Skip to main content

Automation in Agriculture

  • Chapter
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

The complex agricultural environment combined with intensive production requires development of robust systems with short development time at low cost. The unstructured nature of the external environment increases chances of failure. Moreover, the machines are usually operated by low-tech personnel. Therefore, inherent safety and reliability is an important feature. Food safety is also an issue requiring the automated systems to be sanitized and reliable against leakage of contaminations. This chapter reviews agricultural automation systems including field machinery, irrigation systems, greenhouse automation, animal automation systems, and automation of fruit production systems. Each section describes the different automation systems with many application examples and recent advances in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

BCD:

binary code to decimal

CAN:

control area network

CCD:

charge-coupled device

CPU:

central processing unit

DC:

direct-current

DGPS:

differential GPS

DIN:

German Institute for Normalization

DIO:

digital input/output

DOF:

degrees of freedom

E/H:

electrohydraulic

EL:

electroluminescence

FL:

fuzzy-logic

FPID:

feedforward PID

GNSS:

global navigation satellite system

GPS:

global positioning system

HEFL:

hybrid electrode fluorescent lamp

HID:

high-intensity discharge

HMS:

hierarchical multilevel system

HSI:

human system interface

IMU:

inertial measurement unit

INS:

inertial navigation system

IPS:

integrated pond system

ISO:

International Organization for Standardization

ISO:

independent system operator

JAUGS:

joint architecture for unmanned ground system

LAN:

local-area network

LED:

light-emitting diode

MEMS:

micro-electromechanical system

NIR:

near-infrared

PC:

personal computer

PCR:

polymerase chain reaction

PID:

proportional, integral, and derivative

PLC:

programmable logic controller

PPFD:

photosynthetic photon flux density

PTO:

power takeoff

RAS:

recirculating aquaculture system

RGB:

red–green–blue

RMS:

reconfigurable manufacturing systems

RMS:

reliability, maintainability, and safety

RMS:

root-mean-square

SCARA:

selective compliant robot arm

SCC:

somatic cell count

SS:

speed-sprayer

STTPS:

single-truss tomato production system

TV:

television

USB:

universal serial bus

UV:

ultraviolet

References

  1. J.K. Schueller: Automation and control. In: CIGR Handbook of Agricultural Engineering, Information Technology, Vol. VI, ed. by A. Munack (CIGR, Tzukuba 2006) pp. 184–195, Chap. 4

    Google Scholar 

  2. H.G. Ferguson: Apparatus for coupling agricultural implements to tractors and automatically regulating the depth of work, Patent GB 253566 (1925)

    Google Scholar 

  3. G. Singh: Farm machinery. In: Agricultural Mechanization & Automation, Encyclopedia of Life Support Systems (EOLSS), ed. by P. McNulty, P.M. Grace (EOLSS, Oxford 2002)

    Google Scholar 

  4. J.N. Wilson: Guidance of agricultural vehicles - a historical perspective, Comput. Electron. Agric. 25(1), 3–9 (2000)

    Google Scholar 

  5. T. Torii: Research in autonomous agriculture vehicles in Japan, Comput. Electron. Agric. 25(1), 133–153 (2000)

    Google Scholar 

  6. R. Keicher, H. Seufert: Automatic guidance for agricultural vehicles in Europe, Comput. Electron. Agric. 25(1), 169–194 (2000)

    Google Scholar 

  7. J.F. Reid, Q. Zhang, N. Noguchi, M. Dickson: Agricultural automatic guidance research in North America, Comput. Electron. Agric. 25(1), 155–167 (2000)

    Google Scholar 

  8. H. Auernhammer, T. Muhr: GPS in a basic rule for environment protection in agriculture, Proc. Autom. Agric. 11(91), 394–402 (1991)

    Google Scholar 

  9. M. OʼConnor, T. Bell, G. Elkaim, B. Parkinson: Automatic steering of farm vehicles using GPS, Proc. 3rd Int. Conf. Precis. Agric. (Minneapolis 1996) pp. 767–778

    Google Scholar 

  10. T. Stombaugh, E. Benson, J.W. Hummel: Automatic guidance of agricultural vehicles at high field speeds, ASAE Paper No. 983110 (ASAE, St. Joseph 1998)

    Google Scholar 

  11. T. Bell: Automatic tractor guidance using carrier-phase differential GPS, Comput. Electron. Agric. 25(1/2), 53–66 (2000)

    Google Scholar 

  12. N. Noguchi, M. Kise, K. Ishii, H. Terao: Field automation using robot tractor, Automation Technology for Off-road Equipment, Proc. 26–27 July Conf., ed. by Q. Zhang (ASAE, Chicago 2002) pp. 239–245

    Google Scholar 

  13. G.P. Gordon, R.G. Holmes: Laser positioning system for off-road vehicles, ASAE Paper No. 88-1603 (ASAE, St. Joseph 1988)

    Google Scholar 

  14. N. Noguchi, K. Ishii, H. Terrao: Development of an agricultural mobile robot using a geomagnetic direction sensor and image sensors, J. Agric. Eng. Res. 67, 1–15 (1997)

    Google Scholar 

  15. J.F. Reid, S.W. Searcy, R.J. Babowic: Determining a guidance directrix in row crop images, ASAE Paper No. 85-3549 (ASAE, St. Joseph 1985)

    Google Scholar 

  16. J.B. Gerrish, G.C. Stockman, L. Mann, G. Hu: Image rocessing for path-finding in agricultural field operations, ASAE Paper No. 853037 (ASAE, St. Joseph 1985)

    Google Scholar 

  17. J.A. Marchant, R. Brivot: Real time tracking of plant rows using a Hough transform, Real Time Imaging 1, 363–375 (1995)

    Google Scholar 

  18. J.A. Marchant: Tracking of row structure in three crops using image analysis, Comput. Electron. Agric. 15, 161–179 (1996)

    Google Scholar 

  19. S. Han, Q. Zhang, B. Ni, J.F. Reid: A guidance directrix approach to vision-based vehicle guidance systems, Comput. Electron. Agric. 43, 179–195 (2004)

    Google Scholar 

  20. J. Billingsley, M. Schoenfisch: The successful development of a vision guidance system for agriculture, Comput. Electron. Agric. 16(2), 147–163 (1997)

    Google Scholar 

  21. J.A. Farrell, T.D. Givargis, M.J. Barth: Real-time differential carrier phase GPS-aided INS, IEEE Trans. Control Sys. Technol. 8(4), 709–721 (2000)

    Google Scholar 

  22. L. Guo, Q. Zhang, S. Han: Position estimate of off-road vehicles using a low-cost GPS and IMU, ASAE Paper No. 021157 (ASAE, St. Joseph 2002)

    Google Scholar 

  23. M.A. Abidi, R.C. Gonzales: Data fusion. In: Robotics and Machine Intelligence (Academic, San Diego 1992)

    Google Scholar 

  24. M.S. Grewal, A.P. Andrews: Kalman Filter: Theory and Practice Using MATLAB, 2nd edn. (Wiley, New York 2001)

    Google Scholar 

  25. O. Cohen, Y. Edan: A new framework for online sensor and algorithm selection, Robot. Auton. Syst. 56(9), 762–776 (2008)

    Google Scholar 

  26. H. Choset: Coverage for robotics - a survey of recent results, Ann. Math. Artif. Intell. 31, 113–126 (2001)

    Google Scholar 

  27. T. Oksanen, S. Kosonen, A. Visala: Path planning algorithm for field traffic, ASAE Paper No. 053087 (ASAE, St. Joseph 2005)

    Google Scholar 

  28. J. Jin, L. Tang: Optimal path planning for arable farming, ASAE Paper No. 061158 (ASAE, St. Joseph 2006)

    Google Scholar 

  29. U. Shani: Filling regions in binary raster images: a graph-theoretic approach, SIGGRAPH ʼ80 Conf. Proc. (ACM, New York 1980) pp. 321–327

    Google Scholar 

  30. Y.Y. Huang, Z.L. Cao, E.L. Hall: Region filling operations for mobile robot using computer graphics, Proc. of IEEE Int. Conf. Robot. Autom. (1986) pp. 1607–1614

    Google Scholar 

  31. Z.L. Cao, Y. Huang, E.L. Hall: Region filling operations with random obstacle avoidance for mobile robots, J. Robot. Syst. 5(2), 87–102 (1988)

    Google Scholar 

  32. S.A. Gray: Planning and Replanning Events for Autonomous Orchard Tractors. Ph.D. Thesis (Utah State University, Utah 2001)

    Google Scholar 

  33. J. Park, P.E. Nikravesh: A look-ahead driver model for autonomous cruising on highways, 1996 Future Transport. Technol. Conf. Expo. (Warrendale, 1996)

    Google Scholar 

  34. Q. Zhang, H. Qiu: A dynamic path search algorithm for tractor automatic navigation, Trans. ASAE. 47(2), 639–646 (2004)

    MathSciNet  Google Scholar 

  35. D. Wu, Q. Zhang, J.F. Reid, H. Qiu: Adaptive control of electrohydraulic steering system for wheel-type agricultural tractors, ASAE Paper No. 993079 (ASAE, St. Joseph 1999)

    Google Scholar 

  36. Q. Zhang: Hydraulic linear actuator velocity control using a feedforward-plus-PID control, Int. J. Flex. Autom. Integr. Manuf. 77, 275–290 (1999)

    Google Scholar 

  37. H. Qiu, Q. Zhang, J.F. Reid: Fuzzy control of electrohydraulic steering systems for agricultural vehicles, Trans. ASAE 44(6), 1397–1402 (2001)

    Google Scholar 

  38. L. Guo, Q. Zhang, S. Han: Agricultural machinery safety alert system using ultrasonic sensors, J. Agric. Saf. Health 8(4), 385–396 (2002)

    MathSciNet  Google Scholar 

  39. J. Wei, F. Rovira-Mas, J.F. Reid, S. Han: Obstacle detection using stereo vision to enhance safety of autonomous machines, Trans. ASAE 48(6), 2389–2397 (2005)

    Google Scholar 

  40. M. Kise, Q. Zhang, N. Noguchi: An obstacle identification algorithm for a laser range finder-based obstacle detector, Trans. ASAE 48(3), 1269–1278 (2005)

    Google Scholar 

  41. Y. Matsuo, S. Yamamoto, O. Yukumoto: Development of tilling robot and operation software. In: Autom. Technol. Off-Road Equip. (ATOE) Proc., ed. by Q.Zhang, ASAE Publication No. 701P0509 (2002) pp. 184–189

    Google Scholar 

  42. J.F. Reid: Mobile intelligent equipment for off-road environments, Proc. ATOE Conf. (ASAE, St. Joseph 2004) pp. 1–9

    Google Scholar 

  43. T. Pilarski, M. Happold, H. Pangels, M. Ollis, K. Fitzpatrick, A. Stentz: The Demeter system for automated harvesting, Proc. 8th Int. Top. Meet. Robot. Remote Syst. (1999)

    Google Scholar 

  44. T. Pilarski, M. Happold, H. Pangels, M. Ollis, K. Fitzpatrick, A. Stentz: The Demeter system for automated harvesting, Auton. Robot 13, 19–20 (2002)

    Google Scholar 

  45. RAS: Robotics and Automation Society, Service Robots (IEEE, Piscataway 2008)

    Google Scholar 

  46. B. Astrand, A.J. Baerveldt: An agricultural mobile robot with vision-based perception for mechanical weed control, Auton. Robot 13, 21–35 (2002)

    MATH  Google Scholar 

  47. R.N. Jørgensen, C.G. Sørensen, J.M. Pedersen, I. Havn, H.J. Olsen, H.T. Søgaard: Hortibot: An accessory kit transforming a slope mower into a robotic tool carrier for high-tech plant nursing - part I, ASAE Paper No. 63082 (ASAE, St. Joseph 2006)

    Google Scholar 

  48. C.G. Sørensen, R.N. Jørgensen, M. Nørremark: HortiBot: Application of quality function deployment (QFD) method for horticultural robotic tool carrier design planning - part II, ASAE Paper No. 67021 (ASAE, St. Joseph 2006)

    Google Scholar 

  49. M. Nørremark, C.G. Sørensen, R.N. Jørgensen: HortiBot: Comparison of potential present and future weeding technologies - part III, ASAE Paper No. 67023 (ASAE, St. Joseph 2006)

    Google Scholar 

  50. J.L. Merriam, S.W. Styles, B.J. Freeman: Flexible irrigation systems: concept, design, and application, J. Irrig. Drain. Engrg. 133(1), 2–11 (2007)

    Google Scholar 

  51. S.J. Kim, P.S. Kim: Optimal gate operation of irrigation reservoir using water management program, ASAE Paper No. 042067 (ASAE, St. Joseph 2004)

    Google Scholar 

  52. G. Park, M.S. Lee, S.J. Kim: Networking model of paddy irrigation system using archyhydro GIS, ASAE Paper No. 052079 (ASAE, St. Joseph 2005)

    Google Scholar 

  53. Y. Lam, D.C. Slaughter, W.W. Wallender, S.K. Upadhyaya: Machine vision monitoring for control of water advance in furrow irrigation, Trans. ASAE 50(2), 371–378 (2007)

    Google Scholar 

  54. Y. Lam, D.C. Slaughter, S.K. Upadhyaya: Computer vision system for automatic control of precision furrow irrigation system, ASAE Paper No. 062078 (ASAE, St. Joseph 2006)

    Google Scholar 

  55. Y. Kim, R.G. Evans, W. Iversen, F.P. Pierce, J.L. Chavez: Software design for wireless in-field sensor based irrigation management, ASAE Paper No. 063704 (ASAE, St. Joseph 2006)

    Google Scholar 

  56. N.L. Klocke, C. Hunter, M. Alam: Application of a linear move sprinkler system for limited irrigation research, ASAE Paper No. 032012 (ASAE, St. Joseph 2003)

    Google Scholar 

  57. B.A. King, R.W. Wall, L.R. Wall: Distributed control and data acquisition system for closed-loop site-specific irrigation management with center pivots, Appl. Eng. Agric. 21(5), 871–878 (2005)

    Google Scholar 

  58. M. Yitayew, K. Didan, C. Reynolds: Microcomputer based low-head gravity-flow bubbler irrigation system design, Comput. Electron. Agric. 22, 29–39 (1999)

    Google Scholar 

  59. F.S. Zazueta, A.G. Smajstrla: Microcomputer-based control of irrigation systems, Appl. Eng. in Agric. 8(5), 593–596 (1992)

    Google Scholar 

  60. B. Cardenas-Lailhacar, M.D. Dukes, G.L. Miller: Sensor-based control of irrigation in Bermudagrass, ASAE Paper No. 052180 (ASAE, St. Joseph 2005)

    Google Scholar 

  61. M.B. Haley, M.D. Dukes: Evaluation of sensor based residential irrigation water application, ASAE Paper No. 072251 (ASAE, St. Joseph 2007)

    Google Scholar 

  62. S.R. Evett, R.T. Peters, T.A. Howell: Controlling water use efficiency with irrigation automation, South. Conserv. Syst. Conf. (Amarillo 2006)

    Google Scholar 

  63. D.F. Wanjuru, S.J. Maas, J.C. Winslow, D.R. Upchurch: Scanned and spot measured temperatures of cotton and corn, Comput. Electron. Agric. 44, 33–48 (2004)

    Google Scholar 

  64. S.R. Herwitz, L.F. Johnson, S.E. Dunagan, R.G. Higgins, D.V. Sullivan, J. Zheng, B.M. Lobitz, J.G. Leung, B.A. Gallmeyer, M. Aoyagi, R.E. Slye, J.A. Brass: Imaging from an unmanned aerial vehicle surveillance and decision support, Comput. Electron. Agric. 44, 49–61 (2004)

    Google Scholar 

  65. J.A. Poss, W.B. Russell, P.J. Shouse, R.S. Austin, S.R. Grattan, C.M. Grieve, J.J. Lieth, L. Zheng: A volumetric lysemeter system: an alternative to weighing lysimeters for plant-water relations studies, Comput. Electron. Agric. 43, 55–68 (2004)

    Google Scholar 

  66. Y. Kim, R.G. Evans, W. Iversen, F.P. Pierce: Instrumentation and control for wireless sensor network for automated irrigation, ASAE Paper No. 061105 (ASAE, St. Joseph 2006)

    Google Scholar 

  67. T. Hess: A microcomputer scheduling program for supplementary irrigation, Comput. Electron. Agric. 15, 233–243 (1996)

    Google Scholar 

  68. M.J. Upcraft, D.H. Noble, M.K.V. Carr: A mixed linear programme for short-term irrigation scheduling, J. Oper. Res. Soc. 40(10), 923–931 (1989)

    Google Scholar 

  69. K. Milla, S. Kish: A low cost microprocessor and infrared sensor system for automating water infiltration measurements, Comput. Electron. Agric. 53, 122–129 (2006)

    Google Scholar 

  70. J. Artigas, A. Beltran, C. Jimenez, A. Baldi, R. Mas, C. Dominguez, J. Alonmso: Application of ion sensitive field effect transistor based sensor for soil analysis, Comput. Electron. Agric. 31(3), 281–293 (2001)

    Google Scholar 

  71. R.T. Peters, S.R. Evett: Using low-cost GPS receivers for determining field position of mechanized irrigation systems, Appl. Eng. Agric. 21(5), 841–845 (2005)

    Google Scholar 

  72. Y. Kim, R.G. Evans, W. Iversen, F.P. Pierce: Evaluation of wireless control for variable rate irrigation, ASAE Paper No. 062164 (ASAE, St. Joseph 2006)

    Google Scholar 

  73. F.R. Miranda, R. Yoder, J.B. Wilkerson: A site-specific irrigation control system, ASAE Paper No. 031129 (ASAE, St. Joseph 2003)

    Google Scholar 

  74. F.R. Miranda, R.E. Yoder, J.B. Wilkerson, L.O. Odhiambo: An autonomous controller for site-specific management of fixed irrigation systems, Comput. Electron. Agric. 468, 183–197 (2005)

    Google Scholar 

  75. King B.A. W.W. Wall, D.C. Kincaid, D.T. Westermann: Field testing of a variable rate sprinkler and control system for site-specific water and nutrient application. Appl. Eng. Agric. 21(5), 847–853 (2005)

    Google Scholar 

  76. A.T. Csordas, M.J. Delwiche, J. Barak: Automated real-time PCR Biosensor for the detection of pathogens in produce irrigation water, ASAE Paper No. 047045 (ASAE, St. Joseph 2004)

    Google Scholar 

  77. N. Kondo, K.C. Ting (Eds.): Robotics for Bioproduction Systems (ASAE, St. Joseph 1998)

    Google Scholar 

  78. T. Mitsuhashi, A. Yamazaki, T. Shichishima: Automation of plant factory, Proc. 4th SHITA Symp. (Tokyo 1994) pp. 45–57

    Google Scholar 

  79. N. Kondo, M. Monta, N. Noguchi: Agri-Robots (II) Mechanisms and Practice (Corona, Tokyo 2006) pp. 1–223

    Google Scholar 

  80. W. Simonton: Automatic geranium stock processing in a robotic workcell, Trans. ASAE 33(6), 2074–2080 (1990)

    Google Scholar 

  81. N. Kondo, M. Monta: Basic study on chrysanthemum cutting sticking robot, Proc. Int. Symp. Agric. Mech. Autom., Vol. 1 (1997) pp. 93–98

    Google Scholar 

  82. N. Kondo, M. Monta, Y. Ogawa: Cutting providing system and vision algorithm for robotic chrysanthemum cutting sticking system, Preprints of the International Workshop on Robotics and Automated Machinery for Bioproductions (Valencia 1997) pp. 7–12

    Google Scholar 

  83. U-shin LTD.: US-500 Users manual (Tokyo, 1993)

    Google Scholar 

  84. E. Nederhoff: Energy and CO 2 Enrichment (Galileo Services Ltd, New Zealand 2007), http://www.redpathaghort.com/bulletins/co2.html

  85. C. Kittasa, N. Katsoulasa, A. Bailleb: SE-structures and environment: Influence of greenhouse ventilation regime on the microclimate and energy partitioning of a rose canopy during summer conditions, J. Agric. Eng. Res. 79(3), 349–360 (2001)

    Google Scholar 

  86. E.J. van Henten: Greenhouse climate management: an optimal control approach. Ph.D. Thesis (Wageningen University, Holland 1994)

    Google Scholar 

  87. R. Caponetto, L. Fortuna, G. Nunnari, L. Occhipinti, M.G. Xibilia: Soft computing for greenhouse climate control, IEEE Trans. Fuzzy Sys. 8(6), 1101–1120 (2000)

    Google Scholar 

  88. T. Morimoto, Y. Hashimoto: An intelligent control for greenhouse automation, orieneted by the concepts of SPA and SFA, Comput. Electron. Agric. 29, 3–20 (2000)

    Google Scholar 

  89. L.D. Albright: Controlling greenhouse environments, Acta Horticulturae 578, 47–54 (2002)

    Google Scholar 

  90. B. Bailey: Natural and mechanical greenhouse climate control. Acta Horticulturae 710, Int. Symp. Des. Environ. Control Trop. Subtrop. Greenhouses (2006)

    Google Scholar 

  91. C. Serodio, J. Boaventura Cunha, R. Morais, C. Couto, J. Monteiro: A networked platform for agricultural management systems, Comput. Electron. Agric. 31, 75–90 (2001)

    Google Scholar 

  92. Maruyama MFG. Co. Inc.: Shuttle spray-car MSC5-100U Users manual (Tokyo 2000)

    Google Scholar 

  93. Kioritz Corporation: Robotic Spray-car Users manual (Tokyo 2003)

    Google Scholar 

  94. N. Kawamura, K. Namikawa, T. Fujiura, M. Ura: Study on agricultural robot (Part 1), J. Soc. Agric. Mach. (Japan) 46(3), 353–358 (1984)

    Google Scholar 

  95. S. Arima, N. Kondo, Y. Shibano, J. Yamashita, T. Fujiura, H. Akiyoshi: Study on cucumber harvesting robot (Part 1), J. Soc. Agric. Mach. (Japan) 56(1), 45–53 (1994)

    Google Scholar 

  96. S. Arima, N. Kondo, Y. Shibano, T. Fujiura, J. Yamashita, H. Nakamura: Study on cucumber harvesting robot (Part 2), J. Soc. Agric. Mach. (Japan) 56(6), 69–76 (1994)

    Google Scholar 

  97. T. Fujiura, I.D.M. Subrata, T. Yukawa, S. Nakao, H. Yamada: Cherry tomato harvesting robot, Proc. Int. Symp. Autom. Robot. Bioprod. Process., Vol. 2 (Jpn. Soc. Agric. Mach., Kobe 1995) pp. 175–180

    Google Scholar 

  98. N. Kondo, M. Monta, Y. Shibano, K. Mohri: Basic mechanism of robot adapted to physical properties of tomato plant, Proc. Int. Conf. Agric. Mach. Process Eng., Vol. 3 (Seoul 1993) pp. 840–849

    Google Scholar 

  99. N. Kondo, Y. Nishitsuji, P.P. Ling, K.C. Ting: Visual feedback guided robotic cherry tomato harvesting, Trans. ASAE 39(6), 2331–2338 (1996)

    Google Scholar 

  100. N. Kondo, K.C. Ting: Robotics for Bioproduction Systems (ASAE, St. Joseph 1998)

    Google Scholar 

  101. K.C. Ting, G.A. Giacomelli, W. Fang: Decision support system for single truss tomato production, Proc. of XXV CIOSTA-CIGR V Congr. (1993) pp. 10–13

    Google Scholar 

  102. N. Kondo, M. Monta, Y. Shibano, K. Mohri: Basic mechanism of robot adapted to physical properties of tomato plant, Proc. Int. Conf. Agric. Mach. Process Eng. (Seoul 1993) pp. 840–849

    Google Scholar 

  103. N. Kondo, M. Monta, Y. Shibano, K. Mohri: Two finger harvesting hand with absorptive pad based on physical properties of tomato, Environ. Control Biol. 31(2), 87–92 (1993)

    Google Scholar 

  104. P.I. Daskalov, K.G. Arvanitis, G.D. Pasgianos, N.A. Sigrimis: Nonlinear adaptive temperature and humidity control in animal buildings, Biosyst. Eng. 93(1), 1–24 (2006)

    Google Scholar 

  105. W.J. Eradus, M.B. Jansen: Animal identification and monitoring, Comput. Electron. Agric. 24, 91–98 (1999)

    Google Scholar 

  106. S. Holm, J. Brungot, A. Ronneklein, L. Hoff, V. Jahr, K.M. Kjolerbakken: Acoustic passive integrated transponders for fish tagging and identification, Aquac. Eng. 36(2), 122–126 (2007)

    Google Scholar 

  107. E. Maltz, S. Devir, O. Kroll, B. Zur, S.L. Spahr, R.D. Shanks: Comparative responses of lactating cows to total mixed rations or computerized individual concentrates feeding, J. Diary Sci. 75(6), 1588–1603 (1992)

    Google Scholar 

  108. F. Seipelt, A. Bunger, R. Heeren, D. Kähler, M. Lüllmann, G. Pohl: Computer controlled calf rearing, Fifth Int. Dairy Housing Proc. 29–31 January 2003 Conf., Fort Worth, ed. by K. Janni (2003) pp. 356–360, ASAE Publication Number 701P0203

    Google Scholar 

  109. I. Halachmi, Y. Edan, E. Maltz, U.M. Peiper, U. Moalem, I. Brukental: A real-time control system for individual dairy cow food intake, Comput. Electron. Agric. 20, 131–144 (1998)

    Google Scholar 

  110. A.V. Fisher: A review of the technique of estimating the composition of livestock using the velocity of ultrasound, Comput. Electron. Agric. 17(2), 217–231 (1997)

    Google Scholar 

  111. D.E. Filby, M.J.B. Turner, M.J. Street: A walk-through weigher for dairy cows, J. Agric. Eng. Res. 24, 67–78 (1979)

    Google Scholar 

  112. J. Ren, N.L. Buck, S.L. Spahr: A dynamic weight logging system for dairy cows, Trans. ASAE 35, 719–725 (1992)

    Google Scholar 

  113. U. Peiper, Y. Edan, S. Devir, M. Barak, E. Maltz: Automatic weighing of dairy cows, J. Agric. Eng. Res. 56(1), 13–24 (1993)

    Google Scholar 

  114. D. Cveticanin, G. Wendl: Dynamic weighing of dairy cows: using a lumped-parameter model of cow walk, Comput. Electron. Agric. 44, 63–69 (2004)

    Google Scholar 

  115. D. Ordolff: Introduction of electronics into milking technology, Comput. Electron. Agric. 30, 125–149 (2001)

    Google Scholar 

  116. K. de Koning: Automatic milking lessons from Europe, ASAE Paper No. 044188 (ASAE, St. Joseph 2004)

    Google Scholar 

  117. D. Ordolff: Introduction of electronics into milking technology, Comput. Electron. Agric. 30(1–3), 125–149 (2001)

    Google Scholar 

  118. D.M. Jenkins, M.J. Delwiche, R.W. Claycomb: Electrically controlled sampler for milk component sensors, Appl. Eng. Agric. 18(3), 373–378 (2002)

    Google Scholar 

  119. G. Katz, A. Arazi, N. Pinski, I. Halachmi, Z. Schmilovitz, E. Aizinbud, E. Maltz: Current and Near Term Technologies for Automated Recording of Animal Data for Precision Dairy Farming (ADSA, San Antonio 2007)

    Google Scholar 

  120. M. Pastell, A. Aisla, M. Hautala, J. Ahokas: Automatic cow health measurement system in a milking robot, ASAE Paper No. 064037 (ASAE, St. Joseph 2006)

    Google Scholar 

  121. P.G. Rajkondawar, U. Tasch, A.M. Lefcourt, B. Erez, R. Dyer, M.A. Varner: A system for identifying lameness in dairy cattle, Appl. Eng. Agric. 18(1), 87–96 (2002)

    Google Scholar 

  122. U. Tasch, P.G. Rajkondawar: The development of a SoftSeparator for a lameness diagnostic system, Comput. Electron. Agric. 44(3), 239–245 (2004)

    Google Scholar 

  123. M. Pastell, H. Takko, H. Gröhn, M. Hautala, V. Poikalainen, J. Praks, I. Veermäe, M. Kujala, J. Ahokas: Assessing cowsʼ welfare: weighing the cow in a milking robot, Biosyst. Eng. 93(1), 81–87 (2006)

    Google Scholar 

  124. A.R. Frost, C.P. Schofield, S.A. Beaulah, T.T. Mottram, J.A. Lines, C.M. Wathes: A review of livestock monitoring and the need for integrated systems, Comput. Electron. Agric. 17(2), 139–159 (1997)

    Google Scholar 

  125. M. Delwiche, X. Tang, R. Bondurant, C. Munro: Estrus detection with a progesterone biosensor, Transactions ASAE 44(6), 2003–2008 (2001)

    Google Scholar 

  126. L. Gygax, G. Neisen, H. Bollhalder: Accuracy and validation of radar based automatic local position measurement system for tracking dairy cows in free-stall barns, Comput. Electron. Agric. 56, 23–33 (2007)

    Google Scholar 

  127. L.W. Turner, M. Anderson, B.T. Larson, M.C. Udal: Global positioning systems and grazing behavious in cattle, Livest. Environ. VI, 640–650 (2001)

    Google Scholar 

  128. T.J. DeVries, M.A.G. von Keyserlingk, K.A. Beauchemin: Frequency of feed delivery affects the behavior of lactating dairy cows, J. Dairy Sci. 88, 3553–3562 (2005)

    Google Scholar 

  129. L. Gygax, G. Neisen, H. Bollhalder: Accuracy and validation of a radar-based automatic local position measurement system for tracking dairy cows in free-stall barns, Comput. Electron. Agric. 56(1), 23–33 (2007)

    Google Scholar 

  130. F. Teye, H. Gröhn, M. Pastell, M. Hautala, A. Pajumägi, J. Praks, V. Poikalainen, T. Kivinen, J. Ahokas: Microclimate and gas emissions in cold uninsulated dairy buildings, 2006 ASABE Annu. Int. Meet. (ASABE, St. Joseph 2006), ASABE Paper No. 064080, pp. 1–8

    Google Scholar 

  131. R.M.T. Baars, C. Solano, M.T. Baayen, R. Rojas, L. Mannetje: MIS support for pasture and nutrition management of dairy farms in tropical countries, Comput. Electron. Agric. 15, 27–39 (1996)

    Google Scholar 

  132. M.A.P.M. van Asseldonk, R.B.M. Hurine, A.A. Didkhuizen, A.J.M. Beulens, A.J. Udink ten Cate: Information needs and information technology on dairy farms, Comput. Electron. Agric. 22, 97–107 (1999)

    Google Scholar 

  133. C.M. Wathes, S.M. Abeyesinghe, A.R. Frost: Environmental design and management for livestock in the 21st century: resolving conflicts by integrated solutions, Livest. Environ. VI: Proc. 6th Int. Symp. (2001) pp. 5–14, ASAE Publication No. 701P0201

    Google Scholar 

  134. J.M. Powell, P.R. Cusick, T.H. Misselbrook, B.J. Holmes: Design and calibration of chambers for mearuing ammonia emissions from tie-stall dairy barns, Trans. ASABE 50(3), 1045–1051 (2007)

    Google Scholar 

  135. N. Mozes, O. Zemora, C. Porter, H. Gordin: Marine integrated pond system under desert conditions in southern israel – potential, results and limitations, Aquacult. Eur. 2003 Conf. (Trondheim 2003)

    Google Scholar 

  136. N. Mozes: Ustainable development of land-based mariculture: integrated system with algal biofilter versus recirculation system with bacterial biofilter, Aquacult. Eur. 2003 Conf. (Trondheim 2003)

    Google Scholar 

  137. N. Mozes, I. Haddas, D. Conijeski, M. Eshchar: The low-head megaflow air driven recirculating system – minimizing biological and operational risks, Proc. Aquacult. Eur. 2004 Conf. (Barcelona 2004) pp. 598–599

    Google Scholar 

  138. M. Shpigel, A. Neori, D.M. Popper, H. Gordin: A proposed model for ʼenvironmentally cleanʼ land-based culture of fish, bivalves and seaweeds, Aquaculture 117(1/2), 115–118 (1993)

    Google Scholar 

  139. C. Costa, A. Loy, S. Cataudella, D. Davis, M. Scardi: Extracting fish size using dual underwater cameras, Aquacult. Eng. 35, 218–227 (2006)

    Google Scholar 

  140. J.A. Lines, R.D. Tillet, L.G. Ross, D. Chan, S. Hockaday, N.J.B. McFarlane: An automatic image base system form estimating mass of free-swimming fish, Comput. Electron. Agric. 31, 151–168 (2001)

    Google Scholar 

  141. B. Zion, V. Alchanatis, V. Ostrovsky, A. Barki, I. Karplus: Comput. Electron. Agric. 56(1), 34–45 (2007)

    Google Scholar 

  142. P.G. Lee: A review of automated control systems for aquaculture and design criteria for their implementation, Aquacult. Eng. 14(3), 205–227 (1995)

    Google Scholar 

  143. C.W. Chang, W.R.C. Fang. Jao, C.Z. Shyu, I.C. Lioa: Development of an intelligent feeding controller for indoor intensive culturing of eel, Aquacult. Eng. 32, 343–353 (2005)

    Google Scholar 

  144. N. Papandroulakis, P. Dimitris, D. Pascal: An automated feeding system for intensive hatcheries, Aquacult. Eng. 26, 13–26 (2002)

    Google Scholar 

  145. F.J. Muir, C. Brugere Young, A.J.A. Stewart: The solution to pollution? The value and limitations of environmental economics in guiding aquaculture development, Aquacult. Econom. Manag. 3(1), 43–57 (1999)

    Google Scholar 

  146. A.W. Wurts: Sustainable aquaculture in the twenty first century, Rev. Fish. Sci. 8(2), 141–150 (2000)

    Google Scholar 

  147. R.H Caffey: Quantifying Sustainability in Aquaculture Production (Louisiana State University, Baton Rouge 1998)

    Google Scholar 

  148. F. Wheaton, S. Hall: Research needs for oyster shucking, Aquacult. Eng. 37, 67–72 (2007)

    Google Scholar 

  149. G.F. Figueiredo, M.D. Dawson, E.R. Benson, G.L. van Wicklen, N. Gedamu: Development of machine vision based poultry behaviour analysis, ASAE Paper No. 0330834 (ASAE, St. Joseph 2003)

    Google Scholar 

  150. G.F. Figueiredo, M.D. Dawson, E.R. Benson, G.L. van Wicklen, N. Gedamu: Advancement in whole house machine vision based poultry behaviour analysis, ASAE Paper No. 043084 (ASAE, St. Joseph 2004)

    Google Scholar 

  151. K. Chao, Y.R. Chen, W.R. Hruschka, B. Park: Chicken heart disease characterization by multispectral imaging, Appl. Eng. Agric. 17(1), 99–106 (2001)

    Google Scholar 

  152. K.F. Stacey, D.J. Parsons, A.R. Frost, C. Fisher, D. Filmer, A. Fothergill: An automatic growth and nutrition control system for broiler production, Biosyst. Eng. 89(3), 363–371 (2004)

    Google Scholar 

  153. D. Sergeant, R. Boyle, M. Forbes: Computer visual tracking of poultry, Comput. Electron. Agric. 21, 1–18 (1998)

    Google Scholar 

  154. S. Jaiswa, E.R. Benson, J.C. Bernard, G.L. van Wicklen: Neural network modeling and sensitivity analysis of mechanical poultry catching system, Biosyst. Eng. 92(1), 59–68 (2005)

    Google Scholar 

  155. J.P. Trevelyan: Sensing and control for sheep shearing robots, IEEE Trans. Robot. Autom. 5(6), 716–727 (1989)

    Google Scholar 

  156. F. Perez-Munoz, S.J. Hoff, T. Van Hal: A quasi ad-libitum electronic feeding system for gestating sows in loose housing, Comput. Electron. Agric. 19(3), 277–288 (1998)

    Google Scholar 

  157. F. Perez-Munoz, S.J. Hoff, T. van Hal: A quasi ad-libitum electronic feeding system for gestating sows in loose housing, Comput. Electron. Agric. 19, 277–288 (1998)

    Google Scholar 

  158. Y. Wang, W. Yang, P. Winter, L.T. Walker: Non-contact sensing of hog weights by machine vision, Appl. Eng. Agric. 22(4), 577–582 (2006)

    Google Scholar 

  159. C.P. Schofield, C.T. Whittemore, D.M. Green, M.D. Pascual: The determination of beginning and end of period live weights in growing pigs, J. Sci. Food Agric. 82, 1672–1675 (2002)

    Google Scholar 

  160. R.D. Tillet, A.R.S. Frost, S.K. Welch: Predicting sensor placement targets on pigs using image analysis, Biosyst. Eng. 81(4), 453–463 (2002)

    Google Scholar 

  161. H. Xin, B. Shao: Real-time behaviour-based assessment and control of swine thermal comfort, Proc. 7th Int. Symp. (ASAE, St. Joseph 2005) pp. 694–702, ASAE Publication No. 701P0205

    Google Scholar 

  162. M. Barbari: Planning individual showering systems for pregnant sows in dynamic groups, Livest. Environ. VII, 130–137 (2005), ASAE Publication No. 701P0205

    Google Scholar 

  163. G. Zhang, J.S. Strom, M. Blanke, I. Braithwaite: Spectral signatures of surface materials in pig buildings, Biosyst. Eng. 94(4), 495–504 (2006)

    Google Scholar 

  164. W. Saeys, A.M. Mouazen, H. Ramon: Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy, Biosyst. Eng. 91(4), 393–402 (2005)

    Google Scholar 

  165. R.C. Harrell, P.D. Adsit, T.A. Pool, R. Hoffman: The Florida Robotic Grove-Lab, Trans. ASAE 33(2), 391–399 (1990)

    Google Scholar 

  166. M. Hayashi, Y. Ueda, H. Suzuki: Development of agricultural robot, Proc. 6th Conf. Robot. (Robotics Society of Japan, 1988) pp. 579–580

    Google Scholar 

  167. T. Fujiura, M. Ura, N. Kawamura, K. Namikawa: Fruit harvesting robot for orchard, J. Soc. Agric. Mach. (Japan) 52(2), 35–42 (1990)

    Google Scholar 

  168. F. Juste, I. Fornes: Contributions to robotic harvesting of citrus in Spain, Proc. of the AG-ENG 90 Conf. (Berlin, 1990) pp. 146–147

    Google Scholar 

  169. G. Rabatel, A. Bourely, F. Sevila, F. Juste: Robotic harvesting of citrus, Proc. Int. Conf. Harvest and Post-harvest Technol. Fresh Fruits and Vegetables (Guanajuato, 1995) pp. 232–239

    Google Scholar 

  170. N. Kondo, M. Monta, T. Fujuira, Y. Shibano, K. Mohri: Control method for 7 DOF robot to harvest tomato, Proc. Asian Control Conf., Vol. 1 (1994) pp. 1–4

    Google Scholar 

  171. M.W. Hannan, T. Burks: Current developments in automated citrus harvesting, ASAE Paper No. 043087 (ASAE, St. Joseph 2004)

    Google Scholar 

  172. E. Molto, F. Pla, F. Juste: Vision systems for the location of citrus fruit in a tree canopy, J. Agric. Eng. Res., 52, 101–110 (1992)

    Google Scholar 

  173. N. Kondo, N. Kawamura: Methods of detecting fruit by visual sensor attached to manipulator, J. Soc. Agric. Mach. (Japan) 47(1), 60–65 (1985)

    Google Scholar 

  174. N. Kondo, S. Endo: Methods of detecting fruit by visual sensor attached to manipulator (II), J. Soc. Agric. Mach. (Japan) 51(4), 41–48 (1989)

    Google Scholar 

  175. N. Kondo, S. Endo: Methods of detecting fruit by visual sensor attached to manipulator (III), J. Soc. Agric. Mach. (Japan) 52(4), 75–82 (1990)

    Google Scholar 

  176. T. Fujiura, J. Yamashita, N. Kondo: Agricultural robots (1): Vision sensing system, ASAE Paper No.92-3517 (ASAE, St. Joseph 1992)

    Google Scholar 

  177. G. Rabatel: A vision system for the fruit picking robot, Proc. Agric. Eng. ʼ88 Conf. (Paris 1988), AG-ENG Paper No. 88-293

    Google Scholar 

  178. G. Rabatel, A. Bourely, F. Sevila: Objects detection with machine vision in outdoor complex scenes, Proc. Robot. Syst. Eng. Syst. Intell. (Corfou 1991) pp. 395–403

    Google Scholar 

  179. D.C. Slaughter, R.C. Harrell: Color vision in robotic fruit harvesting, Trans. ASAE 30(4), 1144–1148 (1987)

    Google Scholar 

  180. N. Kondo: Harvesting robot based on physical properties of grapevine, Jpn. Agric. Res. Q. 29(3), 171–177 (1995)

    Google Scholar 

  181. A. Sittichareonchai, F. Sevila: A robot to harvest grapes, ASAE Paper No. 89-7074 (ASAE, St. Joseph 1989)

    Google Scholar 

  182. L. Kassay: Hungarian robotic apple harvester, ASAE Paper No. 92-7042 (ASAE, St. Joseph 1992)

    Google Scholar 

  183. A. Grand dʼEsnon: Robotic harvesting of apples, Proc. Agri-Mation 1st Conf. Expo. (ASAE, Chicago 1885) pp. 210–214

    Google Scholar 

  184. Y. Edan, G.E. Miles: Design of an agricultural robot for harvesting melons, Trans. ASAE 36(2), 593–603 (1993)

    Google Scholar 

  185. M. Iida, K. Furube, K. Namikawa, M. Umeda: Development of watermelon harvesting gripper, J. Soc. Agric. Mach. (Japan), 58(3), 19–26 (1996)

    Google Scholar 

  186. N. Kondo, K.C. Ting: Robotics for Bioproduction Systems (ASAE, St. Joseph 1998)

    Google Scholar 

  187. K. Kurokami: Fence type training system of mandarin orange tree, Agric. Hortic. 55(2), 289–293 (1980)

    Google Scholar 

  188. M. Monta, N. Kondo, Y. Shibano, K. Mohri: Basic study on robot to work in vineyard (Part 3) – measurement of physical properties for robotization and manufacture of berry thinning hand, J. Soc. Agric. Mach. (Japan) 56(2), 93–100 (1994)

    Google Scholar 

  189. K. Nishiwaki, K. Amaha, R. Otani: Development of Nozzle Positioning System for Precision Sprayer, Automation Technology for Off-Road Equipment (ASAE, St. Joseph 2004)

    Google Scholar 

  190. K.P. Gilles, D.K. Giles, D.C. Saughter, D. Downey: Injection and fluid handling system for machine-vision controlled spraying, ASAE Paper No. 011114 (ASAE, St. Joseph 2001)

    Google Scholar 

  191. H.T. Wiedemann, D. Ueckert, W.A. McGinty: Spray boom for sensing and selectively spraying small mesquite on higway rights-of-way, Appl. Eng. Agric. 18(6), 661–666 (2002)

    Google Scholar 

  192. K. Tosaki, S. Miyahara, T. Ichikawa, Y. Mizukura: Development of microcomputer controlled driverless air blast, J. Soc. Agric. Mach. (Japan) 58(6), 101–110 (1996)

    Google Scholar 

  193. Japanese Society of Agricultural Machinery: Handbook of Bioproduction Machinery (Corona, Tokyo 1996) p. 731

    Google Scholar 

  194. S.I. Cho, J.H. Lee: Autonomous speed-sprayer using differential GPS system, genetic algorithm and fuzzy control, J. Agric. Eng. Res. 76, 111–119 (2000)

    Google Scholar 

  195. M. Dohi: Development of multipurpose robot for vegetable production, Jpn. Agric. Res. Q. 30(4), 227–232 (1996)

    Google Scholar 

  196. U. Ahmad, N. Kondo, S. Arima, M. Monta, K. Mohri: Weed detection in lawn field based on gray-scale uniformity, Environ. Control Biol. 36(4), 227–237 (1998)

    Google Scholar 

  197. U. Ahmad, N. Kondo, S. Arima, M. Monta, K. Mohri: Weed detection in lawn field using machine vision. utilization of textural features in segmented area, J. Soc. Agric. Mach. (Japan) 61(2), 61–69 (1999)

    Google Scholar 

  198. B.L. Steward, L.F. Tian, L. Tang: Distance-based control system for machine vision-based selective spraying, Trans. ASAE 45(5), 1255–1262 (2002)

    Google Scholar 

  199. J. Njoroge, K. Ninomiya, N. Kondo, H. Toita: Automated fruit grading system using image processing, Proc. SICE Ann. Conf. (Osaka 2002), MP18-3 on CD-ROM

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yael Edan Prof , Shufeng Han or Naoshi Kondo Dr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Edan, Y., Han, S., Kondo, N. (2009). Automation in Agriculture. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics