Skip to main content

Material Handling Automation in Production and Warehouse Systems

  • Chapter
Book cover Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter presents material handling automation for production and warehouse management systems that process: receipt of parts from vendors, handling of parts in production lines, and storing and shipping in warehouses or distribution centers. With recent advancements in information interface technology, innovative system design technology, and intelligent system control technology, more sophisticated systems are being adopted to enhance the productivity of material handling systems. Information interface technology utilizing wireless devices such as radiofrequency identification (RFID) tags and mobile personal computers significantly simplifies information tracking, and provides more accurate data, which enables the development of more reliable systems for material handling automation. Highly flexible and efficient automated material handling systems have been newly designed for various applications in many industries. Recently these systems have been connected into large-scale integrated automated material handling systems (IAMHS) that create synergy with material handling automation by proving speedy and robust infrastructures. As a benefit of high-level material handling automation, the modern supply chain management (SCM) successfully synchronizes sales, procurement, and production in enterprises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGV:

autonomous guided vehicle

AI:

artificial intelligence

AMHS:

automated material-handling system

APS:

advanced planning and scheduling

AS:

ancillary service

BSS:

basic service set

CP:

constraint programming

CP:

coordination protocol

EDI:

electronic data interchange

ERP:

enterprise resource planning

ESS:

extended service set

FMS:

field message specification

FMS:

flexible manufacturing system

FMS:

flight management system

I/O:

input/output

IAMHS:

integrated automated material handling system

ID:

identification

ID:

instructional design

IIT:

information interface technology

IP:

inaction–penalty

IP:

industrial protocol

IP:

integer programming

IP:

intellectual property

IP:

internet protocol

LAN:

local-area network

LISP:

list processing

LP:

linear programming

MES:

manufacturing execution system

MH:

material handling

MHA:

material handling automation

MHEM:

material handling equipment machine

MHIA:

Material Handling Industry of America

MIP:

mixed integer programming

MMS:

man–machine system

MMS:

material management system

NIC:

network interface card

OHT:

overhead hoist transporter

OHT:

overhead transport

OR:

operating room

OR:

operation research

PC:

personal computer

PLC:

programmable logic controller

Prolog:

programming in logics

RF:

radiofrequency

RFID:

radiofrequency identification

RGV:

rail-guided vehicle

ROI:

return on investment

RS:

robust stability

SCADA:

supervisory control and data acquisition

SCM:

supply chain management

SDS:

sequential dynamic system

SFC:

sequential function chart

SFC:

space-filling curve

SMT:

surface-mounting technology

UI:

user interface

VRP:

vehicle routing problem

VSP:

vehicle scheduling problem

WIP:

work-in-progress

WMS:

warehouse management system

fab:

fabrication plant

References

  1. Material Handling Industry of America http://www.mhia.org/ir/, (last accessed February 15, 2009)

  2. J.R. Montoya-Torres: A literature survey on the design approaches and operational issues of automated wafer-transport systems for wafer fabs, Prod. Plan. Control 17(7), 648–663 (2006)

    Article  Google Scholar 

  3. T. Feare: GM runs in top gear with AS/RS sequencing, Mod. Mater. Handl. 53(9), 50–52 (1998)

    Google Scholar 

  4. H.Y.K. Lau, Y. Zhao: Joint scheduling of material handling equipment in automated air cargo terminals, Comput. Ind. 57(5), 398–411 (2006)

    Article  Google Scholar 

  5. P.J.M. Meersmans, A.P.M. Wagelmans: Dynamic Scheduling of Handling Equipment at Automated Container Terminals, Econometric Institute Report EI 2001-33 (Erasmus University, Rotterdam 2001)

    Google Scholar 

  6. Murata Machinery, http://www.muratec-l-system.com/en/example/deliver/medical.html (last accessed February 15, 2009)

  7. L. Kempfer: Produce delivered fresh and fast, Mater. Handl. Manag. March, 40–42 (2006)

    Google Scholar 

  8. C.W.R. Lin, Y.Z. Tsao: Dynamic availability-oriented control of the automated storage/retrieval system. A computer integrated manufacturing perspective, Int. J. Adv. Manuf. Technol. 29(9-10), 948–961 (2006)

    Article  Google Scholar 

  9. T.H. Chang, H.P. Fu, K.Y. Hu: The innovative conveying device application for transferring articles between two-levels of a multi-story building, Int. J. Adv. Manuf. Technol. 28(1-2), 197–204 (2006)

    Article  Google Scholar 

  10. B. Rembold, J.M.A. Tanchoco: Modular framework for the design of material flow systems, Int. J. Prod. Res. 32(1), 1–21 (1994)

    Article  MATH  Google Scholar 

  11. P.J. Egbelu, J.M.A. Tanchoco: Characterization of automated guided vehicle dispatching rules, Int. J. Prod. Res. 22(3), 359–374 (1984)

    Article  Google Scholar 

  12. L. Hossain, J.D. Patrick, M.A. Rashid: Enterprise Resource Planning: Global Opportunities and Challenges (Idea Group, Hershey 2002)

    Google Scholar 

  13. D.S. Sun, N.S. Park, Y.J. Lee, Y.C. Jang, C.S. Ahn, T.E. Lee: Integration of lot dispatching and AMHS control in a 300 mm wafer FAB, IEEE/SEMI Adv. Semiconduc. Manuf. Conf. Workshop – Adv. Semiconduct. Manuf. Excellence (2005) pp. 270–274

    Google Scholar 

  14. J. Jimenez, B. Kim, J. Fowler, G. Mackulak, Y.I. Choung, D.J. Kim: Operational modeling and simulation of an inter-bay AMHS in semiconductor wafer fabrication, Winter Simul. Conf. Proc. 2, 1377–1382 (2002)

    Google Scholar 

  15. B. Li, J. Wu, W. Carriker, R. Giddings: Factory throughput improvements through intelligent integrated delivery in semiconductor fabrication facilities, IEEE Trans. Semiconduct. Manuf. 18(1), 222–231 (2005)

    Article  Google Scholar 

  16. S.S. Garfinkel, B. Rosenberg: RFID Applications, Security, and Privacy (Addison-Wesley, New York 2006)

    Google Scholar 

  17. K.C. Lee, S. Lee: Integrated network of Profibus-DP and IEEE 802.11 wireless LAN with hard real-time requirement, IEEE Int. Symp. Ind. Electron. 3, 1484–1489 (2001)

    Google Scholar 

  18. A. Herrera: Wireless I/O devices in process control systems, Proc. ISA/IEEE Sensors Ind. Conf. (2004) pp. 146–147

    Google Scholar 

  19. S. Phoha, T. LaPorta, C. Griffin: Sensor Network Operations (Wiley, Piscataway 2006)

    Book  Google Scholar 

  20. I. Walker, A. Hoover, Y. Liu: Handling unpredicted motion in industrial robot workcells using sensor networks, Ind. Robot. 33(1), 56–59 (2006)

    Article  Google Scholar 

  21. C. Cho, P.J. Egbelu: Design of a web-based integrated material handling system for manufacturing applications, Int. J. Prod. Res. 43(2), 375–403 (2005)

    Article  Google Scholar 

  22. G. Nadoli, M. Rangaswami: Integrated modeling methodology for material handling systems design, Winter Simul. Conf. Proc. (1993) pp. 785–789

    Google Scholar 

  23. J.A. Jimenez, G. Mackulak, J. Fowler: Efficient simulations for capacity analysis and automated material handling system design in semiconductor wafer fabs, Winter Simul. Conf. Proc. (2005) pp. 2157–2161

    Google Scholar 

  24. S. Huang, R. Batta, R. Nagi: Variable capacity sizing and selection of connections in a facility layout, IIE Trans. 35(1), 49–59 (2003)

    Article  Google Scholar 

  25. Y.J. Jang, G.H. Choi, S.I. Kim: Modeling and analysis of stocker system in semiconductor and LCD fab, IEEE Int. Symp. Semiconduct. Manuf. Conf. Proc. ISSM 2005 (2005) pp. 273–276

    Google Scholar 

  26. Y.H. Lee, M.H. Lee, S. Hur: Optimal design of rack structure with modular cell in AS/RS, Int. J. Prod. Econ. 98(2), 172–178 (2005)

    Article  Google Scholar 

  27. J.-H. Ting, J.M.A. Tanchoco: Optimal bidirectional spine layout for overhead material handling systems, IEEE Trans. Semiconduct. Manuf. 14(1), 57–64 (2001)

    Article  Google Scholar 

  28. R.J. Gaskins, J.M.A. Tanchoco: Flow path design for automated guided vehicle systems, Int. J. Prod. Res. 25(5), 667–676 (1987)

    Article  Google Scholar 

  29. J.M.A. Tanchoco, D. Sinriech: OSL – optimal single loop guide paths for AGVS, Int. J. Prod. Res. 30(3), 665–681 (1992)

    Article  Google Scholar 

  30. Y.A. Bozer, M.M. Srinivasan: Tandem AGV system: a partitioning algorithm and performance comparison with conventional AGV systems, Eur. J. Oper. Res. 63, 173–191 (1992)

    Article  Google Scholar 

  31. P. Caricato, A. Grieco: Using simulated annealing to design a material-handling system, IEEE Intell. Syst. 20(4), 26–30 (2005)

    Article  Google Scholar 

  32. D. Nazzal, L.F. McGinnis: Analytical approach to estimating AMHS performance in 300 mm fabs, Int. J. Prod. Res. 45(3), 571–590 (2007)

    Google Scholar 

  33. I.F.A. Vis, R. de Koster, K.J. Roodbergen, L.W.P. Peeters: Determination of the number of automated guided vehicles required at a semi-automated container terminal, J. Oper. Res. Soc. 52(4), 409–417 (2001)

    Article  MATH  Google Scholar 

  34. B.A. Peters, T. Yang: Integrated facility layout and material handling system design in semiconductor fabrication facilities, IEEE Trans. Semiconduct. Manuf. 10(3), 360–369 (1997)

    Article  Google Scholar 

  35. J. Chung, J. Jang: The integrated room layout for semiconductor facility plan, IEEE Trans. Semiconduct. Manuf. 20(4), 517–527 (2007)

    Article  Google Scholar 

  36. B. Rembold, J.M.A. Tanchoco: Material flow system model evaluation and improvement, Int. J. Prod. Res. 32(11), 2585–2602 (1994)

    Article  MATH  Google Scholar 

  37. I.F.A. Vis: Survey of research in the design and control of automated guided vehicle systems, Eur. J. Oper. Res. 170(3), 677–709 (2006)

    Article  MATH  Google Scholar 

  38. T. Le-Anh, M.B.M. De Koster: A review of design and control of automated guided vehicle systems, Eur. J. Oper. Res. 171(1), 1–23 (2006)

    Article  MATH  Google Scholar 

  39. M. Dotoli, M.P. Fanti: A coloured Petri net model for automated storage and retrieval systems serviced by rail-guided vehicles: a control perspective, Int. J. Comput. Int. Manuf. 18(2-3), 122–136 (2005)

    Article  Google Scholar 

  40. S. Mahajan, B.V. Rao, B.A. Peters: A retrieval sequencing heuristics for miniload end-of-aisle automated storage/retrieval system, Int. J. Prod. Res. 36(6), 1715–1731 (1998)

    Article  MATH  Google Scholar 

  41. C. Lee, B. Liu, H.C. Huang, Z. Xu, P. Goldsman: Reservation storage policy for AS/RS at air cargo terminals, Winter Simul. Conf. Proc. (2005) pp. 1627–1632

    Google Scholar 

  42. O.V.K. Chetty, M.S. Reddy: Genetic algorithms for studies on AS/RS integrated with machines, Int. J. Adv. Manuf. Technol. 22(11-12), 932–940 (2003)

    Article  Google Scholar 

  43. D. Sinriech, L. Palni: Scheduling pickup and deliveries in a multiple-load discrete carrier environment, IIE Trans. Inst. Ind. Eng. 30(11), 1035–1047 (1998)

    Google Scholar 

  44. A.I. Corréa, A. Langevin, L.M. Rousseau: Scheduling and routing of automated guided vehicles: a hybrid approach, Comput. Oper. Res. 34(6), 1688–1707 (2007)

    Article  MATH  Google Scholar 

  45. J. Jang, J. Suh, P.M. Ferreira: An AGV routing policy reflecting the current and future state of semiconductor and LCD production lines, Int. J. Prod. Res. 39(17), 3901–3921 (2001)

    Article  MATH  Google Scholar 

  46. P.H. Koo, J. Jang, J. Suh: Vehicle dispatching for highly loaded semiconductor production considering bottleneck machines first, Int. J. Flex. Manuf. Syst. 17(1), 23–38 (2005)

    Article  MATH  Google Scholar 

  47. C.W. Kim, J.M.A. Tanchoco, P.-H. Koo: AGV dispatching based on workload balancing, Int. J. Prod. Res. 37(17), 4053–4066 (1999)

    Article  MATH  Google Scholar 

  48. B.H. Jeong, S.U. Randhawa: A multi-attribute dispatching rule for automated guided vehicle systems, Int. J. Prod. Res. 39(13), 2817–2832 (2001)

    Article  MATH  Google Scholar 

  49. R.L. Moorthy, W. Hock–Guan, W.-C. Ng, T. Chung–Piaw: Cycle deadlock prediction and avoidance for zone controlled AGV system, Int. J. Prod. Econ. 83, 309–324 (2003)

    Article  Google Scholar 

  50. G. Bruno, G. Ghiani, G. Improta: Dynamic positioning of idle automated guided vehicles, J. Intell. Manuf. 11(2), 209–215 (2000)

    Article  Google Scholar 

  51. R. Cheung, A. Lee, D. Mo: Flow diversion approaches for shipment routing in automatic shipment handling systems, Proc. – IEEE Int. Conf. Robot. Autom. (2006) pp. 695–700

    Google Scholar 

  52. S. Sujono, R.S. Lashkari: A multi-objective model of operation allocation and material handling system selection in FMS design, Int. J. Prod. Econ. 105(1), 116–133 (2007)

    Article  Google Scholar 

  53. J. Paulo, R.S. Lashkari, S.P. Dutta: Operation allocation and materials-handling system selection in a flexible manufacturing system: a sequential modeling approach, Int. J. Prod. Res. 40, 7–35 (2002)

    Article  MATH  Google Scholar 

  54. R.S. Lashkari, R. Boparai, J. Paulo: Towards an integrated model of operation allocation and materials handling selection in cellular manufacturing system, Int. J. Prod. Econ. 87(2), 115–139 (2004)

    Article  Google Scholar 

  55. R.U. Ayres: Complexity, reliability and design: manufacturing implications, Manuf. Rev. 1(1), 26–35 (1988)

    Google Scholar 

  56. R.K. Ahuja, T.L. Magnanti, J.B. Orlin: Network flows: theory, algorithms, and applications (Prentice Hall, Upper Saddle River 1993)

    Google Scholar 

  57. S. Russell, P. Norvig: Artificial Intelligence: a Modern Approach (Prentice Hall, New York 2003)

    Google Scholar 

  58. ILOG Solver 5.3 user manual

    Google Scholar 

  59. F.T.S. Chan, R.W.L. Ip, H. Lau: Integration of expert system with analytic hierarchy process for the design of material handling equipment selection system, J. Mater. Process. Technol. 116(2-3), 137–145 (2001)

    Article  Google Scholar 

  60. D. Naso, B. Turchiano: Multicriteria meta-heuristics for AGV dispatching control based on computational intelligence, IEEE Trans. Syst. Man Cybern. B 35(2), 208–226 (2005)

    Article  Google Scholar 

  61. C.P. Gomes: Artificial intelligence and operations research: challenges and opportunities in planning and scheduling, Knowl. Eng. Rev. 15(1), 1–10 (2000)

    Article  Google Scholar 

  62. K.A.H. Kobbacy, S. Vadera, M.H. Rasmy: AI and or in management of operations: history and trends, J. Oper. Res. Soc. 58(1), 10–28 (2007)

    Article  MATH  Google Scholar 

  63. R. Marcus: Application of artificial intelligence to operations research, Commun. ACM 27(10), 1044–1047 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaewoo Chung PhD or Jose M.A. Tanchoco PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chung, J., Tanchoco, J.M. (2009). Material Handling Automation in Production and Warehouse Systems. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics