F has degree at most
three. If C,D are two cycles of length λ in F , then Claim 1 shows e(C ∪ D) − |C ∪
D| = O(1) which implies

e(C ∩ D) − |C ∩ D| = O(1).
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In other words, there is an absolute constant c such that C ∩ D consists of at most c

disjoint paths. This is illustrated below, where C is in dashed lines and D is in solid
lines. The paths forming C ∩ D are denoted P1,P2, . . . ,Pr , and Qi ⊂ D denotes
the subpath of D joining the end of Pi to the start of Pi+1 (here Qr joins the end
of Pr to the start of P1). This is illustrated in the figure below, where the cycle C

is drawn dashed line and the cycle D is drawn in solid line. Note that the order of
appearance of the paths P1,P2, . . . ,Pr around C may be different to that shown in
the illustration.

Fixing a λ-cycle C ⊂ F , let Ci denote the set of λ-cycles D ⊂ F such that |V (C)∩
V (D)| = i. This is to say that P1 ∪ P2 ∪ · · · ∪ Pr has i vertices. To estimate 	, we
find an upper bound for Ci : by definition

	 =
∑
C⊂F

λ−g∑
i=1

∑
D∈Ci

P[C ⊂ I c ∧ D ⊂ I c].

To find a bound on |Ci |, we count the number of ways to construct a λ-cycle D ∈ Ci

starting with the given λ-cycle C. Since C ∩ D consists of at most c vertex-disjoint
paths P1,P2, . . . ,Pr , we count first the number of ways of finding these paths. There
are at most λ2c choices for the paths P1,P2, . . . ,Pr in C ∩ D, since r ≤ c and each
path has two endpoints in C. A cycle D ∈ Ci consists of the paths P1,P2, . . . ,Pr

together with paths Q1,Q2, . . . ,Qr joining the endpoints of the paths P1,P2, . . . ,Pr

as above. Define


(i) = {λ = (λ1, λ2, . . . , λr ) : λ1 + λ2 + · · · + λr = λ − i}.

Let the entries of λ ∈ 
(i) define the number of internal vertices of the paths
Q1,Q2, . . . ,Qr—these are vertices of V (D)\V (C). There are at most 2λj −g choices
for Qj : having chosen the first λj − g vertices of Qj , the remaining vertices g

are uniquely determined since F has no cycle of length at most 2g. So fixing
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P1,P2, . . . ,Pr , the number of choices of Q1,Q2, . . . ,Qr is at most

∑
λ∈
(i)

r∏
j=1

2λj −g.

Now |
(i)| is the number of ways of writing λ− i as a sum of r non-negative integers,
so

|
(i)| =
(

λ − i + r − 1

r − 1

)
< (λ + c)c.

Therefore

|Ci | ≤ λ2c(λ + c)c ·
r∏

j=1

2λj −g = O(λ3c2λ−i−g).

Returning to 	, and using the lower bound on μ, we see that

	 = Cλ(F ) · O(λ3c) ·
λ−g∑
i=1

(1 − p)2λ−i2λ−i−g

= (1 − p)λCλ(F ) · O(λ3c) ·
λ−g∑
i=1

(1 − p)λ−i2λ−i−g

= O(μ) · λ3c ·
λ−g∑
i=1

(1 − p)λ−i2λ−i−g

= O(μ) · λ3c+4 · (2 − 2p)λ

λ4
·
λ−g∑
i=1

(1 − p)−i2−i−g

= O(μ) · λ3c+4 · (1 − p)λCλ(F ) ·
λ−g∑
i=1

(1 − p)−i2−i−g

= O(μ2) · λ3c+4 ·
λ−g∑
i=1

(2 − 2p)−i2−g = O(μ2) · λ3c+5 · 2−g.

In the last step, we used that (2 − 2p)−i < 1 since p < 1
2 . Since g = �(logn) and

c = O(1), we see that 	/μ2 = O(n−a) for some a > 0. In words, some λ-cycle is
passive a.a.s. by Janson’s Inequality, and therefore θp(F ) → 0.
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4 Wheels and Toroidal Grids

We prove here Theorem 3: wheels and toroidal grids plus a universal vertex u have
(relatively) small dissemination half-thresholds p+

c . One of the main observations
is that, for any probability p > 0, if the universal vertex becomes active during the
dissemination process, then the graph is overrun a.a.s. Thus, for any value p such that
p-inseminations contaminate a.a.s. more than half of the vertices of the cycle or of
the toroidal grid, we deduce that the whole graph is overrun.

There has been much research on dissemination on the k-dimensional torus and
grid graphs. The considered rules were the l-neighbours rule, which are more gen-
eral than the majority rule: in this setting a vertex becomes active if at least l of
its neighbours already are active. In particular, Aizenman and Lebowitz [1] studied
the 2-neighbours dissemination on P 2

n and their results extend to C2
n . Notice that

the majority dissemination on C2
n is the 3-neighbours dissemination, since C2

n is a
four-regular graph.

Our approach is based on the observation that once the universal vertex u becomes
active, the majority dissemination in the Ck

n part of u ∗ Ck
n , in fact, follows the weak

majority rule restricted to Ck
n . In the weak majority rule a vertex becomes active if at

least half of its neighbours are active. If the p-insemination of u∗Ck
n is such that half

plus one vertex of Ck
n become active, then u becomes active as well. Moreover, for

any p > 0, the weak majority rule dissemination process for Ck
n will almost surely

overrun the whole graph. The result is trivial for cycles, and due to Aizenman and
Lebowitz for toroidal grids. Note that this also holds for grids or arbitrary dimension
(see e.g. [8]), but here we only use dimension one and two:

Lemma 5 (See [1]) Let Ow
p (G) be the random event that a p-insemination over-

runs G under the weak majority rule, and let us denote ow
p (G) the corresponding

probability. Then for any p > 0 and any k ∈ {1,2},
lim

n→∞ow
p (Ck

n) = 1.

Therefore, for any probability p > 0 on graphs of type u∗Ck
n , if the dissemination

contaminates the vertex u it will almost surely overrun the whole graph.

Corollary 1 For any p > 0,

lim
n→∞ P(u ∗ Ck

n is overrun | u is contaminated during the dissemination) = 1.

Proof By Lemma 5, if u is initially active, then the sequence u∗Ck
n is overrun almost

surely. Indeed, if u is active the (strong) majority dissemination on u ∗ Ck
n behaves

exactly as the weak dissemination on Ck
n . Now if u becomes active during the dissem-

ination process, note that the configuration at that moment contains all active vertices
of the initial configuration, plus u. By the previous observation and by the fact that
the dissemination process is monotone w.r.t. the set of active vertices, we deduce that
the probability of overruning u ∗ Ck

n tends to one. �
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Lemma 6 Denote by Fp(G) the number of active vertices obtained by the p-
dissemination process on G. For every class of graphs G of type u ∗ Ck

n , p+
c (G) =

inf{p ∈ [0,1]} over all values p such that there exists an increasing sequence u ∗ Ck
ni

satisfying limi→∞ P(Fp(Ck
ni

) > nk
i /2) = 1.

Proof Suppose that p is such that limi→∞ P(Fp(Ck
ni

) > nk
i /2) = 1 for some increas-

ing sequence Ck
ni

. Then, on the increasing sequence u ∗ Ck
ni

, the probability of con-
taminating the universal vertex u tends to one. By Corollary 1, the sequence u ∗ Ck

ni

will be overrun a.a.s. Hence p+
c (G) ≤ p.

Conversely, let p such that for any increasing sequence Ck
ni

there exists a constant
ε > 0 such that, with probability at least ε, the p-dissemination process contaminates
at most half of the vertices of the graph Ck

ni
. Then, with probability at least (1 − p)ε,

the sequence u ∗ Ck
i is not overrun by the dissemination process (i.e. the graphs are

not overrun if vertex u is initially passive and the dissemination contaminates at most
half of the other vertices). �

From now on we only consider the p-dissemination process in cycles and toroidal
grids, under the strong majority rule. Recall that Fp(G) is the random variable count-
ing the number of active vertices in the final state, after a p-dissemination process
in G. We give upper and lower bounds for the expected value of Fp for cycles and
toroidal grids. Moreover, we shall see that, with very high probability, the value of
Fp(Ck

n) is very close to its expectation, when n → ∞. Therefore, it is sufficient to
see for which values of p this quantity E(Fp(Ck

n)) is strictly bigger than nk/2, and
for which values it is strictly smaller than nk/2. According to Lemma 6, the dissemi-
nation threshold for the class u ∗ Ck

n lies between the two values.
Since we are unable to give an exact formula for Fp(Ck

n), we give upper and lower
bounds for this quantity. Consider a window Dd(v) formed by all vertices at distance
at most d from v in Ck

n . Let Sd
p(v) be a random variable equal to 1 if v becomes active

when we replace, in the original p-insemination, all vertices outside the window
Dd(v) by passive vertices, and equal to 0 otherwise. Let sd

p(Ck
n) be the probability

that Sd
p(v) = 1 (by symmetry this probability is the same for all vertices). Dually,

let Wd
p (v) = 1 if v becomes active when, in the initial p-insemination, all vertices

outside Dd(v) are transformed into active vertices, and Wd
p (v) = 0 otherwise. The

probability that Wd
p (v) = 1 is denoted wd

p(Ck
n). Finally, let Sd

p(G) = ∑
v Sd

p(v) and

Wd
p (G) = ∑

v Wd
p (v).1

Clearly, we have

Lemma 7 For any constant d and any k ≥ 1,

Sd
p(Ck

n) ≤ Fp(Ck
n) ≤ Wd

p (Ck
n).

1In the case of cycles, it is easy to see that the dissemination process stops in exactly one step: a passive

vertex becomes active iff both neighbours are active, therefore Sd
p(Cn) = Fp(Cn) = Wd

p (Cn) for any
n ≥ 3 and any d ≥ 1.
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For any fixed values of k and d , the probabilities sd
p(Ck

n) and wd
p(Ck

n) can be
expressed as polynomials on p.

Lemma 8
1. For any n ≥ 3,

s1
p(Cn) = w1

p(Cn) = p + p2 − p3.

2. For any n ≥ 5, s3
p(C2

n) and w3
p(C2

n) are polynomials of degree 25 on p. Their exact
formula is given in Appendix.

Proof Let us prove the first part of the lemma. Let v be a vertex of the cycle and
assume that all vertices at distance at least 2 from v are passive. Then v will be active
if and only if initially v is already active (which occurs with probability p) or initially
v is passive and both his neighbours are active (which occures with probability (1 −
p)p2. Therefore the probability that u becomes active is p + p2 − p3 = s1

p . Now if
we configure all non-neighbours of v to be active, the situation is exactly the same:
v will be active iff it was active since the beginning, or if it was initially passive and
both neighbours were active.

For the second part of the proof, the polynomials corresponding to s3
p and w3

p have

been computed by a program. The program considers the window D3(v) formed by
the 25 vertices of distance at most 3 from vertex v in C2

n . For each number i, with
0 ≤ i ≤ 25, we count the number of configurations with exactly i active vertices and
such that v belongs to a passive community. (We consider both settings, when vertices
outside the window are all active, respectively all passive.) We find e.g. 1 community
with 0 active vertices, 24 communities with one active vertex, 276 communities with
2 active vertices, etc. The probability of such a configuration being pi(1 − p)25−i ,
we obtain the required polynomials. �

The expectation of the variable Sd
p(Ck

n) (respectively Wd
p (Ck

n)) is nksd
p(Ck

n) (re-
spectively nksd

p(Ck
n)). Moreover, we have:

Sd
p(Ck

n) ∼ nksd
p(Ck

n) and Wd
p (Ck

n) ∼ nkwd
p(Ck

n) a.a.s. (4.1)

For proving that the two quantities are very close to their expectations we use again
the Independent Bounded Differences inequality (Theorem 4). Consider Sd

p(Ck
n) and

Wd
p (Ck

n) as real functions on all possible initial configurations of Ck
n (so their domain

is {0,1}nk
). For each vertex v of Ck

n , let Xv be the random variable s.t. Xv = 1 if
v is active in the initial configuration, and Xv = 0 if v is initially passive. Clearly
the variables Xv are independent. Recall that Sd

p(Ck
n) = ∑

w Sd
p(w), where Sd

p(w) is
the boolean random variable corresponding to the event “vertex w becomes active if
we replace, in the original p-insemination, all vertices at distance larger that d from
w by passive vertices”. If in the initial configuration we only change the value of
one vertex v, this only changes the values Sd

p(w) for vertices w at distance at most d

from v. Hence the value of Sd
p(Ck

n) is modified by at most a constant value. By similar
arguments, the value of Wd

p (Ck
n) also changes by at most a constant. Therefore we

can apply Theorem 4 to both functions, and deduce (4.1).
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We are now able to prove our Theorem 3. Consider the case of wheels. For any
p > 0.4030 . . . , we have s1

p(Cn) = p + p2 − p3 > 1/2. By Lemma 7 and (4.1), we
have that Fp(Cn) > n/2 a.a.s. Therefore p+

c (W ) ≤ p, for any p > 0.4030 . . . by
Lemma 6. Symmetrically, for any p < 0.4030 . . . , w1

p(Cn) < 1/2 and thus Fp(Cn) <

n/2 a.a.s. We deduce by Lemma 6 that p+
c (W ) ≥ 0.4030 . . . , which proves the first

part of Theorem 3.
The same kind of arguments can be applied to toroidal grids plus one vertex.

For any p ≥ 0.372 (resp. any p ≤ 0.35), the polynomial s3
p(C2

n) (resp. w3
p(C2

n), see
Lemma 8 and Appendix, has value strictly greater (resp. smaller) than 1/2. We con-
clude by Lemma 6 that 0.35 ≤ p+

c (T ) ≤ 0.372.

5 Conclusion

In Question 1, we ask for classes G of graphs with pc(G) = 0. Theorem 2 suggests
that graphs of bounded degree might also have strictly positive dissemination half-
threshold p+

c , so if there exist graph classes G with pc(G) = 0, these classes should
be found among irregular graphs, combining both vertices of high degree and vertices
of small degree. It is natural to ask if the construction of Theorem 3 can be extended
to produce classes with dissemination threshold zero.
Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: Computer-Aided Results

We give here the values of s3
p(C2

n) and w3
p(C2

n) (see Lemma 8), obtained by computer.

s3
p(C2

n) = 1 − 1 ∗ p0 ∗ (1 − p)25 − 24 ∗ p1 ∗ (1 − p)24 − 276 ∗ p2 ∗ (1 − p)23

− 2020 ∗ p3 ∗ (1 − p)22 − 10545 ∗ p4 ∗ (1 − p)21

− 41712 ∗ p5 ∗ (1 − p)20 − 129618 ∗ p6 ∗ (1 − p)19

− 323544 ∗ p7 ∗ (1 − p)18 − 657291 ∗ p8 ∗ (1 − p)17

− 1093584 ∗ p9 ∗ (1 − p)16 − 1491132 ∗ p10 ∗ (1 − p)15

− 1659624 ∗ p11 ∗ (1 − p)14 − 1495889 ∗ p12 ∗ (1 − p)13

− 1080228 ∗ p13 ∗ (1 − p)12 − 617574 ∗ p14 ∗ (1 − p)11

− 276612 ∗ p15 ∗ (1 − p)10 − 96457 ∗ p16 ∗ (1 − p)9

− 26116 ∗ p17 ∗ (1 − p)8 − 5440 ∗ p18 ∗ (1 − p)7

− 836 ∗ p19 ∗ (1 − p)6 − 84 ∗ p20 ∗ (1 − p)5 − 4 ∗ p21 ∗ (1 − p)4,
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w3
p(C2

n) = 1 − 1 ∗ p0 ∗ (1 − p)25 − 24 ∗ p1 ∗ (1 − p)24 − 276 ∗ p2 ∗ (1 − p)23

− 2020 ∗ p3 ∗ (1 − p)22 − 10545 ∗ p4 ∗ (1 − p)21

− 41652 ∗ p5 ∗ (1 − p)20 − 128552 ∗ p6 ∗ (1 − p)19

− 315060 ∗ p7 ∗ (1 − p)18 − 617792 ∗ p8 ∗ (1 − p)17

− 973792 ∗ p9 ∗ (1 − p)16 − 1240510 ∗ p10 ∗ (1 − p)15

− 1285932 ∗ p11 ∗ (1 − p)14 − 1092341 ∗ p12 ∗ (1 − p)13

− 763900 ∗ p13 ∗ (1 − p)12 − 439744 ∗ p14 ∗ (1 − p)11

− 206956 ∗ p15 ∗ (1 − p)10 − 78439 ∗ p16 ∗ (1 − p)9

− 23348 ∗ p17 ∗ (1 − p)8 − 5248 ∗ p18 ∗ (1 − p)7

− 836 ∗ p19 ∗ (1 − p)6 − 84 ∗ p20 ∗ (1 − p)5 − 4 ∗ p21 ∗ (1 − p)4.
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