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Abstract. This paper presents a novel stochastic model that explains
the relation between power laws of In-Degree and PageRank. PageRank
is a popularity measure designed by Google to rank Web pages. We
model the relation between PageRank and In-Degree through a stochas-
tic equation, which is inspired by the original definition of PageRank.
Using the theory of regular variation and Tauberian theorems, we prove
that the tail distributions of PageRank and In-Degree differ only by a
multiplicative constant, for which we derive a closed-form expression.
Our analytical results are in good agreement with Web data.

Categories and Subject Descriptors
H.3.3:[Information Storage and Retrieval]: Information Search and
Retrieval– Retrieval models; G.3:[Mathematics of Computing]: Prob-
ability and statistics – Stochastic processes, Distribution functions

General Terms
Theory, Verification, Experimentation, Algorithms

Keywords: PageRank, In-Degree, Power law, Regular variation, Sto-
chastic equation, Web measurement.

1 Introduction

We study the relation between the probability distributions of the PageRank
and the In-Degree of a randomly selected Web page. In this paper we present
the mathematical model and main results while more detailed discussion and
proofs can be found in the extended version [1]. The notion of PageRank was
introduced by Google in order to numerically characterize the popularity of Web
pages. The original description of PageRank presented in [2] is as follows:

PR(i) = c
∑

j→i

1
dj

PR(j) + (1 − c), (1)

where PR(i) is the PageRank of page i, dj is the number of outgoing links
of page j, the sum is taken over all pages j that link to page i, and c is the
“damping factor”, which is some constant between 0 and 1. The In-Degree of a
Web page denotes simply the number of incoming hyperlinks to that page. From

W. Aiello et al. (Eds.): WAW 2006, LNCS 4936, pp. 72–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Probabilistic Relation between In-Degree and PageRank 73

equation (1) it is clear that the PageRank of a page depends on its In-Degree
and the importance (i.e. PageRanks) of the pages that link to it.

We focus in particular on the tail asymptotics for PageRank and its connection
to In-Degree. By tail of the PageRank distribution we simply mean the fraction
of pages P(PR > x) having PageRank greater than x, where x is large. A
common way to analyze tail behavior is to find an asymptotic expression p(x)
such that P(PR > x)/p(x) → 1 as x → ∞. In this case, p(x) and P(PR > x) are
asymptotically equivalent, and thus, we can approximate P(PR > x) by p(x) for
large enough x.

Pandurangan et al. [3] observed that the tails of PageRank and In-Degree
distributions for Web data seem to follow power laws with the same exponent.
Recent extensive experiments by Donato et al. [4] and Fortunato et al. [5] con-
firmed this phenomenon. Becchetti and Castillo [6] investigated the influence of
the damping factor c on the power law behavior of PageRank. They have shown
that the PageRank of the top 10% of the nodes always follows a power law with
the same exponent independent of the value of the damping factor.

Obviously, equation (1) suggests that PageRank and In-Degree are intimately
related, but this formula by itself does not explain the observed similarity in tail
behavior. Furthermore, the linear algebra methods that have been commonly
used in the PageRank literature [7,8] and proved very successful for designing
efficient computational methods, seem to be insufficient for modelling and ana-
lyzing the asymptotic properties of the PageRank distribution.

The goal of our paper is to provide mathematical evidence for the power-
law behavior of PageRank and its relation to the In-Degree distribution. Our
approach is inspired by techniques from applied probability and stochastic op-
erations research. The relation between PageRank and In-Degree is modelled
through a distributional identity, which is analogous to the equation for the
busy period in the M/G/1 queue (see e.g. [9]). Further, we analyze our model
using the approach employed in [10] for studying the tail behavior of the busy
period in case the service times are regularly varying random variables. This fits
in our research because regular variation is in fact a formalization of the power
law, and it has been widely used in queueing theory to model self-similarity,
long-range dependence and heavy tails [11]. Thus, we use the notion of regular
variation to model the power law distribution of In-Degree.

To obtain the tail behavior of PageRank in our model, we use Laplace-Stieltjes
transforms and apply Tauberian theorems presented in the paper by Bingham
and Doney [12], see also Theorem 8.1.6 in [13]. Even though our model contains
some rather rigid simplifying assumptions – the most notable being indepen-
dence between pages that link to the same page and a constant Out-Degree for
all pages – these techniques allow us to prove the similarity in tail behavior for
PageRank and In-Degree, thus suggesting that our assumptions do not touch
upon the underlying reasons for this similarity. Moreover, our analysis allows to
explicitly derive the multiplicative constant that quantifies the difference bet-
ween PageRank and In-Degree tail behavior. Our analytical results show a good
agreement with Web data.



74 N. Litvak, W.R.W. Scheinhardt, and Y. Volkovich

2 Preliminaries

This section describes important properties of regularly varying random vari-
ables. We follow definitions and notations by Bingham and Doney [12], Meyer
and Teugels [10], and Zwart [11]. More comprehensive details can be found
in [13].

Definition 1. A function L is said to be slowly varying if for every t > 0,

L(tx)
L(x)

→ 1 as x → ∞.

Definition 2. A random variable X is said to be regularly varying with index
α if its distribution is such that

P(X > x) ∼ x−αL(x) as x → ∞,

for some positive slowly varying function L(x). Here, as in the remainder of this
paper, the notation a(x) ∼ b(x) means that a(x)/b(x) → 1.

Denote by f(s) = Ee−sX , s > 0, the Laplace-Stieltjes transform of X , and let
ξn = EXn be the nth moment of X , where n ∈ N. The successive moments of
X can be obtained by expanding f in a series at s = 0. More precisely, we have
the following.

Lemma 1. The nth moment of X is finite if and only if there exist numbers
ξ0 = 1 and ξ1, ..., ξn, such that

f(s) −
n∑

i=0

ξi

i!
(−s)i = o(sn) as s → 0.

If ξn < ∞ then we introduce the notation

fn(s) = (−1)n+1

(
f(s) −

n∑

i=0

ξi

i!
(−s)i

)
. (2)

Note 1. It follows from Lemma 1 that EXn < ∞ if and only if there exist
numbers ξ0 = 1 and ξ1, ..., ξn such that fn(s) = o(sn) as s → 0.

The following theorem establishes the relation between asymptotic behavior of
a regularly varying distribution and its Laplace-Stieltjes transform. This result
plays an essential role in our analysis.

Theorem 1. (Tauberian Theorem) If n ∈ N, ξn < ∞, α = n + β, β ∈ (0, 1),
then the following are equivalent

(i) fn(s) ∼ (−1)nΓ (1 − α)sαL(1
s ) as s → 0,

(ii) P(X > x) ∼ x−αL(x) as x → ∞.

Here and in the remainder of the paper we use the letter α to denote the index
of the tail probability P(X > x).
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3 Model

In this section we introduce a model that describes the relation between Page-
Rank and In-Degree in the form of a stochastic equation. This model naturally
follows from the definition of PageRank in (1), and is analytically tractable, thus
enabling us to obtain the asymptotic behavior of PageRank. As will become
clear, we make several rather strong simplifying assumptions. Nevertheless, the
theoretical results of this model show a good match with observed Web graph
behavior.

3.1 Relation between In-Degree and PageRank

Our goal now is to describe the relation between PageRank and In-Degree. To
this end, we keep equation (1) almost unchanged but we transform it into a
stochastic equation. Let R be the PageRank of a randomly chosen page. We treat
R simply as a random variable whose distribution we want to determine. Further,
we view the In-Degree of a random page as a random variable N , which follows a
power law. The model for N will be specified in Section 3.2 below. In this work,
we assume that the number of outgoing links (Out-Degree) d ≥ 1 is the same
for each page. This assumption is obviously not realistic; in particular it ignores
the presence of ‘hubs’ (pages with extremely high Out-Degree) and ‘dangling
nodes’ (pages with Out-Degree zero). The idea behind this rigid simplification
is that we want to focus on the influence of the In-Degree, without considering
other factors. Besides, it is a common belief that Out-Degrees do not affect the
PageRank distribution, and it is also well-known (see e.g. [14]) that dangling
nodes alter the PageRank vector only by a multiplicative constant. We note
however that the proposed stochastic model allows for extensions. For instance,
in the upcoming paper [15], we account for dangling nodes and allow for an
arbitrary Out-Degree distribution.

Under the assumptions above, the random variable R satisfies a distributional
identity

R
d= c

N∑

j=1

1
d
Rj + (1 − c). (3)

We now make the assumption that N and the Rj ’s are independent, and that
the Rj ’s have the same distribution as R itself. We note that the independence
assumption is not true in general. However, it is also not the case that the
PageRank values of the pages linking to the same page i are directly related, so
we may assume independence in this study.

The novelty of our approach is that we treat PageRank as a random variable
which solves a certain stochastic equation. We believe, this approach is quite
natural if our goal is to explain the power law behavior of PageRank because the
power law is merely a description of a certain class of probability distributions.
In fact, this point of view is in line with Pandurangan et al. [3] and other authors
who consistently present log-log histograms of PageRank.
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One of the nice features of the stochastic equation (3) is that it has the same
form as the original formula (1). Thus, we may hope that our model correctly
describes the relation between In-Degree and PageRank. This is easy to verify
in the extreme (unrealistic) case when all pages have the same In-Degree d. In
this situation, the PageRanks of all pages are equal, and it is easy to see that
R ≡ 1 constitutes the unique solution of (3).

3.2 In-Degree Distribution

It is well-known that the In-Degree of Web pages follows a power law. For our
analysis however we need a more formal description of this random variable,
thus, we suggest to employ the theory of regular variation. We model the In-
Degree of a randomly chosen page as a nonnegative, integer, regularly varying
random variable, which is distributed as N(X), where X is regularly varying
with index α:

P(X > x) ∼ x−αL(x) as x → ∞,

and N(x) is the number of Poisson arrivals on the time interval [0, x]. Without
loss of generality, we assume that the rate of the Poisson process is equal to 1.

The advantage of this construction is that we do not need to impose any
restrictions on X and at the same time ensure that the In-Degree is integer. It
is intuitively clear that N(X) is asymptotically equivalent to X , that is, N(X)
and X follow the same power law. Specifically, we have

P(N(X) > x) ∼ P(X > x) as x → ∞. (4)

For the proof of (4) using the Tauberian theorem (Theorem 1) see e.g. [1].

3.3 The Main Stochastic Equation

Combining the ideas from Sections 3.1 and 3.2, we arrive at the following
equation

R
d= c

N(X)∑

j=1

1
d
Rj + (1 − c), (5)

where c ∈ (0, 1) is the damping factor, d ≥ 1 is the fixed Out-Degree of each page,
and N(X) describes the In-Degree of a randomly chosen page as the number of
Poisson arrivals on a regularly varying time interval X . As we discussed above,
stochastic equation (5) adequately captures several important aspects of the
PageRank distribution and its relation to the In-Degree distribution. Moreover,
our model is completely formalized, and thus we can apply analytical meth-
ods in order to derive the tail behavior of the random variable R representing
PageRank.

Linear stochastic equations like (5) have a long history. In particular, (5) is
similar to the famous equation that arises in the theory of branching processes
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and describes many real-life phenomena, for instance, the distribution of the
busy period in the M/G/1 queue:

B
d=

N(S1)∑

i=1

Bi + S1,

where B is the distribution of the busy period (the time interval during which
the queue is non-empty), S1 is the service time of the customer that initiated
the busy period, N(S1) is the number of Poisson arrivals during this service time
and the Bi’s are independent and distributed as B. We refer to [9] and other
books on queueing theory for more details. Also, see Zwart [11] for an excellent
detailed treatment of queues with regular variation, and specifically the busy
period problem. We would like to add that our equation (5) is a special case in
a rich class of stochastic recursive equations that were discussed in detail in the
recent survey by Aldous and Bandyopadhyay [16].

This concludes the model description. The next step will be to use our model
for providing a rigorous explanation of the indicated connection between the
distributions of In-Degree and PageRank.

4 Analysis

The idea of our analysis is to write down an equation for the Laplace-Stieltjes
transforms of X and R and then make use of the Tauberian theorem to prove
that R is regularly varying with the same index as X . Since X and N(X) are
asymptotically equivalent, this will give us the desired similarity in tail behavior
of the PageRank R and the In-Degree N(X).

Let r be the the Laplace-Stieltjes transform of R. As a result of the assump-
tions from Section 3, we can use (5) to express r in terms of f , the Laplace-
Stieltjes transform of X , as follows:

r(s) := Ee−sR = e−s(1−c)
E

⎡

⎣E

⎡

⎣exp

⎛

⎝−s
c

d

N(X)∑

i=1

Ri

⎞

⎠

∣∣∣∣∣∣
N(X)

⎤

⎦

⎤

⎦

= e−s(1−c)
E

[(
E

[
exp

(
−s

c

d
Ri

)])N(X)
]

= e−s(1−c)
E

[
E

[(
r
(
s

c

d

))N(X)
∣∣∣∣ X

]]

= e−s(1−c)
E exp

(
−

(
1 − r

(
s

c

d

))
X

)
= e−s(1−c)f

(
1 − r

( c

d
s
))

.

It can be shown that for the typical values d > 1 and 0 < c < 1 the above equation
has a unique solution r(s) which is completely monotone and has r(0) = 1.

We start the analysis with providing the correspondence between existence
of the n-th moments of X and R. We remind that ξ1, . . . , ξn denote the first
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n moments of X . Further, denote the first n moments of R by ρ1, . . . , ρn, and
define

rn(s) = (−1)n+1

(
r(s) −

n∑

k=0

ρk

k!
(−s)k

)
,

as in (2). Note that taking expectations on both sides of (5) we easily obtain
ER = ρ1 = 1. This follows from the independence of N(X) and the Rj ’s and
the fact that EN(X) = EX = ξ1 = d.

The next lemma holds.

Lemma 2. The following are equivalent

(i) ξn < ∞,
(ii) ρn < ∞.

Note 2. Similar as in Note 1, we can reformulate Lemma 2 as

fn(s) = o(sn) if and only if rn(s) = o(sn).

Note 3. Note that the stochastic inequality R
d
> (1 − c)

(
c
dN(X) + 1

)
implies

that the tail of the PageRank R is at least as heavy as the tail of the In-
Degree N(X).

The proof of Lemma 2 is quite lengthy and is therefore omitted. The interested
reader is referred to the full version of this paper, see [1]. Same applies to the
proof of Corollary 1 below.

Corollary 1. The following holds:

rn(s) − drn

( c

d
s
)

= fn(t) + O(tn+1),

where t = 1 − r
(

c
ds

)
.

Now we are ready to explain the similarity between the In-Degree and PageRank
distributions. Specifically, we show that the tail probabilities P(R > x) and
P(N(X) > x) for PageRank and In-Degree, respectively, approximately differ
by a multiplicative constant as x grows large. The next theorem formalizes this
statement.

Theorem 2. The following are equivalent

(i) P(N(X) > x) ∼ x−αL(x) as x → ∞,

(ii) P(R > x) ∼ cα

dα − cαd
x−αL(x) as x → ∞.

Proof.
(i) → (ii) From (i) and (4) it follows that

P(X > x) ∼ x−αL(x) as x → ∞. (6)
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Theorem 1 also implies that (6) is equivalent to fn(t) ∼ (−1)nΓ (1 − α)tαL
( 1

t

)
,

where t(s) = 1 − r
(

c
ds

)
∼ (c/d)s as s → 0. Hence, by Corollary 1 we obtain

rn(s) − drn

( c

d
s
)

∼ (−1)nΓ (1 − α)
( c

d

)α

sαL

(
1
s

)
as s → 0. (7)

Then also for every k ≥ 0, as s → 0, we have

rn

(( c

d

)k

s

)
− drn

(( c

d

)k+1
s

)
∼ (−1)nΓ (1 − α)

( c

d

)α ( c

d

)αk

sαL

(
1

(
c
d

)k
s

)

∼ (−1)nΓ (1 − α)
( c

d

)α ( c

d

)αk

sαL

(
1
s

)
.

Next, we write rn(s) in the form of an infinite sum as follows:

rn(s) =
∞∑

k=0

dk

(
rn

(( c

d

)k

s

)
− drn

(( c

d

)k+1
s

))
.

From the above representation we obtain

rn(s) ∼ (−1)nΓ (1 − α)
dα

dα − cαd

( c

d

)α

sαL

(
1
s

)
as s → 0.

Now we again invoke Theorem 1, which leads to (ii).
(ii) → (i) The proof follows easily from (ii) and Corollary 1.

Thus, we have shown that the asymptotic behaviors of PageRank and In-
Degree differ by the multiplicative constant cα

dα−cαd , while the power law expo-
nent remains the same. In the next section we will experimentally verify this
result.

5 Numerical Results

We verified our findings by computing PageRank on the public data of the
Stanford Web from [17]. To identify the power law behavior, we used cumulative
log-log plots, which are much less noisy than histograms.

In order to compute the slope α, we used the following maximum likelihood
estimator proposed by Newman [18]:

α = 1 + n

(
n∑

i=1

ln
xi

xmin

)−1

. (8)

Here the quantities xi, i = 1, . . . , n, are the measured values, and xmin usually
corresponds to the smallest value of X for which the power law behavior is
assumed to hold.
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Fig. 1. Plots for the Web data. Fraction of pages with In-Degree/PageRank greater
than x versus x in log-log scale, and the fitted straight lines.

There are several papers, see [3,4,5], and [6] that describe similar experiments
for different domains and different number of pages, and they all confirm that
PageRank and In-Degree follow power laws with the same exponent, around 1.1
for the cumulative distribution function.

We calculated all PageRank values for the Web graph with 281903 nodes
(pages) and ∼ 2.3 million edges (links) using the standard power method (see
e.g. [8]). On this dataset, the average Out-Degree, and hence average In-Degree
is 8.2. In Figure 1 we show the log-log plots for In-Degree and PageRank of
the Stanford Web Data, for different values of the damping factor (c = 0.1, 0.5
and 0.9). Clearly, these empirical values of In-Degree and PageRank constitute
parallel straight lines for all values of the damping factor, provided that the
PageRank values are reasonably large. It was observed in [6] that in general,
PageRank depends on the damping factor but the PageRank of the top 10% of
pages obeys a power law with the same exponent as the In-Degree, independent
of the damping factor. This is in perfect agreement with our experimental results
and the mathematical model, which is focused on the right tail behavior of the
PageRank distribution.

The calculations based on the maximum likelihood method yield a slope −1.1,
which verifies that In-Degree and PageRank have power laws with the same
exponent α = 1.1 (this corresponds to the well known value 2.1 for the his-
togram). More precisely, in Figure 1 we fitted the lines y = −1.1x + 0.08, y =
−1.1x− 0.87, y = −1.1x− 1.27, and y = −1.1x− 2.07 to the plots of In-Degree
and PageRank (with c = 0.9, c = 0.5 and c = 0.1, respectively).

We also investigated whether Theorem 2 correctly predicts the multiplicative
constant

y(c) =
cα

dα − cαd
.
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Fig. 2. The theoretical and observed differences between logarithmic asymptotics of
In-Degree and PageRank

In Figure 2 we plotted log10(y(c)) and we compared it to the observed dif-
ferences between the logarithms of the complementary cumulative distribution
functions of PageRank and In-Degree, for different values of the damping fac-
tor. Obviously, in the data set, the assumption that all Out-Degrees are equal
to some constant d is not satisfied. Therefore, we take d = 8.2, which is equal
to the average In/Out-Degree in the Web data. As can be seen, the theoretical
and observed values are quite close. E.g., for typical values of c between 0.8 and
0.9, the difference is 0.41, resulting in a factor y(c) that is only a factor 2.57
larger than in the observed data. Thus, our model not only allows to prove the
similarity in the power law behavior but also gives a good approximation for the
difference between the two distributions.

The discrepancy between the predicted and observed values of the multiplica-
tive constant suggests that our model does not capture PageRank behavior to
the full extent. For instance, the assumption of the independence of PageRank
values of pages that have a common neighbor may be too strong. We believe
however that the achieved precision, especially for small values of c, is quite
good for our relatively simple stochastic model.

6 Discussion

Our model and analysis resulted in the conclusion that PageRank and In-Degree
should follow power laws with the same exponent. Growing Network models
may provide an alternative explanation [19,20]. For instance, Avrachenkov and
Lebedev [19] showed that in Growing Networks, introduced by Barabási and
Albert [21], the expected PageRank follows a power law with an exponent, which
does depend on the damping factor but equals ≈ 1.08 for c = 0.85. Note that our
present model suggests that the power law exponent of PageRank does not de-
pend on the damping factor. We emphasize that compared to [19,20], our model
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provides a completely different approach for modelling the relation between In-
Degree and PageRank because we do not make any assumption on the structure
or growth of the underlying Web graph.

We can further exploit the analogy between the PageRank equation and the
equation for the busy period in M/G/1 queue, since sophisticated probabilistic
techniques have been developed for analyzing queueing systems with heavy tails
and in particular the busy period problem (see e.g. [11]). It is interesting to apply
these advanced methods to the problems related to the Web and PageRank.

Our current model lacks the dependencies between PageRank values of pages
sharing a common neighbor. Such dependencies must be present in the Web in
particular due to the high clustering of the Web graph [18] (roughly speaking,
clustering means that with high probability, two neighbors of the same page are
connected to each other). In our further research we will try to include some
sort of dependencies along with dangling nodes and random Out-Degrees [15].
Besides, we could also consider personalization or topic sensitivity [22]. The
impact of these factors on the PageRank distribution could be determined by
extending and generalizing the proposed analytical model.
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