Skip to main content

Automating Errors and Conflicts Prognostics and Prevention

  • Chapter
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

Errors and conflicts exist in many systems. A fundamental question from industries is How can errors and conflicts in systems be eliminated by automation, or can we at least use automation to minimize their damage? The purpose of this chapter is to illustrate a theoretical background and applications of how to automatically prevent errors and conflicts with various devices, technologies, methods, and systems. Eight key functions to prevent errors and conflicts are identified and their theoretical background and applications in both production and service are explained with examples. As systems and networks become larger and more complex, such as global enterprises and the Internet, error and conflict prognostics and prevention become more important and challenging; the focus is shifting from passive response to proactive prognostics and prevention. Additional theoretical developments and implementation efforts are needed to advance the prognostics and prevention of errors and conflicts in many real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCM:

CORBA component model

CDMS:

conflict detection and management system

CED:

concurrent error detection

CEDA:

conflict and error detection agent

CEDM:

conflict and error detection management

CEDM:

conflict and error detection model

CEDP:

conflict and error detection protocol

CEDP:

conflict and error diagnostics and prognostics

CORBA:

common object request broker architecture

DES:

discrete-event system

DSS:

decision support system

EPC:

engineering, procurement, and contsruction

FDL:

facility design language

FIS:

fuzzy inference system

FSM:

finite-state machine

HAD:

heterogeneous, autonomous, and distributed

IGS:

intended goal structure

JPL:

Jet Propulsion Laboratory

MAS:

multiagent system

MDP:

Markov decision process

Mcr:

multi-approach to conflict resolution

NASA:

National Aeronautics and Space Administration

NEFUSER:

neural-fuzzy system for error recovery

NEFUSER:

neuro-fuzzy systems for error recovery

OR:

operating room

OR:

operation research

PERT:

project evaluation and review technique

RT:

radiotherapy

RT:

register transfer

TEAMS:

testability engineering and maintenance system

WFMS:

workflow management system

References

  1. S.Y. Nof, W.E. Wilhelm, H.-J. Warnecke: Industrial Assembly (Chapman Hall, New York 1997)

    Google Scholar 

  2. L.S. Lopes, L.M. Camarinha-Matos: A machine learning approach to error detection and recovery in assembly, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. 95, ʼHuman Robot Interaction and Cooperative Robotsʼ, Vol. 3 (1995) pp. 197–203

    Google Scholar 

  3. H. Najjari, S.J. Steiner: Integrated sensor-based control system for a flexible assembly, Mechatronics 7(3), 231–262 (1997)

    Article  Google Scholar 

  4. A. Steininger, C. Scherrer: On finding an optimal combination of error detection mechanisms based on results of fault injection experiments, Proc. 27th Annu. Int. Symp. Fault-Toler. Comput., FTCS-27, Digest of Papers (1997) pp. 238–247

    Google Scholar 

  5. K.A. Toguyeni, E. Craye, J.C. Gentina: Framework to design a distributed diagnosis in FMS, Proc. IEEE Int. Conf. Syst. Man. Cybern. 4, 2774–2779 (1996)

    Google Scholar 

  6. J.F. Kao: Optimal recovery strategies for manufacturing systems, Eur. J. Oper. Res. 80(2), 252–263 (1995)

    Article  MATH  Google Scholar 

  7. M. Bruccoleri, Z.J. Pasek: Operational issues in reconfigurable manufacturing systems: exception handling, Proc. 5th Biannu. World Autom. Congr. (2002)

    Google Scholar 

  8. T. Miceli, H.A. Sahraoui, R. Godin: A metric based technique for design flaws detection and correction, Proc. 14th IEEE Int. Conf. Autom. Softw. Eng. (1999) pp. 307–310

    Google Scholar 

  9. C. Bolchini, W. Fornaciari, F. Salice, D. Sciuto: Concurrent error detection at architectural level, Proc. 11st Int. Symp. Syst. Synth. (1998) pp. 72–75

    Google Scholar 

  10. C. Bolchini, L. Pomante, F. Salice, D. Sciuto: Reliability properties assessment at system level: a co-design framework, J. Electron. Test. 18(3), 351–356 (2002)

    Article  Google Scholar 

  11. M.D. Jeng: Petri nets for modeling automated manufacturing systems with error recovery, IEEE Trans. Robot. Autom. 13(5), 752–760 (1997)

    Article  Google Scholar 

  12. G.A. Kanawati, V.S.S. Nair, N. Krishnamurthy, J.A. Abraham: Evaluation of integrated system-level checks for on-line error detection, Proc. IEEE Int. Comput. Perform. Dependability Symp. (1996) pp. 292–301

    Google Scholar 

  13. B.D. Klein: How do actuaries use data containing errors?: models of error detection and error correction, Inf. Resour. Manag. J. 10(4), 27–36 (1997)

    Google Scholar 

  14. M. Ronsse, K. Bosschere: Non-intrusive detection of synchronization errors using execution replay, Autom. Softw. Eng. 9(1), 95–121 (2002)

    Article  MATH  Google Scholar 

  15. O. Svenson, I. Salo: Latency and mode of error detection in a process industry, Reliab. Eng. Syst. Saf. 73(1), 83–90 (2001)

    Article  Google Scholar 

  16. X.W. Chen, S.Y. Nof: Prognostics and diagnostics of conflicts and errors over e-Work networks, Proc. 19th Int. Conf. Production Research (2007)

    Google Scholar 

  17. J. Gertler: Fault Detection and Diagnosis in Engineering Systems (Marcel Dekker, New York 1998)

    Google Scholar 

  18. M. Klein, C. Dellarocas: A knowledge-based approach to handling exceptions in workflow systems, Comput. Support. Coop. Work 9, 399–412 (2000)

    Article  Google Scholar 

  19. A. Raich, A. Cinar: Statistical process monitoring and disturbance diagnosis in multivariable continuous processes, AIChE Journal 42(4), 995–1009 (1996)

    Article  Google Scholar 

  20. C.-Y. Chang, J.-W. Chang, M.D. Jeng: An unsupervised self-organizing neural network for automatic semiconductor wafer defect inspection, IEEE Int. Conf. Robot. Autom. ICRA (2005) pp. 3000–3005

    Google Scholar 

  21. M. Moganti, F. Ercal: Automatic PCB inspection systems, IEEE Potentials 14(3), 6–10 (1995)

    Article  Google Scholar 

  22. H. Rau, C.-H. Wu: Automatic optical inspection for detecting defects on printed circuit board inner layers, Int. J. Adv. Manuf. Technol. 25(9–10), 940–946 (2005)

    Article  Google Scholar 

  23. J.A. Calderon-Martinez, P. Campoy-Cervera: An application of convolutional neural networks for automatic inspection, IEEE Conf. Cybern. Intell. Syst. (2006) pp. 1–6

    Google Scholar 

  24. F. Duarte, H. Arauio, A. Dourado: Automatic system for dirt in pulp inspection using hierarchical image segmentation, Comput. Ind. Eng. 37(1–2), 343–346 (1999)

    Article  Google Scholar 

  25. J.C. Wilson, P.A. Berardo: Automatic inspection of hazardous materials by mobile robot, Proc. IEEE Int. Conf. Syst. Man. Cybern. 4, 3280–3285 (1995)

    Google Scholar 

  26. J.Y. Choi, H. Lim, B.-J. Yi: Semi-automatic pipeline inspection robot systems, SICE-ICASE Int. Jt. Conf. (2006) pp. 2266–2269

    Google Scholar 

  27. L.V. Finogenoy, A.V. Beloborodov, V.I. Ladygin, Y.V. Chugui, N.G. Zagoruiko, S.Y. Gulvaevskii, Y.S. Shulʼman, P.I. Lavrenyuk, Y.V. Pimenov: An optoelectronic system for automatic inspection of the external view of fuel pellets, Russ. J. Nondestr. Test. 43(10), 692–699 (2007)

    Article  Google Scholar 

  28. C.W. Ni: Automatic inspection of the printing contents of soft drink cans by image processing analysis, Proc. SPIE 3652, 86–93 (2004)

    Article  Google Scholar 

  29. J. Cai, G. Zhang, Z. Zhou: The application of area-reconstruction operator in automatic visual inspection of quality control, Proc. World Congr. Intell. Control Autom. (WCICA), Vol. 2 (2006) pp. 10111–10115

    Google Scholar 

  30. O. Erne, T. Walz, A. Ettemeyer: Automatic shearography inspection systems for aircraft components in production, Proc. SPIE 3824, 326–328 (1999)

    Article  Google Scholar 

  31. C.K. Huang, L.G. Wang, H.C. Tang, Y.S. Tarng: Automatic laser inspection of outer diameter, run-out taper of micro-drills, J. Mater. Process. Technol. 171(2), 306–313 (2006)

    Article  Google Scholar 

  32. L. Chen, X. Wang, M. Suzuki, N. Yoshimura: Optimizing the lighting in automatic inspection system using Monte Carlo method, Jpn. J. Appl. Phys., Part 1 38(10), 6123–6129 (1999)

    Article  Google Scholar 

  33. W.C. Godoi, R.R. da Silva, V. Swinka-Filho: Pattern recognition in the automatic inspection of flaws in polymeric insulators, Insight Nondestr. Test. Cond. Monit. 47(10), 608–614 (2005)

    Article  Google Scholar 

  34. U.S. Khan, J. Igbal, M.A. Khan: Automatic inspection system using machine vision, Proc. 34th Appl. Imag. Pattern Recognit. Workshop (2005) pp. 210–215

    Google Scholar 

  35. L.H. Chiang, R.D. Braatz, E. Russell: Fault Detection and Diagnosis in Industrial Systems (Springer, London New York 2001)

    MATH  Google Scholar 

  36. S. Deb, K.R. Pattipati, V. Raghavan, M. Shakeri, R. Shrestha: Multi-signal flow graphs: a novel approach for system testability analysis and fault diagnosis, IEEE Aerosp. Electron. Syst. Mag. 10(5), 14–25 (1995)

    Article  Google Scholar 

  37. K.R. Pattipati, M.G. Alexandridis: Application of heuristic search and information theory to sequential fault diagnosis, IEEE Trans. Syst. Man. Cybern. 20(4), 872–887 (1990)

    Article  MATH  Google Scholar 

  38. K.R. Pattipati, M. Dontamsetty: On a generalized test sequencing problem, IEEE Trans. Syst. Man. Cybern. 22(2), 392–396 (1992)

    Article  MATH  Google Scholar 

  39. V. Raghavan, M. Shakeri, K. Pattipati: Optimal and near-optimal test sequencing algorithms with realistic test models, IEEE Trans. Syst. Man. Cybern. A 29(1), 11–26 (1999)

    Article  Google Scholar 

  40. V. Raghavan, M. Shakeri, K. Pattipati: Test sequencing algorithms with unreliable tests, IEEE Trans. Syst. Man. Cybern. A 29(4), 347–357 (1999)

    Article  Google Scholar 

  41. M. Shakeri, K.R. Pattipati, V. Raghavan, A. Patterson-Hine, T. Kell: Sequential Test Strategies for Multiple Fault Isolation (IEEE, Atlanta 1995)

    Google Scholar 

  42. M. Shakeri, V. Raghavan, K.R. Pattipati, A. Patterson-Hine: Sequential testing algorithms for multiple fault diagnosis, IEEE Trans. Syst. Man. Cybern. A 30(1), 1–14 (2000)

    Article  Google Scholar 

  43. F. Tu, K. Pattipati, S. Deb, V.N. Malepati: Multiple Fault Diagnosis in Graph-Based Systems (International Society for Optical Engineering, Orlando 2002)

    Google Scholar 

  44. F. Tu, K.R. Pattipati: Rollout strategies for sequential fault diagnosis, IEEE Trans. Syst. Man. Cybern. A 33(1), 86–99 (2003)

    Google Scholar 

  45. F. Tu, K.R. Pattipati, S. Deb, V.N. Malepati: Computationally efficient algorithms for multiple fault diagnosis in large graph-based systems, IEEE Trans. Syst. Man. Cybern. A 33(1), 73–85 (2003)

    Article  Google Scholar 

  46. C. Feng, L.N. Bhuyan, F. Lombardi: Adaptive system-level diagnosis for hypercube multiprocessors, IEEE Trans. Comput. 45(10), 1157–1170 (1996)

    Article  MATH  Google Scholar 

  47. E.M. Clarke, O. Grumberg, D.A. Peled: Model Checking (MIT Press, Cambridge 2000)

    Google Scholar 

  48. C. Karamanolis, D. Giannakopolou, J. Magee, S. Wheather: Model checking of workflow schemas, 4th Int. Enterp. Distrib. Object Comp. Conf. (2000) pp. 170–181

    Google Scholar 

  49. W. Chan, R.J. Anderson, P. Beame, D. Notkin, D.H. Jones, W.E. Warner: Optimizing symbolic model checking for state charts, IEEE Trans. Softw. Eng. 27(2), 170–190 (2001)

    Article  Google Scholar 

  50. D. Garlan, S. Khersonsky, J.S. Kim: Model checking publish-subscribe systems, Proc. 10th Int. SPIN Workshop Model Checking Softw. (2003)

    Google Scholar 

  51. J. Hatcliff, W. Deng, M. Dwyer, G. Jung, V.P. Ranganath: Cadena: An integrated development, analysis, and verification environment for component-based systems, Proc. 2003 Int. Conf. Softw. Eng. (ICSE 2003) (Portland 2003)

    Google Scholar 

  52. T. Ball, S. Rajamani: Bebop: a symbolic modelchecker for Boolean programs, Proc. 7th Int. SPIN Workshop, Lect. Notes Comput. Sci. 1885, 113–130 (2000)

    Article  Google Scholar 

  53. G. Brat, K. Havelund, S. Park, W. Visser: Java PathFinder – a second generation of a Java model-checker, Proc. Workshop Adv. Verif. (2000)

    Google Scholar 

  54. J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby, H. Zheng: Bandera: Extracting finite-state models from Java source code, Proc. 22nd Int. Conf. Softw. Eng. (2000)

    Google Scholar 

  55. P. Godefroid: Model-checking for programming languages using VeriSoft, Proc. 24th ACM Symp. Princ. Program. Lang. (POPLʼ97) (1997) pp. 174–186

    Google Scholar 

  56. Robby, M.B. Dwyer, J. Hatcliff: Bogor: An extensible and highly-modular model checking framework, Proc. 9th European Softw. Eng. Conf. held jointly with the 11th ACM SIGSOFT Symp. Found. Softw. Eng. (2003)

    Google Scholar 

  57. S. Mitra, E.J. McCluskey: Diversity techniques for concurrent error detection, Proc. IEEE 2nd Int. Symp. Qual. Electron. Des. IEEE Comput. Soc., 249–250 (2001)

    Google Scholar 

  58. S.-L. Chung, C.-C. Wu, M. Jeng: Failure Diagnosis: A Case Study on Modeling and Analysis by Petri Nets (IEEE, Washington 2003)

    Google Scholar 

  59. P.S. Georgilakis, J.A. Katsigiannis, K.P. Valavanis, A.T. Souflaris: A systematic stochastic Petri net based methodology for transformer fault diagnosis and repair actions, J. Intell. Robot. Syst. Theory Appl. 45(2), 181–201 (2006)

    Article  Google Scholar 

  60. T. Ushio, I. Onishi, K. Okuda: Fault Detection Based on Petri Net Models with Faulty Behaviors (IEEE, San Diego 1998)

    Google Scholar 

  61. M. Rezai, M.R. Ito, P.D. Lawrence: Modeling and Simulation of Hybrid Control Systems by Global Petri Nets (IEEE, Seattle 1995)

    Google Scholar 

  62. M. Rezai, P.D. Lawrence, M.R. Ito: Analysis of Faults in Hybrid Systems by Global Petri Nets (IEEE, Vancouver 1995)

    Google Scholar 

  63. M. Rezai, P.D. Lawrence, M.B. Ito: Hybrid Modeling and Simulation of Manufacturing Systems (IEEE, Los Angeles 1997)

    Google Scholar 

  64. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis: Diagnosability of discrete-event systems, IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  65. S.H. Zad, R.H. Kwong, W.M. Wonham: Fault diagnosis in discrete-event systems: framework and model reduction, IEEE Trans. Autom. Control 48(7), 1199–1212 (2003)

    Article  Google Scholar 

  66. M. Zhou, F. DiCesare: Petri Net Synthesis for Discrete Event Control of Manufacturing Systems (Kluwer, Boston 1993)

    MATH  Google Scholar 

  67. Q. Wenbin, R. Kumar: Decentralized failure diagnosis of discrete event systems, IEEE Trans. Syst. Man. Cybern. A 36(2), 384–395 (2006)

    Article  Google Scholar 

  68. A. Brall: Human reliability issues in medical care - a customer viewpoint, Proc. Annu. Reliab. Maint. Symp. (2006) pp. 46–50

    Google Scholar 

  69. H. Furukawa: Challenge for preventing medication errors-learn from errors-: what is the most effective label display to prevent medication error for injectable drug? Proc. 12th Int. Conf. Hum.-Comput. Interact.: HCI Intell. Multimodal Interact. Environ., Lect. Notes Comput. Sci. 4553, 437–442 (2007)

    Article  Google Scholar 

  70. G. Huang, G. Medlam, J. Lee, S. Billingsley, J.-P. Bissonnette, J. Ringash, G. Kane, D.C. Hodgson: Error in the delivery of radiation therapy: results of a quality assurance review, Int. J. Radiat. Oncol. Biol. Phys. 61(5), 1590–1595 (2005)

    Article  Google Scholar 

  71. A.-S. Nyssen, A. Blavier: A study in anesthesia, Ergonomics 49(5/6), 517–525 (2006)

    Article  Google Scholar 

  72. K.T. Unruh, W. Pratt: Patients as actors: the patientʼs role in detecting, preventing, and recovering from medical errors, Int. J. Med. Inform. 76(1), 236–244 (2007)

    Article  Google Scholar 

  73. C.C. Chao, W.Y. Jen, M.C. Hung, Y.C. Li, Y.P. Chi: An innovative mobile approach for patient safety services: the case of a Taiwan health care provider, Technovation 27(6–7), 342–361 (2007)

    Article  Google Scholar 

  74. S. Malhotra, D. Jordan, E. Shortliffe, V.L. Patel: Workflow modeling in critical care: piecing together your own puzzle, J. Biomed. Inform. 40(2), 81–92 (2007)

    Article  Google Scholar 

  75. T.J. Morris, J. Pajak, F. Havlik, J. Kenyon, D. Calcagni: Battlefield medical information system-tactical (BMIST): The application of mobile computing technologies to support health surveillance in the Department of Defense, Telemed. J. e-Health 12(4), 409–416 (2006)

    Article  Google Scholar 

  76. M. Rajendran, B.S. Dhillon: Human error in health care systems: bibliography, Int. J. Reliab. Qual. Saf. Eng. 10(1), 99–117 (2003)

    Article  Google Scholar 

  77. S.Y. Nof: Design of effective e-Work: review of models, tools, and emerging challenges, Product. Plan. Control 14(8), 681–703 (2003)

    Article  Google Scholar 

  78. X. Chen: Error detection and prediction agents and their algorithms. M.S. Thesis (School of Industrial Engineering, Purdue University, West Lafayette 2005)

    Google Scholar 

  79. X.W. Chen, S.Y. Nof: Error detection and prediction algorithms: application in robotics, J. Intell. Robot. Syst. 48(2), 225–252 (2007)

    Article  Google Scholar 

  80. X.W. Chen, S.Y. Nof: Agent-based error prevention algorithms, submitted to the IEEE Trans. Autom. Sci. Eng. (2008)

    Google Scholar 

  81. K. Duffy: Safety for profit: Building an error-prevention culture, Ind. Eng. Mag. 9, 41–45 (2008)

    MATH  Google Scholar 

  82. K.S. Barber, T.H. Liu, S. Ramaswamy: Conflict detection during plan integration for multi-agent systems, IEEE Trans. Syst. Man. Cybern. B 31(4), 616–628 (2001)

    Article  Google Scholar 

  83. G.M.P. OʼHare, N. Jennings: Foundations of Distributed Artificial Intelligence (Wiley, New York 1996)

    Google Scholar 

  84. M. Zhou, F. DiCesare, A.A. Desrochers: A hybrid methodology for synthesis of Petri net models for manufacturing systems, IEEE Trans. Robot. Autom. 8(3), 350–361 (1992)

    Article  Google Scholar 

  85. J.-Y. Shiau: A formalism for conflict detection and resolution in a multi-agent system. Ph.D. Thesis (Arizona State University, Arizona 2002)

    Google Scholar 

  86. J.A. Ceroni, A.A. Velásquez: Conflict detection and resolution in distributed design, Prod. Plan. Control 14(8), 734–742 (2003)

    Article  Google Scholar 

  87. T. Jiang, G.E. Nevill Jr: Conflict cause identification in web-based concurrent engineering design system, Concurr. Eng. Res. Appl. 10(1), 15–26 (2002)

    Article  Google Scholar 

  88. M.A. Lara, S.Y. Nof: Computer-supported conflict resolution for collaborative facility designers, Int. J. Prod. Res. 41(2), 207–233 (2003)

    Article  Google Scholar 

  89. P. Anussornnitisarn, S.Y. Nof: The design of active middleware for e-Work interactions, PRISM Res. Memorandum (School of Industrial Engineering, Purdue University, West Lafayette 2001)

    Google Scholar 

  90. P. Anussornnitisarn, S.Y. Nof: e-Work: the challenge of the next generation ERP systems, Prod. Plan. Control 14(8), 753–765 (2003)

    Article  Google Scholar 

  91. X.W. Chen, S.Y. Nof: An agent-based conflict and error detection model, submitted to Int. J. Prod. Res. (2008)

    Google Scholar 

  92. C.L. Yang, S.Y. Nof: Analysis, detection policy, and performance measures of detection task planning errors and conflicts, PRISM Res. Memorandum, 2004-P2 (School of Industrial Engineering, Purdue University, West Lafayette 2004)

    Google Scholar 

  93. J. Avila-Soria: Interactive Error Recovery for Robotic Assembly Using a Neural-Fuzzy Approach. Master Thesis (School of Industrial Engineering, Purdue University, West Lafayette 1999)

    Google Scholar 

  94. J.D. Velásquez, M.A. Lara, S.Y. Nof: Systematic resolution of conflict situation in collaborative facility design, Int. J. Prod. Econ. 116(1), 139–153 (2008), (2008)

    Article  MATH  Google Scholar 

  95. S.Y. Nof, O.Z. Maimon, R.G. Wilhelm: Experiments for Planning Error-Recovery Programs in Robotic Work, Proc. Int. Comput. Eng. Conf. Exhib. 2, 253–264 (1987)

    Google Scholar 

  96. M. Imai, K. Hiraki, Y. Anzai: Human-robot interface with attention, Syst. Comput. Jpn. 26(12), 83–95 (1995)

    Article  Google Scholar 

  97. T.C. Lueth, U.M. Nassal, U. Rembold: Reliability and integrated capabilities of locomotion and manipulation for autonomous robot assembly, Robot. Auton. Syst. 14, 185–198 (1995)

    Article  Google Scholar 

  98. H.-J. Wu, S.B. Joshi: Error recovery in MPSG-based controllers for shop floor control, Proc. IEEE Int. Conf. Robot. Autom. ICRA 2, 1374–1379 (1994)

    Google Scholar 

  99. K. Sycara: Negotiation planning: An AI approach, Eur. J. Oper. Res. 46(2), 216–234 (1990)

    Article  Google Scholar 

  100. L. Fang, K.W. Hipel, D.M. Kilgour: Interactive Decision Making (Wiley, New York 1993)

    Google Scholar 

  101. J.-S.R. Jang: ANFIS: Adaptive-network-based fuzzy inference systems, IEEE Trans. Syst. Man. Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  102. A. Kusiak, J. Wang: Dependency analysis in constraint negotiation, IEEE Trans. Syst. Man. Cybern. 25(9), 1301–1313 (1995)

    Article  Google Scholar 

  103. J.-S.R. Jang, N. Gulley: Fuzzy Systems Toolbox for Use with MATLAB (The Math Works Inc., 1997)

    Google Scholar 

  104. C.Y. Huang, J.A. Ceroni, S.Y. Nof: Agility of networked enterprises: parallelism, error recovery and conflict resolution, Comput. Ind. 42, 73–78 (2000)

    Article  Google Scholar 

  105. M. Klein, S.C.-Y. Lu: Conflict resolution in cooperative design, Artif. Intell. Eng. 4(4), 168–180 (1989)

    Article  Google Scholar 

  106. M. Klein: Supporting conflict resolution in cooperative design systems, IEEE Trans. Syst. Man. Cybern. 21(6), 1379–1390 (1991)

    Article  Google Scholar 

  107. M. Klein: Capturing design rationale in concurrent engineering teams, IEEE Computer 26(1), 39–47 (1993)

    Google Scholar 

  108. M. Klein: Conflict management as part of an integrated exception handling approach, Artif. Intell. Eng. Des. Anal. Manuf. 9, 259–267 (1995)

    Google Scholar 

  109. X. Li, X.H. Zhou, X.Y. Ruan: Study on conflict management for collaborative design system, J. Shanghai Jiaotong University (English ed.) 5(2), 88–93 (2000)

    Google Scholar 

  110. X. Li, X.H. Zhou, X.Y. Ruan: Conflict management in closely coupled collaborative design system, Int. J. Comput. Integr. Manuf. 15(4), 345–352 (2000)

    Article  Google Scholar 

  111. S.Y. Nof: Tools and models of e-Work, Proc. 5th Int. Conf. Simul. AI (Mexico City 2000) pp. 249–258

    Google Scholar 

  112. S.Y. Nof: Collaborative e-Work and e-Manufacturing: challenges for production and logistics managers, J. Intell. Manuf. 17(6), 689–701 (2006)

    Article  Google Scholar 

  113. X.F. Zha, H. Du: Knowledge-intensive collaborative design modeling and support part I: review, distributed models and framework, Comput. Ind. 57, 39–55 (2006)

    Article  Google Scholar 

  114. X.F. Zha, H. Du: Knowledge-intensive collaborative design modeling and support part II: system implementation and application, Comput. Ind. 57, 56–71 (2006)

    Article  Google Scholar 

  115. R. Solomonoff, A. Rapoport: Connectivity of random nets, Bull. Mater. Biophys. 13, 107–117 (1951)

    Article  MathSciNet  Google Scholar 

  116. P. Erdos, A. Renyi: On random graphs, Publ. Math. Debr. 6, 290–291 (1959)

    MathSciNet  Google Scholar 

  117. P. Erdos, A. Renyi: On the evolution of random graphs, Magy. Tud. Akad. Mat. Kutato Int. Kozl. 5, 17–61 (1960)

    MathSciNet  Google Scholar 

  118. P. Erdos, A. Renyi: On the strenth of connectedness of a random graph, Acta Mater. Acad. Sci. Hung. 12, 261–267 (1961)

    Article  MathSciNet  Google Scholar 

  119. D.J. Watts, S.H. Strogatz: Collective dynamics of ‘small-world’ networks, Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  120. R. Albert, H. Jeong, A.L. Barabasi: Internet: Diameter of the World-Wide Web, Nature 401(6749), 130–131 (1999)

    Article  Google Scholar 

  121. A.L. Barabasi, R. Albert: Emergence of scaling in random networks, Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  122. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener: Graph structure in the Web, Comput. Netw. 33(1), 309–320 (2000)

    Article  Google Scholar 

  123. D.J. de Solla Price: Networks of scientific papers, Science 149, 510–515 (1965)

    Article  Google Scholar 

  124. G. Bianconi, A.L. Barabasi: Bose-Einstein condensation in complex networks, Phys. Rev. Lett. 86(24), 5632–5635 (2001)

    Article  Google Scholar 

  125. S.Y. Nof: Collaborative control theory for e-Work, e-Production, and e-Service, Annu. Rev. Control 31(2), 281–292 (2007)

    Article  Google Scholar 

  126. C.L. Yang, X. Chen, S.Y. Nof: Design of a production conflict and error detection model with active protocols and agents, Proc. 18th Int. Conf. Prod. Res. (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin W. Chen MSc or Shimon Y. Nof Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, X.W., Nof, S.Y. (2009). Automating Errors and Conflicts Prognostics and Prevention. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics