
Stateless Near Optimal Flow Control with
Poly-logarithmic Convergence

Baruch Awerbuch1? and Rohit Khandekar2

1 Johns Hopkins University. baruch@cs.jhu.edu
2 IBM T.J.Watson Research Center. rkhandekar@gmail.com

Abstract. We design completely local, stateless, and self-stabilizing flow control
mechanism to be executed by “greedy” agents associated with individual flow
paths. Our mechanism is very natural and can be described in a single line:

If a path has many “congested” edges, decrease the flow on the path
by a small multiplicative factor, otherwise increase its flow by a small
multiplicative factor.

The mechanism does not require any initialization or coordination between the
agents. We show that starting from an arbitrary feasible flow, the mechanism al-
ways maintains feasibility and reaches, after poly-logarithmic number of rounds,
a 1 + ε approximation of the maximum throughput multicommodity flow. More-
over, the total number of rounds in which the solution is not 1 + ε approximate is
also poly-logarithmic. Previous distributed solutions in our model either required
a state since they used a primal-dual approach or had very slow (polynomial)
convergence.

1 Introduction

The goal of this paper is to optimize resource allocation in a decentralized network
architecture where different applications compete for shared network resources in a
“greedy” manner, without explicit coordination with each other, while being subjected
to some regulatory constraints that limit their behavior.

In this paper, we focus on the Flow Control version of the multi-commodity flow
problem in a distributed environment. The essence of Flow Control is to decide how
much flow of a commodity is admitted (rest is rejected), assuming infinite flow demand
for each commodity, and assuming routing is pre-determined to go over a single path.
Flow control is used by TCP and is considered a classical problem in the theory of
networking, with numerous articles dedicated to this topic.

The flow control problem is a variant of the multicommodity flow problem in a
directed capacitated graph, with a collection of commodities, each characterized by the
following: source (where the flow is originated), sink (where the flow ends up), benefit
(the utility of this flow), and a fixed path from source and the sink that must be used
by this commodity. The collection of all the flows must satisfy capacity constraints,
namely the total flow on each edge cannot exceed its capacity.

? Partially supported by NSF grants CCF 0515080, ANIR-0240551, CCR-0311795, and CNS-
0617883.

2 Awerbuch and Khandekar

Intuitively, it is clear that the flow control needs to be accomplished by requiring
congested paths to decrease their flows and non-congested paths to increase their flows.
However, there is an inherent instability problem, in this concurrent decision making
environment — some paths may fluctuate between being congested or non-congested.

Stateless algorithms. “Statelessness” is often a desirable feature of an optimization in a
distributed environment [3]. In a stateless and “local” solution, one desires that the flows
make their routing decisions in a cooperative but uncoordinated manner, without having
access to a global clock and without being able to properly initialize and synchronize
their individual executions. The flows only observe the current network congestion,
without being able to pin-point the individual contributions of other commodities, and
without keeping any memory about the past. As pointed out in [3], statelessness implies
a number of other features desirable in networks and distributed systems with unreliable
components. Self-stabilization: it is a classical notion in the theory of robust distributed
systems [8, 13, 9, 6, 5] means that the solution can withstand adversarial sequence of
“hard reset” events, namely, crashes accompanied with loss of all memory contents.
Incremental and local adjustment: Even if changes occur in the network topology or
demand pattern, the algorithm does not need to be restarted. Rather, the algorithm ad-
justs the flows in a local and incremental manner, without disrupting the flows that are
not affected. No global clock: Algorithms should not be driven by a global clock; how-
ever we assume that local clocks generate perfectly synchronized (but un-numbered)
rounds, without maintaining a global time.

2 Greedy Stateless Maximum Benefit flow framework and our
results

Consider a directed capacitated graph G = (V,E, c) where c : E → R+ is the capacity
assignment to edges. We consider the set P of commodities, each associated with a path
p along which it flows and benefit bp per unit of flow. We identify the commodity with
its path p. Let f(p) denote the flow of commodity p. For each edge e, total flow on e is
f(e) =

∑
p:e∈p f(p). Given a flow f , the load of an edge, maximum network load, and

total network benefit (flow value) are respectively

`f (e) =
f(e)
c(e)

, |`f | = max
e∈E

`f (e), and U(f) =
∑
p∈P

bp · f(p).

The objective is to compute a flow assignment f to commodities satisfying the capacity
constraint: |`f | ≤ 1, and maximizing the throughput U(f).

Greedy framework. In this paper, we focus on a specific framework for stateless flow
control, that we call a “greedy” framework. We imagine an “agent” associated with
each commodity p. The agent has benefit bp associated with sending per unit flow. The
restrictions on the agents are as follows:

– Penalty: The network imposes at all times a cost on an agent p determined by a
“penalty” function cost(p) =

∑
e∈p φ

′
e(`f (e)) =

∑
p:e∈p φ

′
e(f(p)/c(e)) where

φe(`f) is a certain function of the congestion on edge e, and φ′e is its derivative.

Stateless Near Optimal Flow Control 3

– Inertia: if cost(p) is within 1 ± α factor of its benefit bp, then the agent p cannot
change its flow f(p),

– Speed limit: the agent p can only modify (increase or decrease) a β fraction of its
flow, namely can change its flow by (1± β).

Assuming that the agents act greedily and selfishly and try to maximize their profit,
an agent p will maximally increase the flow if it is significantly profitable, namely
cost(p) < (1 − α)bp, and will maximally decrease the flow if it is significantly un-
profitable, i.e., cost(p) > (1+α)bp. Our flow control mechanism specifies cost function
φ′, the inertia parameter α and speed limit β.

Theorem 1. Our mechanism that is presented in Fig. 2 guarantees that starting from an
arbitrary feasible flow, the flow always remains feasible, and reaches a 1+ε approximate
solution in time upper-bounded by

Õ

(
log k · log7(mCB)

ε6

)
.

Moreover, the total number of rounds in which the solution is not 1 + ε approximate is
also Õ

(
log k·logO(1)(mCB)

εO(1)

)
.

Here k andm denote the number of commodities and edges in the network respectively,
C is the ratio of maximum to minimum edge capacity, and B is the ratio of maximum
to minimum benefit. Õ hides log(ln m

ε) factors. We remark that we have not attempted
to get the best possible powers of logm and ε in the convergence time. The emphasis is
on a stateless distributed solution with poly-logarithmic convergence.

2.1 Previous work

Stateful algorithms. In centralized or distributed setting, efficient “primal-dual” algo-
rithms in the stateful model have been widely studied for network flows [11, 10, 18,
4, 2]. Most of these algorithms share features like exponential dual variables with our
algorithms. However, these algorithms crucially depend on maintaining a state, e.g.,
proper initialization or some global information about the current solution, and perform
globally optimum updates in each round. Many of these algorithms initialize the flows
to zero. Thus they have to be restarted whenever the instance changes due to change
in the network or commodities; and do not satisfy the incremental and local adjust-
ment property. The packing/covering LP algorithm of Plotkin-Shmoys-Tardos [17] or
the multi-commodity flow algorithm of Awerbuch and Khandekar [3] fall short of being
stateless since they have to keep track of the maximum violation in a constraint or the
global maximum congestion of the current solution. The algorithm of [3] converges in
time linear in the maximum path-length.

Stateless algorithms. Garg and Young [12] presented a stateless flow control algorithm.
While their algorithm resembles ours in the case of flow control, the convergence time
of their algorithm depends linearly on the ratio B of the maximum and minimum ben-
efit of the flows. This linear dependence is inherent to their algorithm due to a severe

4 Awerbuch and Khandekar

Stateless Distributed Problem [citation] Convergence time

no no packing/covering LP [17, 11, 10, 18, 14] m · [log(m)/ε]O(1)

no yes packing/covering LP [16, 7, 18, 15] [log(mn)/ε]O(1)

no yes multi-comm. flow routing [4, 3] L · [log(m · C)/ε]O(1)

yes yes multi-comm. flow control [12] B · [log(C)/ε]O(1)

yes yes bipartite load balancing [1] [log(m)/ε]O(1)

yes yes multi-comm. flow control [this paper] [log(m · CB)/ε]O(1)

Fig. 1: A comparison of some combinatorial (1+ε)-approximation algorithms for multicommod-
ity flows. Here n denotes the number of variables and L denotes the maximum-path-length.

limit on how much flow of a commodity can increase in a single round. Their algorithm
is based on the packet drop-rates at various routers/links. Recently, Awerbuch-Azar-
Khandekar [1] presented a stateless algorithm for a special case of load balancing in
bipartite graphs. Their algorithm and techniques, which do not use any exponential du-
als, do not appear to generalize to arbitrary LPs and hence new techniques are required.

3 The mechanism

By scaling, we assume without loss of generality, that maxp bp = 1, minp bp = 1/B,
mine c(e) = 1, and maxe c(e) = C. The algorithm to be executed by an agent control-
ling the flow on path p is given in Figure 2. The main procedure executed by each agent
is given in Figure 2a. It calls procedures ROUTEMETRIC, CONTROL, FLOWUPDATE
in each round. In the rest of the paper, we use round and time interchangeably.

The ROUTEMETRIC procedure. Procedure ROUTEMETRIC in Figure 2b sets the most
basic parameters. Let f(e) =

∑
p:e∈p f(p) be the current flow and `f (e) = f(e)

c(e) be the

congestion of an edge e. We define Φe(f(e)) = c(e) ·exp[µ(f(e)
c(e) −1)] to be a “penalty”

function where µ = ε−1 ln(mCB) and its derivative Φ′e(f(e)) = µ · exp[µ(f(e)
c(e) − 1)]

to be the “cost”of edge e. The cost of a path is simply the total cost of the edges on that
path.

The CONTROL procedure. Procedure CONTROL in Fig. 2c sets the relevant parameters
of flow control, namely of the amount of flow that one decreases or increases on a link.

We choose α = 1
4µ . Intuitively, this is the accuracy of our cost comparisons, costs

within 1+α factor will be considered essentially equal. Note that if the flow of a certain
commodity over an edge is small (e.g., zero), the multiplicative increase by factor 1+β
is ineffective. To bootstrap the increase in the flow, we allow an additive increase f̈ in
the flow. The parameters β and f̈(e) are defined so that the cost Φ′(e) of any edge e
changes by a factor of at most α

4 in any round. Note that the flow f(e) increases in
one round by at most βf(e) + kf̈(e). Here k denotes the number of agents or paths
|P|. Note that in the procedure FLOWUPDATE, the flow on e is increased only when
f(e) < c(e). Thus to ensure that the cost of e does not increase by more than a 1 + α

4

Stateless Near Optimal Flow Control 5

Repeat in each round:

1. Input (read) f(p) and f(e) for each e ∈ p
2. Call ROUTEMETRIC, CONTROL, FLOWUPDATE

(a) Procedure MAIN for commodity p.

Procedure ROUTEMETRIC

1. Let µ← ε−1 ln(mCB).
2. Define Φe(f(e)) = c(e) · exp[µ(f(e)

c(e)
− 1)] for all e ∈ p

3. Define Φ′(p) =
∑

e∈p Φ′
e(f(e)) =

∑
e∈p µ · exp[µ(f(e)

c(e)
− 1)]

(b) Procedure ROUTEMETRIC for commodity p.

Procedure CONTROL

1. Define parameters: α← 1
4µ

; β ← Θ(α · 1
µ
) and f̈(e)← 1

µ
· c(e)

k
· ln(1 + α

8
)

(c) Procedure CONTROL for commodity p.

Procedure FLOWUPDATE

1. if Φ′(p) < bp · (1− α), then f(p)← max{f(p)(1 + β), min
e∈p

f̈(e)}.

2. if Φ′(p) > bp · (1 + α), then f(p)← f(p)(1− β).

(d) Procedure FLOWUPDATE for commodity p.

Fig. 2: The maximum benefit flow mechanism

factor, it is enough to make sure that exp[µ(βc(e) + kf̈(e))/c(e)] ≤ 1 + α
4 . We in fact

set β and f̈(e) so that exp[µ ·β] ≤ (1+ α
4)/(1+ α

8) and exp[µ ·(kf̈(e)/c(e))] ≤ 1+ α
8 .

We set β = Θ(α · 1
µ). We set f̈(e) = 1

µ ·
c(e)
k · ln(1+ α

8). For all k commodities, the
total additive increase in the flow is at most c(e) · 1

µ · ln(1+ α
8) yielding a multiplicative

increase in the cost of at most 1 + α
8 .

The FLOWUPDATE procedure. The crux of our algorithm lies in procedure FLOWUPDATE
(Fig 2d). Each agent p locally compares the cost Φ′(p) under the current “routing met-
ric” with its benefit bp. If the cost is significantly lower, i.e., less than bp · (1 − α), it
increases the flow by a factor 1+β. In case the current flow on p is very small, the flow
is instead increased additively by an amount mine∈p f̈(e). If on the other hand, the cost
is significantly higher, i.e., more than bp · (1 + α), the flow is decreased by a factor of
1− β. If neither of the above conditions hold, the flow on p is kept unchanged.

6 Awerbuch and Khandekar

We note that the initial values of the flows are completely arbitrary, as long as they
satisfy the capacity constraints; there is absolutely no coordination between flows in
terms of how quickly they act, except that there is at most one action of each flow in
each round.

4 Analysis

Notations. Let U =
∑

p∈P fp · bp be the overall flow in the network at any given
point. Let `f (e) = f(e)/c(e) and |`f | = maxe `(e). Let Φ(e) = Φe(f(e)), Φ′(e) =
Φ′e(f(e)), and Φ′′(e) = Φ′′e (f(e)). Let Φ(p) =

∑
e∈p Φ(e), Φ′(p) =

∑
e∈p Φ

′(e),
Φ =

∑
e∈E Φ(e), and Φ′ =

∑
e∈E Φ

′(e). Let g(p) denote the optimum flow on path
p ∈ P , let g(e) denote the optimum flow on edge e ∈ E. Let Γ =

∑
e∈E f(e) ·Φ′(e) =∑

p∈P f(p) · Φ′(p) be the cost of the entire flow f . Let Λ =
∑

e∈E g(e) · Φ′(e) =∑
p∈P g(p) · Φ′(p) be the cost of the optimum flow under the current cost metric. Let

Γ (e) = f(e) · Φ′(e) and Λ(e) = g(e) · Φ′(e). Let Γ ′(e) = f(e) · Φ′′(e) + Φ′(e). For a
path p ∈ P , Λ′(p) =

∑
e∈p Λ

′(e) =
∑

e∈p Φ
′′(f(e)) · g(e) be the derivative of Λ w.r.t.

the flow f(p) on path p. Similarly let Ψ ′(p) = bp −
∑

e∈p Φ
′(e) be the derivative of Ψ

w.r.t. the flow f(p) on path p.

Definition 1. We introduce the auxiliary potential function: Ψ = U − Φ.

Definition 2. We call the network

– unsaturated if Φ′ < 1
B · (1− α), i.e., the overall cost of the edges is small.

– saturated if Φ′ ≥ 1
B · (1− α), i.e., the overall cost of the edges is large.

– cheap if Γ < U · (1− 2α), i.e., the average cost of a path is small.
– reasonable if U · (1 − 2α) ≤ Γ ≤ U · (1 + 2α), i.e., the average cost of a path is

about right.
– expensive if Γ > U · (1 + 2α), i.e., the average cost of a path is large.

4.1 Preliminary observations

The following lemma states how well a convex function is approximated by its first
order linear approximation.

Lemma 1. For a differentiable convex function Υ : <k → <, for any x, y ∈ <k we
have

Υ ′(x) · (y − x) ≤ Υ (y)− Υ (x) ≤ Υ ′(y) · (y − x)

where Υ ′(·) denotes the gradient evaluated at a given point.

Lemma 2. The potential Ψ does not decrease during the course of the algorithm.

Proof. The negative potential −Ψ is a differentiable convex function of the flow vector
f = (f(p))p∈P . Let f0 and Ψ0 (resp. f1 and Ψ1) denote the values of f and Ψ in the
beginning (resp. in the end) of a round. Using Lemma 1, we conclude that

Ψ1 − Ψ0 = −Ψ0 − (−Ψ1) ≥ −Ψ ′(f1) · (f0 − f1)

=
∑
p∈P

(f1(p)− f0(p)) · (bp − Φ′f1
(p)) (1)

Stateless Near Optimal Flow Control 7

where Φ′f1
(p) denotes the cost of p under flow f1. Since the cost of a path does not

increase by a factor more than 1 + α
4 in a single round, we conclude that Φ′f1

(p) ≤
(1 + α

4)Φ′f0
(p). From the algorithm we conclude that f1(p) − f0(p) > 0 implies bp −

Φ′f1
(p) > bp − Φ′f0

(p)/(1 − α) > 0 and f1(p) − f0(p) < 0 implies bp − Φ′f1
(p) <

bp−Φ′f0
(p)/(1+α) < 0. Combining these observations, we conclude that the potential

Ψ does not decrease. ut

Lemma 3. The flow f always remains feasible, i.e., at all times f(e) ≤ c(e) and
Φ(e) ≤ c(e) for all edges e.

Proof. We prove that Φ(e) ≤ c(e) by induction on the number of rounds. Initially, since
the flow satisfies the capacity constraints, we have f(e) ≤ c(e). Consider any round in
which the flow f(e) (or equivalently Φ′(e)) increases, which is possible only when f(p)
increases for some path p 3 e. Since f(p) is increased only when Φ′(p) < bp(1 − α),
we conclude that Φ′(e) < bp(1−α) in the beginning of this round. Since the cost Φ′(e)
increases by at most a factor of 1 + α

4 in any single round, the cost Φ′(e), whenever
it increases, increases to at most bp ≤ 1. Since Φ(e) = c(e)

µ Φ′(e) < c(e) · Φ′(e),
we conclude that Φ(e) ≤ c(e) after the round. Thus the induction is complete and
Φ(e) ≤ c(e) always holds. From the definition of Φ(e), this implies that f(e) ≤ c(e)
also holds always. ut

Lemma 4. If the network is unsaturated, then in O(τ0) rounds it becomes saturated
where

τ0 = max
e∈E

log1+β

c(e)
f̈(e)

= Õ

(
log(kµ)

β

)
. (2)

Furthermore, once the network becomes saturated, it always remains saturated.

Proof. While the network is unsaturated, the cost of any path p satisfies Φ′(p) ≤ Φ′ <
1
B · (1−α) ≤ bp · (1−α). Thus all the flows increase by a factor of (1+β). Since after
one round, the flow on any edge e is at least f̈(e) and it never exceeds c(e), the network
has to become saturated in O(τ0) rounds.

Now assume that the network becomes unsaturated again. Consider the round dur-
ing which the network changes from being saturated to being unsaturated. In this round,
the flow on some path p must decrease. Just before decrease, it must be true that
Φ′ ≥ Φ′(p) > bp · (1 + α). However since single round reduces Φ′ by at most α

4
factor, we have Φ′ > bp · (1 +α)/(1 + α

4) > 1
B after the round. This is a contradiction.

Thus we conclude that the network never becomes unsaturated again. ut

The proofs of following two lemmas are omitted due to lack of space.

Lemma 5. At all times, (1− 2ε) ·
(
1− 1

mCB

)
· |`f | · Φ · µ ≤ Γ ≤ |`f | · Φ · µ.

Lemma 6. If the network is saturated, then |`f | ≥ 1− 2ε.

Theorem 2. Suppose that the network is either cheap or expensive. Then, in these cases
Ψ increases by at least ∆Ψ = Ω(αβ) · (U + Γ) in a single round.

8 Awerbuch and Khandekar

Proof. From equation (1), we recall that the increase in Ψ in a single round is

∆Ψ = Ψ1 − Ψ0 ≥
∑
p∈P

(f1(p)− f0(p)) · (bp − Φ′f1
(p))

where the subscripts 0 and 1 indicate the values in the beginning and at the end of a
round respectively. Denote Px = {p ∈ P | Φ′f0

(p) ≥ x · bp} and Py = {p ∈ P |
Φ′f0

(p) ≤ y · bp} in the beginning of a round.
For every cheap path p ∈ P(1−α), we have f1(p) − f0(p) ≥ βf0(p). For every

expensive path p ∈ P(1+α), we have f1(p)− f0(p) ≤ −βf0(p). Therefore

∆Ψ ≥
∑

p∈P(1−α)∪P(1+α)

(f1(p)− f0(p)) · (bp − Φ′f1
(p))

≥
∑

p∈P(1−α)

βf0(p) ·
(
bp − Φ′f0

(p) ·
(
1 +

α

4

))
+

∑
p∈P(1+α)

−βf0(p) ·
(
bp − Φ′f0

(p)/
(
1 +

α

4

))
(3)

≥ 1
1− α

∑
p∈P(1−α)

βf0(p) · ((1− α)bp − Φ′f0
(p))

+
1

1 + α

∑
p∈P(1+α)

−βf0(p) · ((1 + α)bp − Φ′f0
(p)). (4)

The inequality (3) follows from the fact that the cost of any edge (or path) changes in
one round by at most 1 + α

4 factor. Note that both the terms in (4) are non-negative.
Cheap network: Γ < (1−2α) ·U . From the definition of P(1−α), the 1st term in (4) is
at least 1

1−α

∑
p∈P βf0(p) · ((1−α)bp−Φ′f0

(p)) = β
1−α ((1−α)U −Γ) ≥ αβ

1−α ·U ≥
Ω(αβ) · Γ .
Expensive network: Γ > (1 + 2α) · U . From the definition of P(1+α), the 2nd term
in (4) is at least 1

1+α

∑
p∈P −βf0(p) · ((1 +α)bp −Φ′f0

(p)) = −β
1+α ((1 +α)U −Γ) ≥

Ω(αβ) · Γ ≥ Ω(αβ) · U .
Putting things together, the proof is complete. ut

Definition 3 (Reasonable interval). We call an interval T = [t0, t1] of rounds reason-
able if the network is reasonable at each round t ∈ T . Otherwise, we call the interval
unreasonable.

4.2 Mileage definitions

We define the offline mileage ∇Λ(e, t), the derivative mileage ∇Φ′
(e, t), and benefit

mileage ∇U (t), as the absolute value of the change, that takes place in round t, in the
offline potential, derivative cost function, and flow on edge e respectively. The second
parameter t indicates that these values are in round t.

∇Λ(e, t) = |Λ(e, t)− Λ(e, t− 1)|, ∇Φ′
(e, t) = |Φ′(e, t)− Φ′(e, t− 1)|.

Stateless Near Optimal Flow Control 9

For an interval T = [t0, t1] of rounds, we define ∇Λ(e, T) =
∑

t∈T ∇Λ(e, t) and
∇Φ′

(P, T) =
∑

e∈P

∑
t∈T ∇Φ′

(e, t). We also define total mileage for the whole net-
work: ∇Λ(t) =

∑
e∈E ∇Λ(e, t) and ∇U (t) = |U(t) − U(t − 1)|. Also ∇Λ(T) =∑

t∈T ∇Λ(t) and ∇U (T) =
∑

t∈T ∇U (t).
Theorem 3 lower bounds the increase∆Ψ in the potential Ψ in an interval of rounds

in terms of mileages of offline potential and flow respectively. This key theorem is
proved in Section 5.

Theorem 3 (Potential Increase). In any interval T = [t0, t1] the increase in potential
is at least ∆Ψ > Ω(∇Λ(T) · α

µ) and ∆Ψ > Ω(∇U (T) · α).

Definition 4 (Stationary interval). We call an interval of time T = [t0, t1] stationary
if the mileage for offline potential and flow are small as compared to the flow volume
at time t0. Specifically, ∇Λ(T) ≤ α2

64 · U(t0), and ∇U (T) ≤ β
2 · U(t0). Otherwise, we

call the interval unstationary.

The corollary below follows directly from Theorem 3 and Definition 4.

Corollary 1. Once the network is saturated, each unstationary interval T = [t0, t1],
leads to a large increase in the potential, i.e., ∆Ψ > Ω(min{α3

µ , α · β}) · U(t0).

4.3 Main Theorems

LetU∗ be the optimal flow value. The following theorem states that any sufficiently long
stationary interval leads to near optimality. This key theorem is proved in Section 6.

Theorem 4 (Optimality). Assume that the network is saturated. Consider a reason-
able and stationary interval T = [t0, t1] of length at least τ0 as in (2). At some round
t ∈ T , we get near optimality: U(t) · (1 +O(β + ε)) ≥ U∗.

Corollary 2 (Main). After O(τ‡ = τ0 · τ†) time, where τ0 is as in (2) and

τ† = O(ε · µ4 · ln(mC)) = O(ε · µ5), (5)

or, after τ‡ = O(ε · µ7 · ln(kµ)) = Õ
(

log k·log7(mCB)
ε6

)
time, the flow becomes near

optimal, namely U · (1 + O(β + ε)) ≥ U∗. Moreover, the total number of rounds in

which the solution is not 1 +O(β + ε) approximate is also Õ
(

log k·logO(1)(mCB)
εO(1)

)
.

The proof of the above corollary follows from Corollary 1, Theorem 4, and the fact that
the potential is bounded above by m · C. The proof is omitted due to lack of space.

5 Potential increase proof of Theorem 3

Theorem 5 (Offline mileage). If the offline mileage in an interval T is ∇Λ(T), then
Ψ increases in T by at least Ω(∇Λ(T) · α

µ).

10 Awerbuch and Khandekar

Proof. To simplify the intuition behind the proof, assume that the augmentation or with-
drawal of flows on different paths happens sequentially (see the remark at the end of
the proof).

Consider δ units of flow sent on path p. The offline mileage ∇Λ due to this can be
upper bounded by the increase ∆Ψ in the potential due to this as follows.

1
δ
· ∇Λ = Λ′(p) =

∑
e∈p

Λ′(f(e)) =
∑
e∈p

Φ′′e (f(e)) · g(e) =
∑
e∈p

Φ′e(f(e)) · µ

c(e)
· g(e)

≤
∑
e∈p

Φ′e(f(e)) · µ = Φ′(p) · µ ≤ O
(µ
α
· Ψ ′(p)

)
= O

(
1
δ
· µ
α
·∆Ψ

)
.

The first inequality holds since g(e) ≤ c(e). The second inequality above follows from
the fact that Ψ ′(p) = bp−Φ′(p) and that the flow on p is increased only if Φ′(p) < (1−
α) ·bp, which in turn implies that Ψ ′(p) ≥ 1

1−αΦ
′(p)−Φ′(p) = Ω(α) ·Φ′(p). A similar

argument holds when δ units of flow is reduced on path p when Φ′(p) > (1 + α) · bp.
The overall offline mileage in a round is at most the sum of such mileage contributions
over all the paths. Since each unit of offline mileage contributes to an increase of Ω(α

µ)
units of Ψ , the proof is complete.
Remark: The proof also works without the assumption of sequential execution, since
the cost Φ′(f(e)) of any edge changes by a factor of at most 1 + α

4 in a single round
and Ψ ′(p) ≥ Ω(α) · Φ′(p) still holds. ut

Theorem 6 (Benefit mileage). If the benefit mileage in an interval T is ∇U (T), then
Ψ increases in T by at least Ω(∇U (T) · α).

Proof. Note that Ψ ′(p) = bp − Φ′(p) denotes the increase in Ψ per unit flow increase
in f(p). Observe that flow f(p) is increased only along paths with Φ′(p) < (1−α) · bp
and is decreased only along paths p with Φ′(p) > (1+α) ·bp. Thus, the net contribution
of “positive” terms (namely, bp for ∆f(p) > 0 and −Φ′(p) for ∆f(p) < 0) is at least
1 + Ω(α) factor higher that the net contribution of “negative” terms (namely, −Φ′(p)
for ∆f(p) > 0 and bp for ∆f(p) < 0). The net effect is at least α fraction of either
change in the positive or negative terms. Thus any unit change in f(p) contributes to
α · bp increase in Ψ . Since the overall benefit mileage is at most the contributions of
mileages of all the paths, the proof is complete. ut

6 Optimality proof of Theorem 4

Suppose the network is saturated and the interval T = [t0, t1] of length at least τ0 is
both reasonable and stationary.

Lemma 7. For all t ∈ T , we have Γ (t)−U(t)
Γ (t) ≤ 1

2µ .

Proof. If Γ (t) ≤ U(t), then the above inequality trivially holds. On the other hand,
since the network is not expensive at time t, we have Γ (t) ≤ U(t) · (1+2α). Therefore
Γ (t)− U(t) ≤ 2α · U(t) ≤ 2α · Γ (t). Since α = 1

4µ , the lemma follows. ut

Stateless Near Optimal Flow Control 11

Recall that g denotes the optimum flow that achieves the maximum throughput U∗.
Let h = g · U(t0)

U∗ be the scaled optimum flow that achieves the throughput U(t0), the
throughput of the solution f at time t0. It is easy to see that if |`f | ≤ (1 + O(ε)) · |`h|
at time t0, where |`h| is the maximum edge load under flow h, then we have near
optimality: U(t0) ≥ (1−O(ε))U∗.

Let Λ̂(t) =
∑

e∈E h(e) · Φ′(e) =
∑

p∈P h(p) · Φ′(p) be the cost of flow h under
the current cost metric. The next theorem shows that if Γ (t) is a good approximation of
Λ̂(t), then we have near optimality.

Theorem 7. If at some time t ∈ T , we have Γ (t)−Λ̂(t)
Γ (t) ≤ 7

8µ , then we have near
optimality: U(t) · (1 +O(β + ε)) ≥ U∗.

Proof. Let Φ(h) =
∑

e∈E c(e) ·exp[µ(h(e)
c(e) −1)] be the potential of h. From Lemma 1,

we know that Φ(f(t)) − Φ(h) ≤ Φ′(f(t)) · (f(t) − h) = Γ (t) − Λ̂(t). Since Γ (t) ≤
Φ(t) · µ, we conclude

Φ(f(t))− Φ(h)
Φ(f(t))

≤ Γ (t)− Λ̂(t)
Γ (t)/µ

≤ 7
8µ

· µ =
7
8
.

This combined with the definition of Φ in turn implies that we have achieved additive
ε approximation: |`f | ≤ |`h| + ε. Since the network is saturated, which implies |`f | ≥
1− 2ε, we have multiplicative approximation |`f | ≤ (1 +O(ε)) · |`h|.

Recall that the flow h has throughput U(t0), the throughput at the beginning of the
interval. Since the benefit mileage is small: ∇U (T) ≤ β

2 · U(t0), we have U(t) ≥
(1− β

2) ·U(t0). Putting all things together we have near optimality: U(t) ≥ (1−O(ε+
β)) · U∗. ut
In light of Lemma 7 and Theorem 7, we can assume, without loss of generality, that for
all t ∈ T , Λ̂(t)−U(t)

Γ (t) = Λ̂(t)−Γ (t)
Γ (t) + Γ (t)−U(t)

Γ (t) ≤ −7
8µ + 1

2µ = −3
8µ . Since the network is

reasonable, Γ (t) ≥ (1− 2α) · U(t). Therefore after simplifying, we get Λ̂(t) ≤ U(t) ·(
1− 3α

2 + 3α2
)
. Since low benefit mileage impliesU(t) ≤ U(t0)·(1+β

2), we conclude

that the average cost of the flow path in h is small: Λ̂(t)
U(t0)

≤
(
1− 3α

2 + 3α2
) (

1 + β
2

)
.

Since h = g·U(t0)
U∗ , we have that the mileage of h in the interval T (defined similarly

and denoted by ∇Λ̂(T)) is small: ∇Λ̂(T) ≤ α2

64 · U(t0).

Lemma 8. Consider a probability space (Ω, π : Ω → <+) and two non-negative
random variables χ and ψ with expectations χ̄ and ψ̄ respectively. Then, for every
κ < 1 there exists ω∗ ∈ Ω such that χ(ω∗) ≤ (1 + κ) · χ̄ and ψ(ω∗) ≤ 2

κ · ψ̄.

The above lemma applied to the set of paths P with a probability function π given
by π(p) = h(p) ·bp/U(t0), the two random variables given by χ(p) = Φ′(p, t0)/bp and
ψ(p) = ∇Φ′

(p)/bp, and κ = α/4, we get the following theorem.

Theorem 8 (Anchor theorem). There exists a path D ∈ P (referred to as “anchor”
path) such that

Φ′(D, t0)
bD

≤ (1 +
α

4
) · Λ̂(t0)
U(t0)

and
∇Φ′

(D, T)
bD

≤ 8
α
· ∇

Λ(T)
U(t0)

.

12 Awerbuch and Khandekar

Using the above theorem, we get Φ′(D,t0)
bD

≤
(
1 + α

4

)
·
(
1− 3α

2 + 3α2
) (

1 + β
2

)
and

∇Φ′ (D,T)
bD

≤ 8
α ·

α2

64 = α
8 . Therefore we conclude that the cost Φ′(D) at any time t ∈ T

is at most

Φ′(D, t) ≤ bD · (Φ′(D, t0) +∇Φ′
(D, T))

≤ bD ·
[(

1− 5α
4

+O(α2)
)
· (1 +O(α2)) +

α

8

]
< bD · (1− α).

This leads to a contradiction as follows. Since the cost of the anchor path D is consis-
tently lower than bD ·(1−α), its flow f(D) is increased by a factor 1+β in every single
round. Thus after τ0 rounds, the flow on some edge in D must exceed its capacity. This
is a contradiction and thus the proof of Theorem 4 is complete. ut

References
1. B. Awerbuch, Y. Azar, and R. Khandekar. Fast load balancing via bounded best response.

SODA, 2008.
2. B. Awerbuch and R. Khandekar. Distributed network monitoring and multicommodity

flows:primal-dual approach. PODC, 2007.
3. B. Awerbuch and R. Khandekar. Greedy distributed optimization of multi-commodity flows.

PODC, 2007.
4. B. Awerbuch, R. Khandekar, and S. Rao. Distributed algorithms for multicommodity flow

problems via approximate steepest descent framework. SODA, 2007.
5. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and

correction. FOCS, 1991.
6. B. Awerbuch and G. Varghese. Distributed program checking: a paradigm for building self-

stabilizing distributed protocols. FOCS, 1991.
7. Y. Bartal, J. W. Byers, and D. Raz. Global optimization using local information with appli-

cations to flow control. FOCS, 1997.
8. E. Dijkstra. Self stabilizing systems in spite of distributed control. CACM, 17:643–644, Nov

1974.
9. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only

read/write atomicity. PODC, 1990.
10. L. Fleischer. Approximating fractional multicommodity flow independent of the number of

commodities. SIAM Journal on Discrete Mathematics, 13:505–520, 2000.
11. N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and other

fractional packing problems. FOCS, 1998.
12. N. Garg and N. E. Young. On-line, end-to-end congestion control. FOCS, 2002.
13. M. G. Gouda and N. J. Multari. Stabilizing communication protocols. Technical Report

TR-90-20, Dept. of Computer Science, University of Texas at Austin, June 1990.
14. C. Koufogiannakis and N. E. Young. Beating simplex for fractional packing and covering

linear programs. FOCS, 2007.
15. F. Kuhn. The price of locality: exploring the complexity of distributed coordination primi-

tives. PhD Thesis, ETH Zurich, Diss. ETH No. 16213, December 2005.
16. M. Luby and N. Nisan. A parallel approximation algorithm for positive linear programming.

STOC, 1993.
17. S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms for fractional packing

and covering problems. Math of Oper. Research, 20(2), pages 257–301, 1994.
18. N. E. Young. Sequential and parallel algorithms for mixed packing and covering. FOCS,

2001.

