Skip to main content

Ptolemaic Graphs and Interval Graphs Are Leaf Powers

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4957))

Abstract

Motivated by the problem of reconstructing evolutionary history, Nishimura, Radge and Thilikos introduced the notion of k-leaf powers as the class of graphs G = (V,E) which have a k-leaf root, i.e., a tree T with leaf set V where xy ∈ E if and only if the T-distance between x and y is at most k. It is known that leaf powers are strongly chordal (i.e., sun-free chordal) graphs. Despite extensive research, the problem of recognizing leaf powers, i.e., to decide for a given graph G whether it is a k-leaf power for some k, remains open. Much less is known on the complexity of finding the leaf rank of G, i.e., to determine the minimum number k such that G is a k-leaf power. A result by Bibelnieks and Dearing implies that not every strongly chordal graph is a leaf power. Recently, Kennedy, Lin and Yan have shown that dart- and gem-free chordal graphs are 4-leaf powers. We generalize their result and show that ptolemaic (i.e., gem-free chordal) graphs are leaf powers. Moreover, ptolemaic graphs have unbounded leaf rank. Furthermore, we show that interval graphs are leaf powers which implies that leaf powers have unbounded clique-width. Finally, we characterize unit interval graphs as those leaf powers having a caterpillar leaf root.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.J., Mulder, H.M.: Distance hereditary graphs. J. Combinatorial Theory (B) 41, 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bibelnieks, E., Dearing, P.M.: Neighborhood subtree tolerance graphs. Discrete Applied Math. 43, 13–26 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers. Information Processing Letters 98, 133–138 (2006)

    Article  MathSciNet  Google Scholar 

  4. Brandstädt, A., Le, V.B., Rautenbach, D.: Distance-hereditary 5-leaf powers (manuscript, 2006)

    Google Scholar 

  5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Math. Appl., vol. 3, SIAM, Philadelphia (1999)

    Google Scholar 

  6. Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear time recognition of 4-leaf powers (manuscript, 2006)

    Google Scholar 

  7. Brandstädt, A., Wagner, P.: On (k,ℓ)-Leaf Powers. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 525–535. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Broin, M.W., Lowe, T.J.: A dynamic programming algorithm for covering problems with (greedy) totally balanced constraint matrices. SIAM J. Alg. Disc. Meth. 7, 348–357 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, M.-S., Ko, T.: The 3-Steiner Root Problem. In: Extended abstract in: Proceedings 33rd International Workshop on Graph-Theoretic Concepts in Computer Science WG 2007. LNCS, vol. 4769, pp. 109–120. Springer, Heidelberg (2007)

    Google Scholar 

  10. Chen, Z.-Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded degrees and errors. SIAM J. Computing 32, 864–879 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique width. Theory of Computing Systems 33, 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Combinatoria 24 B, 23–30 (1987)

    MathSciNet  Google Scholar 

  13. Deogun, J.S., Gopalakrishnan, K.: Consecutive Retrieval Property - Revisited. Information Processing Letters 69, 15–20 (1999)

    Article  MathSciNet  Google Scholar 

  14. Niedermeier, R., Guo, J., Hüffner, F., Dom, M.: Error Compensation in Leaf Root Problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 389–401. Springer, Heidelberg (2004); Algorithmica 44(4), 363-381 (2006)

    Google Scholar 

  15. Fagin, R.: A painless introduction. In: Protasi, M., Ausiello, G. (eds.) CAAP 1983. LNCS, vol. 159, pp. 65–89. Springer, Heidelberg (1983)

    Google Scholar 

  16. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–189 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Golumbic, M., Rotics, U.: On the clique-width of some perfect graph classes. International J. Foundat. Computer Science 11(3), 423–443 (2000)

    Article  MathSciNet  Google Scholar 

  18. Gurski, F., Wanke, E.: The clique-width of tree powers and leaf-power graphs. Extended abstract In: Proceedings 33rd International Workshop on Graph-Theoretic Concepts in Computer Science WG 2007. LNCS, vol. 4769, pp. 76–85. Springer, Heidelberg (2007)

    Google Scholar 

  19. Howorka, E.: A characterization of distance-hereditary graphs. Quart. J. Math. Oxford 2(28), 417–420 (1977)

    Article  MathSciNet  Google Scholar 

  20. Howorka, E.: A characterization of ptolemaic graphs. J. Graph Theory 5, 323–331 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kennedy, W., Lin, G., Yan, G.: Strictly chordal graphs are leaf powers. J. Discrete Algorithms 4, 511–525 (2006)

    Article  MATH  Google Scholar 

  22. Kloks, T.: Private communication (2007)

    Google Scholar 

  23. Lin, G.-H., Kearney, P.E., Jiang, T.: Phylogenetic k-root and Steiner k-root. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Lubiw, A.: Γ-free matrices, Master Thesis, Dept. of Combinatorics and Optimization, University of Waterloo, Canada (1982)

    Google Scholar 

  25. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. In: SIAM Monographs on Discrete Math. Appl., vol. 2, SIAM, Philadelphia (1999)

    Google Scholar 

  26. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf labeled trees. J. Algorithms 42, 69–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rautenbach, D.: Some remarks about leaf roots. Discrete Math. 306(13), 1456–1461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Raychaudhuri, A.: On powers of strongly chordal and circular arc graphs. Ars Combinatoria 34, 147–160 (1992)

    MathSciNet  MATH  Google Scholar 

  29. Roberts, F.S.: Representations of Indifference Relations, Ph.D. thesis, Standford University, Standford, CA (1968)

    Google Scholar 

  30. Todinca, I.: Coloring powers of graphs of bounded clique-width. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 370–382. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Sany Laber Claudson Bornstein Loana Tito Nogueira Luerbio Faria

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandstädt, A., Hundt, C. (2008). Ptolemaic Graphs and Interval Graphs Are Leaf Powers. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78773-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78772-3

  • Online ISBN: 978-3-540-78773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics