Skip to main content

Flight Deck Automation

  • Chapter
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

A review of flight deck automation is provided with an emphasis on examples and design principles. First, a review of historical developments in flight deck automation is provided. Current examples of control automation, warning and alerting systems, and information automation are then provided. A discussion of human factors, integration, safety, and certification issues are then discussed. The chapter provides guidance to managers, engineers, and researchers tasked with studying or building flight deck systems. In particular, the chapter provides an appreciation of the challenges of building such systems, and the challenges facing those who will build the flight decks of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACAS:

aircraft collision avoidance system

ACAS:

automotive collision avoidance system

AGL:

above ground level

AOC:

airline operation center

APU:

auxiliary power unit

ASDI:

aircraft situation display to industry

CDTI:

cockpit display of traffic information

CDU:

control display unit

CFIT:

controlled flight into terrain

CPA:

closest point of approach

DC:

direct-current

DMOD:

distance modification

EICAS:

engine indicating and crew alerting system

EPGWS:

enhanced GPWS

ETMS:

enhanced traffic management system

FA:

factory automation

FA:

false alarm

FAA:

US Federal Aviation Administration

FL:

fuzzy-logic

FMC:

flexible manufacturing cell

FMC:

flight management computer

FMS:

field message specification

FMS:

flexible manufacturing system

FMS:

flight management system

GPS:

global positioning system

GPWS:

ground-proximity warning system

HMD:

helmet-mounted display

HUD:

heads up display

IFR:

instrument flight rules

LLWAS:

low-level wind-shear alert system

MCP:

mode control panel

MCP:

multichip package

MD:

missing a detection

MFD:

multifunction display

NASA:

National Aeronautics and Space Administration

RA:

resolution advisory

SL:

sensitivity level

SOC:

system operating characteristic

SSSI:

single-sensor, single-instrument

TA:

traffic advisory

TCAS:

traffic collision avoidance system

UAV:

unmanned aerial vehicle

VFR:

visual flight rule

References

  1. European Parliament: Laying down the framework for the creation of the Single European Sky, Regulation No. 549/2004 (2004)

    Google Scholar 

  2. Joint Planning and Development Office: Next Generation Air Traffic Control System Integrated Plan (Joint Planning and Development Office, Washington 2004)

    Google Scholar 

  3. L.R. Newcome: Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles (AIAA, Washington 2004)

    Google Scholar 

  4. J. Broelmann: The development of the gyrocompass - inventors as navigators, J. Navig. 51(2), 267–273 (1998)

    Article  Google Scholar 

  5. P.M. Fitts: Human Engineering for an Effective Air-Navigation and Traffic-Control System (National Research Council Committee on Aviation Psychology, Washington 1951)

    Google Scholar 

  6. http://mtp.jpl.nasa.gov/notes/pointing/pointing.html

  7. http://www.levelbust.com/articles/mode_s.htm

  8. N.B. Sarter, D.D. Woods: Team play with a powerful and independent agent: operational experiences and automation surprises on the Airbus A-320, Hum. Factors 39(4), 553–569 (1997)

    Article  Google Scholar 

  9. Y.J. Tenney, W.H. Rogers, R.W. Pew: Pilot opinions on high level flight deck automation issues: toward the development of a design philosophy, NASA Contract. Rep. 4669 (1995)

    Google Scholar 

  10. A. Degani, M. Shafto, A. Kirlik: Mode usage in automated cockpits: Some initial observations, Proc. Int. Fed. Automat. Control; Man–Machine Syst. (IFAC-MMS) Con. (IFAC, Boston 1995)

    Google Scholar 

  11. E. Palmer: “Oops, it didnʼt arm, A Case Study of Two Automation Surprises”, Proc. 8th Int. Symp. Aviat. Psychol., ed. by R.S. Jensen, L.A. Rakovan (Columbus 1995)

    Google Scholar 

  12. H. Sogame, P. Ladkin: Aircraft Accident Investigation (Report 96-5) (Japan Ministry of Transport, Tokyo 1996)

    Google Scholar 

  13. B.J. Carlson: Past UAV Program Failures and Implications for Current UAV Programs (Report No. AU/ACSC/037/2001-04) (Air University, Maxwell 2001)

    Google Scholar 

  14. National Transportation Safety Board: 14 CFR Part 121 Scheduled operation of Braniff Airways, Inc. (Report No. DCA68A0005) (NTSB, Washington 1968)

    Google Scholar 

  15. National Transportation Safety Board: 14 CFR Part 121 Scheduled operation of Southern Airways, Inc. (Report No. DCA77AA015) (NTSB, Washington 1977)

    Google Scholar 

  16. National Transportation Safety Board: 14 CFR Part 121 Scheduled operation of Eastern Airlines, Inc. (Report No. DCA75AZ015) (NTSB, Washington 1975)

    Google Scholar 

  17. H.T. Liu, C. Golborne, Y. Bun, M. Bartel: Surface windshear alert system, Part 1: Prototype development, J. Aircr. 35(3), 422–428 (1998)

    Article  Google Scholar 

  18. J.P. Bliss: Investigation of alarm-related accidents and incidents in aviation, Int. J. Aviat. Psychol. 13(3), 249–268 (2003)

    Article  MathSciNet  Google Scholar 

  19. R. Parasuraman, V. Riley: Humans and automation: use, misuse, disuse, abuse, Hum. Factors 39(2), 230–253 (1997)

    Article  Google Scholar 

  20. FAA: Introduction to TCAS II Version 7 (FAA, 2000)

    Google Scholar 

  21. http://humansystems.arc.nasa.gov/ihh/cdti/cdti.html

  22. D. Boorman: Todayʼs electronic checklists reduce likelihood of crew errors and help prevent mishaps, ICAO Journal 1, 17–20 (2001)

    Google Scholar 

  23. D. Boorman: Todayʼs electronic checklists reduce likelihood of crew errors and help prevent mishaps, ICAO Journal 1, 36 (2001)

    Google Scholar 

  24. A.L. Alexander, C.D. Wickens: Cockpit display of traffic information: The effects of traffic load, dimensionality, and vertical profile orientation, 45th Annu. Meet. Hum. Factors Ergon. Soc. (Santa Monica 2001)

    Google Scholar 

  25. R. Barhydt, R.J. Hansman: Experimental studies of intent information on cockpit traffic displays, J. Guid. Control Dyn. 22(4), 520–527 (1999)

    Article  Google Scholar 

  26. W.W. Johnson, V. Battiste, S. Delzell, S. Holland, S. Belcher, K. Jordan: Development and Demonstration of a Prototype Free Flight Cockpit Display of Traffic Information, Proc. SAE/AIAA World Aviat. Conf. (1997)

    Google Scholar 

  27. A.R. Pritchett, L.J. Yankosky: Simultaneous design of cockpit display of traffic information and air traffic management procedures, Proc. 19th DASC (1998)

    Google Scholar 

  28. M.G. Ballin, J. Hoekstra, D. Wing, G. Lohr: NASA Langley and NLR Research of Distributed Air/Ground Traffic Management, Proc. 1st ATIO (2002)

    Google Scholar 

  29. P. Lee, J. Mercer, L. Martin, T. Prevot, S. Shelden, S. Verma, N. Smith, V. Battiste, W. Johnson, R. Mogford, E. Palmer: Free Maneuvering, Trajectory Negotiation, and Self-Spacing Concepts in Distributed Air-Ground Traffic Management, Proc. 5th USA/Europe Air Traffic Manag. R&D Semin. (Budapest 2003)

    Google Scholar 

  30. M.W. McGreevy, S.R. Ellis: The effect of perspective geometry on judged direction in spatial information instruments, Hum. Factors 28, 439–456 (1986)

    Google Scholar 

  31. D.D. Woods: Visual momentum: A concept to improve the cognitive coupling of person and computer, Int. J. Man–Mach. Stud. 21, 229–244 (1984)

    Article  Google Scholar 

  32. O. Olmos, C.D. Wickens, A. Chudy: Tactical displays for combat awareness: An examination of dimensionality and frame of reference concepts, and the application of cognitive engineering, 9th Int. Symp. Aviat. Psychol. (Columbus 1997)

    Google Scholar 

  33. S.N. Roscoe: Aviation Psychology (Iowa State Univ. Press, Ames 1981)

    Google Scholar 

  34. J.L. Levy, D.C. Foyle, R.S. McCann: Performance benefits with scene-linked HUD symbology: An attentional phenomenon?, 52nd Annu. Meet. Hum. Factors Ergon. Soc. (Santa Monica 1998)

    Google Scholar 

  35. P.M. Ververs, C.D. Wickens: Head-up displays: effect of clutter, display intensity, and display location on pilot performance, Int. J. Aviat. Psychol. 8(4), 377–403 (1998)

    Article  Google Scholar 

  36. C.D. Wickens, T. Prevett: Exploring the dimensions of egocentricity in aircraft navigation displays, J. Exp. Psychol. Appl. 1(2), 110–135 (1995)

    Article  Google Scholar 

  37. C.M. Bjorklund, J. Alfredson, S.W.A. Dekker: Mode monitoring and call-outs: an eye-tracking study of two-crew automated flight deck operations, Int. J. Aviat. Psychol. 16(3), 263–275 (2006)

    Article  Google Scholar 

  38. J. Bredereke, A. Lankenau: Safety-relevant mode confusions – modelling and reducing them, Reliab. Eng. Syst. Saf. 88(3), 229–245 (2005)

    Article  Google Scholar 

  39. A. Degani, M. Heymann: Formal verification of human-automation interaction, Hum. Factors 44(1), 28–43 (2002)

    Article  Google Scholar 

  40. S.S. Vakil, J.R. Hansman: Approaches to mitigating complexity-driven issues in commercial autoflight systems, Reliab. Eng. Syst. Saf. 75(2), 133–145 (2002)

    Article  Google Scholar 

  41. R.L. Ennis, Y.J. Zhao: A formal approach to analysis of aircraft protected zone, Air Traffic Control Q. 12(1), 75–102 (2004)

    Google Scholar 

  42. S.J. Landry, A.R. Pritchett: Examining assumptions about pilot behavior in paired approaches, Int. Conf. Human-Comput. Interact. Aeronaut. (Cambridge 2002)

    Google Scholar 

  43. A.R. Pritchett, R.J. Hansman: Pilot non-conformance to alerting system commands during closely spaced parallel approaches, Proc. 16th DASC (1997)

    Google Scholar 

  44. T.S. Abbott, G.C. Mowen, L.H. Person Jr., G.L. Keyser Jr., K.R. Yenni, J.F. Garren Jr.: Flight investigation of cockpit-displayed traffic information utilizing coded symbology in an advanced operational environment (NASA Tech. Paper 1684) (NASA Langley Research Center, Hampton 1980)

    Google Scholar 

  45. J.K. Kuchar, L.C. Yang, C. Mit: A review of conflict detection and resolution modeling methods, Intell. Transp. Syst. IEEE Trans. 1(4), 179–189 (2000)

    Article  Google Scholar 

  46. L.F. Winder, J.K. Kuchar: Evaluation of collision avoidance maneuvers for parallel approach, J. Guid. Control Dyn. 22(6), 801–807 (1999)

    Article  Google Scholar 

  47. L.C. Yang, J.K. Kuchar: Prototype conflict alerting system for free flight, J. Guid. Control Dyn. 20(4), 768–773 (1997)

    Article  MATH  Google Scholar 

  48. C.D. Hansen, C.R. Johnson: The Visualization Handbook (Elsevier, Burlington 2005)

    Google Scholar 

  49. T. Munzner, C. Johnson, R. Moorhead, H. Pfister, P. Rheingans, T.S. Yoo: NIH-NSF visualization research challenges report summary, IEEE Comput. Graph. Appl. 26(2), 20–24 (2006)

    Article  Google Scholar 

  50. M.R. Endsley, E.O. Kiris: The out-of-the-loop performance problem and level of control in automation, Hum. Factors 37(2), 381–394 (1995)

    Article  Google Scholar 

  51. C.E. Billings: Aviation Automation: The Search for a Human-Centered Approach (Lawrence Erlbaum, Mahwah 1997)

    Google Scholar 

  52. D.B. Kaber, M.R. Endsley: The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task, Theor. Issues Ergon. Sci. 5(2), 113–153 (2004)

    Article  Google Scholar 

  53. C.A. Miller, H.B. Funk, R. Goldman, J. Meisner, P. Wu: Implications of adaptive versus adaptable UIs on decision making: Why “automated adaptiveness” is not always the right answer, Proc. 1st Int. Conf. Augment. Cogn. (Las Vegas 2005)

    Google Scholar 

  54. National Transportation Safety Board: 14 CFR Part 121 Scheduled operation of United Airlines, Inc. (Report No. DCA89MA063) (NTSB, Washington 1989)

    Google Scholar 

  55. T.B. Sheridan: Telerobotics, Automation, and Human Supervisory Control (MIT Press, Cambridge 1992)

    Google Scholar 

  56. L. Bainbridge: Ironies of automation, Automatica 19(6), 775–780 (1983)

    Article  Google Scholar 

  57. D.A. Norman: The "problem" with automation: inappropriate feedback and interaction, not "over-automation", Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. (1934–1990) 327(1241), 585–593 (1990)

    Article  Google Scholar 

  58. M.J. Adams, Y.J. Tenney, R.W. Pew: Situation awareness and the cognitive management of complex systems, Hum. Factors: J. Hum. Factors Ergon. Soc. 37(1), 85–104 (1995)

    Article  Google Scholar 

  59. M.R. Endsley, D.B. Kaber: Level of automation effects on performance, situation awareness and workload in a dynamic control task, Ergonomics 42(3), 462–492 (1999)

    Article  Google Scholar 

  60. F.I.M. Craik, E. Tulving: Depth of Processing and the Retention of Words in Episodic Memory. Cognitive Psychology: Key Readings (Psychology, New York 2004)

    Google Scholar 

  61. B. Kirwan, L.K. Ainsworth: A Guide to Task Analysis (Taylor & Francis, New York 1992)

    Google Scholar 

  62. M.R. Endsley, B. Bolté, D.G. Jones: Designing for Situation Awareness: An Approach to User-Centered Design (Taylor & Francis, London 2003)

    Google Scholar 

  63. M. Yeh, J.L. Merlo, C.D. Wickens, D.L. Brandenburg: Head up versus head down: the costs of imprecision, unreliability, and visual clutter on cue effectiveness for display signaling, Hum. Factors 45(3), 390–408 (2003)

    Article  Google Scholar 

  64. M.S. John, D.I. Manes, H.S. Smallman, B.A. Feher, J.G. Morrison: Heuristic automation for decluttering tactical displays, Proc. Hum. Factors Ergon. Soc. 48th Annu. Meet. (Human Factors and Ergonomics Society, Santa Monica 2004)

    Google Scholar 

  65. P. Kroft, C.D. Wickens: Displaying multi-domain graphical database information: An evaluation of scanning, clutter, display size, and user activity: Information design for air transport, Inf. Des. J. 11(1), 44–52 (2002)

    Google Scholar 

  66. J.W. Ruffner, M.C. Lohrenz, M.E. Trenchard: Human factors issues in advanced moving-map systems, J. Navig. 53(01), 114–123 (2000)

    Article  Google Scholar 

  67. W. Lutters, M. Ackerman: Achieving Safety: A Field Study of Boundary Objects in Aircraft Technical Support, CSCW ʼ02 (New Orleans 2002)

    Google Scholar 

  68. S.L. Star, J.R. Griesemer: Institutional ecology, ‘translations’, and boundary objects: Amateurs and professionals in Berkeleyʼs Museum of Vertebrate Soology, Soc. Stud. Sci. 19, 387–420 (1989)

    Article  Google Scholar 

  69. C.E. Shannon: Communication in the presence of noise, Proc. IEEE 72(9), 1192–1201 (1984)

    Article  Google Scholar 

  70. J.W. Senders: The human operator as a monitor and controller of multidegree of freedom systems. In: Ergonomics: Major Writings, ed. by N. Moray (Taylor & Francis, New York 2005)

    Google Scholar 

  71. N. Cowan: The magical number 4 in short-term memory: A reconsideration of mental storage capacity, Behav. Brain Sci. 6, 21–41 (2000)

    Google Scholar 

  72. G.A. Miller: The magical number seven, plus or minus two: Some limits on our capacity for processing information, Psychol. Rev. 63, 81–97 (1956)

    Article  Google Scholar 

  73. K. Koffka: Principles of Gestalt Psychology (Harcourt, Orlando 1967)

    Google Scholar 

  74. E.J. McCormick, M.S. Sanders: Human Factors in Engineering and Design (McGraw-Hill, New York 1982)

    Google Scholar 

  75. P.M. Fitts, R.E. Jones, J.L. Milton: Eye movements of aircraft pilots during instrument-landing approaches. In: Ergonomics: Major Writings, ed. by N. Moray (Taylor & Francis, New York 2005)

    Google Scholar 

  76. W.J. Horrey, C.D. Wickens, K.P. Consalus: Modeling driversʼ visual attention allocation while interacting with in-vehicle technologies, J. Exp. Psychol. Appl. 12(2), 67–78 (2006)

    Article  Google Scholar 

  77. M.A. Recarte, L.M. Nunes: Mental workload while driving: Effects on visual search, discrimination, and decision making, J. Exp. Psychol. Appl. 9(2), 119–137 (2003)

    Article  Google Scholar 

  78. E.M. Rantanen, J.H. Goldberg: The effect of mental workload on the visual field size and shape, Ergonomics 42(6), 816–834 (1999)

    Article  Google Scholar 

  79. H.Z. Tan, R. Gray, J.J. Young, R. Traylor: A haptic back display for attentional and directional cueing, Haptics-e 3(1), 1–20 (2003)

    Google Scholar 

  80. J. Rasmussen: Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models, Syst. Des. Hum. Interact. Table of Contents (1987) pp. 291–300

    Google Scholar 

  81. P.A. Hancock, G. Williams, C.M. Manning: Influence of task demand characteristics on workload and performance, Int. J. Aviat. Psychol. 5(1), 63–86 (1995)

    Article  Google Scholar 

  82. K.H. Kroemer: Avoiding cumulative trauma disorders in shops and offices, Am. Ind. Hyg. Assoc. J. 53(9), 596–604 (1992)

    Google Scholar 

  83. H.B. Kroemer: Ergonomics: How to Design for Ease and Efficiency (Prentice Hall, Englewood Cliffs 1994)

    Google Scholar 

  84. M.R. Lehto, J.R. Buck: Introduction to Human Factors and Ergonomics for Engineers (Lawrence Erlbaum, New York 2007)

    Google Scholar 

  85. H.R. Blackwell: Development and use of a quantitative method for specification of interior illuminating levels on the basis of performance data, Illum. Eng. 54, 317–353 (1959)

    Google Scholar 

  86. R.P. Hemenger: Intraocular light scatter in normal vision loss with age, Appl. Opt. 23, 1972–1974 (1984)

    Article  Google Scholar 

  87. J. Edworthy, A. Adams: Warning Design: A Research Prospective (Taylor & Francis, London 1996)

    Google Scholar 

  88. E.M. Clarke, J.M. Wing: Formal methods: state of the art and future directions, ACM Comput. Surv. (CSUR) 28(4), 626–643 (1996)

    Article  Google Scholar 

  89. J. Cheesman, J. Daniels: UML Components: A Simple Process for Specifying Component-Based Software (Addison-Wesley, Reading 2000)

    Google Scholar 

  90. J.P. Bowen, M.G. Hinchey: Seven more myths of formal methods, Softw. IEEE 12(4), 34–41 (1995)

    Article  Google Scholar 

  91. N.G. Leveson: Safeware: System Safety and Computers (Addison-Wesley, Reading 1995)

    Google Scholar 

  92. Federal Aviation Administration: Certification of Transport Airplane Mechanical Systems (AC 25-22) (FAA, Washington 2000)

    Google Scholar 

  93. A. Colozza: Initial Feasibility Assessment of a High Altitude Long Endurance Airship (Report No. NASA/CR—2003-212724) (NASA, Washington 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Landry PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Landry, S.J. (2009). Flight Deck Automation. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics