Skip to main content

Lipschitz Stability of Broken Extremals in Bang-Bang Control Problems

  • Conference paper
Book cover Large-Scale Scientific Computing (LSSC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4818))

Included in the following conference series:

Abstract

Optimal bang-bang controls appear in problems where the system dynamics linearly depends on the control input. The principal control structure as well as switching points localization are essential solution characteristics. Under rather strong optimality and regularity conditions, for so-called simple switches of (only) one control component, the switching points had been shown being differentiable w.r.t. problem parameters. In case that multiple (or: simultaneous) switches occur, the differentiability is lost but Lipschitz continuous behavior can be observed e.g. for double switches. The proof of local structural stability is based on parametrizations of broken extremals via certain backward shooting approach. In a second step, the Lipschitz property is derived by means of nonsmooth Implicit Function Theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrachev, A., Stefani, G., Zezza, P.L.: Strong optimality for a bang-bang trajectory. SIAM J. Control Optim. 41, 991–1014 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Clarke, F.: Optimization and nonsmooth analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  3. Felgenhauer, U.: On stability of bang-bang type controls. SIAM J. Control Optim. 41(6), 1843–1867 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Felgenhauer, U.: Optimality and sensitivity for semilinear bang-bang type optimal control problems. Internat. J. Appl. Math. Computer Sc. 14(4), 447–454 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Felgenhauer, U.: Optimality properties of controls with bang-bang components in problems with semilinear state equation. Control & Cybernetics 34(3), 763–785 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Felgenhauer, U.: Primal-dual stability approach for bang-bang optimal controls in semilinear systems. Internat. J. Appl. Math. Computer Sc. (to appear)

    Google Scholar 

  7. Kim, J.R., Maurer, H.: Sensitivity analysis of optimal control problems with bang-bang controls. In: 42nd IEEE Conference on Decision and Control, Hawaii, vol. 4, pp. 3281–3286 (2003)

    Google Scholar 

  8. Klatte, D., Kummer, B.: Nonsmooth equations in optimization. Kluwer Acad. Publ., Dordrecht (2002)

    MATH  Google Scholar 

  9. Maurer, H., Osmolovskii, N.P.: Equivalence of second-order optimality conditions for bang-bang control problems. Control & Cybernetics 34(3), 927–950 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Milyutin, A.A., Osmolovskii, N.P.: Calculus of variations and optimal control. Amer. Mathem. Soc. Providence, Rhode Island (1998)

    Google Scholar 

  11. Noble, J., Schättler, H.: Sufficient conditions for relative minima of broken extremals in optimal control theory. J. Math. Anal. Appl. 269, 98–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Osmolovskii, N.P.: Second-order conditions for broken extremals. In: Ioffe, A., et al. (eds.) Calculus of variations and optimal control, Res. Notes Math., vol. 411, pp. 198–216. Chapman & Hall/CRC, Boca Raton, FL (2000)

    Google Scholar 

  13. Sarychev, A.V.: First- and second-order sufficient optimality conditions for bang-bang controls. SIAM J. Control Optim. 35(1), 315–340 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Veliov, V.: On the bang-bang principle for linear control systems. Dokl. Bolg. Akad. Nauk 40, 31–33 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felgenhauer, U. (2008). Lipschitz Stability of Broken Extremals in Bang-Bang Control Problems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78827-0_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78825-6

  • Online ISBN: 978-3-540-78827-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics