Skip to main content

Control Theory for Automation – Advanced Techniques

  • Chapter
Book cover Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

Analysis and design of control systems is a complex field. In order to develop appropriate concepts and methods to cover this field, mathematical models of the processes to be controlled are needed to apply. In this chapter mainly continuous-time linear systems with multiple input and multiple output (MIMO systems) are considered. Specifically, stability, performance, and robustness issues, as well as optimal control strategies are discussed in detail for MIMO linear systems. As far as system representations are concerned, transfer function matrices, matrix fraction descriptions, and state-space models are applied in the discussions. Several interpretations of all stabilizing controllers are shown for stable and unstable processes. Performance evaluation is supported by applying H 2 and H norms. As an important class for practical applications, predictive controllers are also discussed. In this case, according to the underlying implementation technique, discrete-time process models are considered. Transformation methods using state variable feedback are discussed, making the operation of nonlinear dynamic systems linear in the complete range of their operation. Finally, the sliding control concept is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DMC:

dynamic matrix control

EVD:

eigenvalue–eigenvector decomposition

GPC:

generalized predictive control

HJB:

Hamilton–Jacobi–Bellman

IMC:

instrument meteorological condition

IMC:

internal model controller

LMFD:

left matrix fraction description

LQ:

linear quadratic

LQR:

linear quadratic regulator

MFD:

multifunction display

MIMO:

multi-input multi-output

MPC:

model-based predictive control

NP:

nominal performance

NP:

nondeterministic polynomial-time

NS:

nominal stability

RHC:

receding horizon control

RMFD:

right matrix fraction description

RP:

reward–penalty

RS:

robust stability

SISO:

single-input single-output

References

  1. T. Kailath: Linear Systems (Prentice Hall, Upper Saddle River 1980)

    MATH  Google Scholar 

  2. G.C. Goodwin, S.F. Graebe, M.E. Salgado: Control System Design (Prentice Hall, Upper Saddle River 2000)

    Google Scholar 

  3. W.S. Levine (Ed.): The Control Handbook (CRC, Boca Raton 1996)

    MATH  Google Scholar 

  4. B.G. Lipták (Ed.): Instrument Engineersʼ Handbook, Process Control and Optimization, 4th edn. (CRC, Boca Raton 2006)

    Google Scholar 

  5. P.K. Sinha: Multivariable Control (Marcel Dekker, New York 1984)

    MATH  Google Scholar 

  6. S. Skogestad, I. Postlethwaite: Multivariable Feedback Control (Wiley, New York 2005)

    Google Scholar 

  7. A.F. DʼSouza: Design of Control Systems (Prentice Hall, Upper Saddle River 1988)

    Google Scholar 

  8. R. Bars, P. Colaneri, L. Dugard, F. Allgöwer, A. Kleimenow, C. Scherer: Trends in theory of control system design, 17th IFAC World Congr., Seoul, ed. by M.J. Chung, P. Misra (IFAC Coordinating Committee on Design Methods, San Francisco 2008) pp. 93–104

    Google Scholar 

  9. K.J. Åström, B. Wittenmark: Computer-Controlled Systems: Theory and Design (Prentice Hall, Upper Saddle River 1997)

    Google Scholar 

  10. G.C. Goodwin, R.H. Middleton: Digital Control and Estimation: a Unified Approach (Prentice Hall, Upper Saddle River 1990)

    MATH  Google Scholar 

  11. R. Isermann: Digital Control Systems, Vol. I. Fundamentals, Deterministic Control (Springer, Berlin Heidelberg 1989)

    MATH  Google Scholar 

  12. R. Isermann: Digital Control Systems, Vol. II. Stochastic Control, Multivariable Control, Adaptive Control, Applications (Springer, Berlin Heidelberg 1991)

    Google Scholar 

  13. J.M. Maciejowski: Multivariable Feedback Design (Addison-Wesley, Indianapolis 1989)

    MATH  Google Scholar 

  14. J.D. Aplevich: The Essentials of Linear State-Space Systems (Wiley, New York 2000)

    Google Scholar 

  15. R.A. Decarlo: Linear Systems. A State Variable Approach with Numerical Implementation (Prentice Hall, Upper Saddle River 1989)

    Google Scholar 

  16. D.C. Youla, H.A. Jabs, J.J. Bongiorno: Modern Wiener–Hopf design of optimal controller, IEEE Trans. Autom. Control 21, 319–338 (1976)

    Article  MATH  Google Scholar 

  17. M. Morari, E. Zafiriou: Robust Process Control (Prentice Hall, Upper Saddle River 1989)

    Google Scholar 

  18. E.C. Garcia, M. Morari: Internal model control: 1. A unifying review and some new results, Ind. Eng. Chem. Process Des. Dev. 21, 308–323 (1982)

    Article  Google Scholar 

  19. O.J.M. Smith: Close control of loops with dead time, Chem. Eng. Prog. 53, 217–219 (1957)

    Google Scholar 

  20. V. Kučera: Diophantine equations in control – a survey, Automatica 29, 1361–1375 (1993)

    Article  MATH  Google Scholar 

  21. J.B. Burl: Linear Optimal Control: H 2 and H !!!*AMP*!!!#8734; Methods (Addison-Wesley, Indianapolis 1999)

    Google Scholar 

  22. J.C. Doyle, B.A. Francis, A.R. Tannenbaum: Feedback Control Theory (Macmillan, London 1992)

    Google Scholar 

  23. K. Zhou, J.C. Doyle, K. Glover: Robust and Optimal Control (Prentice Hall, Upper Saddle River 1996)

    MATH  Google Scholar 

  24. M. Vidyasagar, H. Kimura: Robust controllers for uncertain linear multivariable systems, Automatica 22, 85–94 (1986)

    Article  MATH  Google Scholar 

  25. B.D.O. Anderson, J.B. Moore: Optimal Control (Prentice Hall, Upper Saddle River 1990)

    MATH  Google Scholar 

  26. A.E. Bryson, Y. Ho: Applied Optimal Control (Hemisphere/Wiley, New York 1975)

    Google Scholar 

  27. A.E. Bryson: Dynamic Optimization (Addison-Wesley, Indianapolis 1999)

    Google Scholar 

  28. H. Kwakernaak, R. Sivan: Linear Optimal Control Systems (Wiley-Interscience, New York 1972)

    MATH  Google Scholar 

  29. F.L. Lewis, V.L. Syrmos: Optimal Control (Wiley, New York 1995)

    Google Scholar 

  30. S.I. Lyashko: Generalized Optimal Control of Linear Systems with Distributed Parameters (Kluwer, Dordrecht 2002)

    MATH  Google Scholar 

  31. D.S. Naidu: Optimal Control Systems (CRC, Boca Raton 2003)

    Google Scholar 

  32. D.P. Bertsekas: Dynamic Programming and Optimal Control, Vol. I,II (Athena Scientific, Nashua 2001)

    Google Scholar 

  33. E.F. Camacho, C. Bordons: Model Predictive Control (Springer, Berlin Heidelberg 2004)

    MATH  Google Scholar 

  34. D.W. Clarke (Ed.): Advances in Model-Based Predictive Control (Oxford Univ. Press, Oxford 1994)

    MATH  Google Scholar 

  35. J.M. Maciejowski: Predictive Control with Constraints (Prentice Hall, Upper Saddle River 2002)

    Google Scholar 

  36. J.A. Rossiter: Model-Based Predictive Control – a Practical Approach (CRC, Boca Raton 2003)

    Google Scholar 

  37. R. Soeterboek: Predictive Control – a Unified Approach (Prentice Hall, Upper Saddle River 1992)

    MATH  Google Scholar 

  38. D.W. Clarke, C. Mohtadi, P.S. Tuffs: Generalised predictive control – Part 1. The basic algorithm, Automatica 23, 137 (1987)

    Article  MATH  Google Scholar 

  39. D.W. Clarke, C. Mohtadi, P.S. Tuffs: Generalised predictive control – Part 2. Extensions and interpretations, Automatica 23, 149 (1987)

    Article  MATH  Google Scholar 

  40. C.R. Cutler, B.L. Ramaker: Dynamic matrix control – a computer control algorithm, Proc. JACC (San Francisco 1980)

    Google Scholar 

  41. C.E. Garcia, D.M. Prett, M. Morari: Model predictive control: theory and practice – a survey, Automatica 25, 335–348 (1989)

    Article  MATH  Google Scholar 

  42. D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert: Constrained model predictive control: stability and optimality, Automatica 36, 789–814 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  43. F. Borrelli: Constrained Optimal Control of Linear and Hybrid Systems (Springer, Berlin Heidelberg 2003)

    MATH  Google Scholar 

  44. T.A. Badgewell, S.J. Qin: Nonlinear Predictive Control Chapter: Review of Nonlinear Model Predictive Control Application, IEE Control Eng. Ser., Vol. 61, ed. by M.B. Cannon (Kouvaritabis, London 2001)

    Google Scholar 

  45. A. Isidori: Nonlinear Control Systems (Springer, Berlin Heidelberg 1995)

    MATH  Google Scholar 

  46. J.J.E. Slotine, W. Li: Applied Nonlinear Control (Prentice Hall, Upper Saddle River 1991)

    MATH  Google Scholar 

  47. V.I. Utkin: Sliding Modes in Control and Optimization (Springer, Berlin Heidelberg 1992)

    MATH  Google Scholar 

  48. Control system toolbox for use with MATLAB. Userʼs guide (The Math Works Inc. 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to István Vajk PhD , Jenő Hetthéssy PhD or Ruth Bars PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vajk, I., Hetthéssy, J., Bars, R. (2009). Control Theory for Automation – Advanced Techniques. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics