Skip to main content

Limit Cycles and Bifurcations in a Biological Clock Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4818))

Abstract

A three-variable dynamical system describing the circadian oscillation of two proteins (PER and TIM) in cells is investigated. We studied the saddle-node and Hopf bifurcation curves and distinguished four cases according to their mutual position in a former article. Other bifurcation curves were determined in a simplified, two-variable model by Simon and Volford [6]. Here we show a set of bifurcation curves that divide the parameter plane into regions according to topological equivalence of global phase portraits, namely the global bifurcation diagram, for the three-variable system. We determine the Bautin-bifurcation point, and fold bifurcation of cycles numerically. We also investigate unstable limit cycles and the case when two stable limit cycles exist.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  2. Kuznetsov, Y.A.: Elements of applied bifurcation theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  3. Leloup, J.-C., Goldbeter, A.: A model for circadian rhythms in Drosophilia incorporating the formation of a complex between PER and TIM proteins. J. Biol. Rhythms 13, 70–87 (1998)

    Article  Google Scholar 

  4. Nagy, B.: Comparison of the bifurcation curves of a two-variable and a three-variable circadian rhythm model. Appl. Math. Modelling (under publication)

    Google Scholar 

  5. Simon, P.L., Farkas, H., Wittmann, M.: Constructing global bifurcation diagrams by the parametric representation method. J. Comp. Appl. Math 108, 157–176 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Simon, P.L., Volford, A.: Detailed study of limit cycles and global bifurcation diagrams in a circadian rhythm model. Int. J. Bifurcation and Chaos 16, 349–367 (2006)

    Article  MATH  Google Scholar 

  7. Tyson, J.J., et al.: A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys. J. 77, 2411–2417 (1999)

    Article  Google Scholar 

  8. Wilhelm, T., Heinrich, R.: Mathematical analysis of the smallest reaction system with Hopf bifurcation. J. Math. Chem. 19, 111–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagy, B. (2008). Limit Cycles and Bifurcations in a Biological Clock Model. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78827-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78825-6

  • Online ISBN: 978-3-540-78827-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics