Skip to main content

Service Robots and Automation for the Disabled/Limited

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

The increasing number of elderly people is resulting in increased demand for new solutions to support self-initiative and independent life. Robotics and automation technologies, initially applied in industrial environments only, are starting to move into our everyday lives to provide support and enhance the quality of our lives. This chapter analyzes the needs of disabled or limited persons and discusses possible tasks of new assistive service robots. It further gives an overview of existing solutions available as prototypes or products. Existing technologies to assist disabled or limited persons can be grouped into stand-alone devices operated by the user explicitly such as robotic walkers, wheelchairs, guidance robots or manipulation aids, and wearable devices that are attached to the user and operated implicitly by measuring the desired limb motion of the user such as in orthoses, exoskeletons or prostheses. Two recent developments are discussed in detail as application examples: the robotic home assistant Care-O-bot and the bionic robotic arm ISELLA. One of the most important challenges for future developments is to reduce costs in order to make assistive technologies available to everybody. On the technological side, user interfaces need to be designed that allow the use of the machines even by persons who have no technical knowledge and that enable new tasks to be taught to assistive robots without much effort. Finally, safe manipulation of assistive robots among humans must be guaranteed by new sensors and corresponding safety standards.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3-D:

three-dimensional

AGV:

autonomous guided vehicle

ASIMO:

advanced step in innovation mobility

DC:

direct-current

DOF:

degrees of freedom

EAP:

electroactive polymer

ICORR:

International Conference on Rehabilitation Robotics

ICRA:

International Conference on Robotics and Automation

IPA:

intelligent parking assist

IROS:

Intelligent Robots and Systems

ISELLA:

intrinsically safe lightweight low-cost arm

MAN:

metropolitan area network

MVFH:

minimum vector field histogram

OBB:

oriented bounding box

OMNI:

office wheelchair with high manoeuvrability and navigational intelligence

PC:

personal computer

ProVAR:

professional vocational assistive robot

RA:

resolution advisory

RAID:

redundant array of independent disk

RAID:

robot to assist the integration of the disabled

RT:

radiotherapy

RT:

register transfer

SIFT:

scale-invariant feature transform

SMA:

shape-memory alloys

SVM:

support vector machine

TV:

television

References

  1. Statistisches Bundesamt Deutschland: 11. koordinierte Bevölkerungsvorausberechnung (2006) www.destatis.de (last accessed February 1, 2007)

  2. N.I. Katevas: Mobile robots in healthcare: the past, the present and the future. In: Mobile Robots in Healtcare, ed. by N.I. Katevas (IOS, Athens 2001) pp. 1–16

    Google Scholar 

  3. B. Siciliano, O. Khatib (Eds.): Springer Handbook of Robotics (Springer, Berlin, Heidelberg 2008)

    MATH  Google Scholar 

  4. H.F.M. van der Loos, D.J. Reinkensmeyer: Rehabilitation and health care robotics. In: Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  5. C. Huang, G. Wasson, M. Alwan, P. Sheth, A. Ledoux: Shared navigational control and user intent detection in an intelligent walker, Proc. AAAI Fall 2005 Symp. (EMBC) (2005)

    Google Scholar 

  6. G. Lacey, K.M. Dawson-Howe: Personal adaptive mobility aid for frail and elderly blind people, Tech. Rep. TR-CS-95-18 (Comp. Science Dept. School of Engineering, Trinity College Dublin 1995)

    Google Scholar 

  7. Y. Hirata, A. Hara, A. Muraki, K. Kosuge: Passive-type intelligent walker RT walker, Proc. IEEE Int. Conf. Robot. Autom. (Orlando 2006)

    Google Scholar 

  8. D. Rodríguez-Losada, F. Matía, A. Jiménez, R. Galán, G. Lacey: Guido, the robotic smart walker for the frail visually impaired, 1st Int. Congr. Domotics Robot. Remote Assistance All – DRT4all 2005 (Act Book, Madrid 2005) pp. 155–169

    Google Scholar 

  9. N. Nejatbakhsh, K. Kosuge: User-environment based navigation algorithm for an omnidirectional passive walking aid system, Proc. 9th Int. Conf. Rehab. Robot. (Chicago 2005)

    Google Scholar 

  10. J. Glover, D. Holstius, M. Manojlovich, K. Montgomery, A. Powers, J. Wu, S. Kiesler, J. Matthews, S. Thrun: A robotically-augmented walker for older adults, Tech. Rep. CMU-CS-03-170 (Carnegie Mellon Univ. Comp. Science Dep., Pittsburgh 2003)

    Google Scholar 

  11. H.M. Shim, E.H. Lee, J.H. Shim, S.M. Lee, S.H. Hong: Implementation of an intelligent walking assistant robot for the elderly in outdoor environment, Proc. 9th Int. Conf. Rehab. Robot. (Chicago 2005)

    Google Scholar 

  12. S. Egawa, I. Takeuchi, A. Koseki, T. Ishii: Electrically assisted walker with supporter-embedded force-sensing device. In: Advances in Rehabilitation Robotics, Lecture Notes in Control and Information Science, Vol. 306 (Springer, Berlin, Heidelberg 2004) pp. 313–322

    Chapter  Google Scholar 

  13. H. Yu, M. Spenko, S. Dubowsky: An adaptive shared control system for an intelligent mobility aid for the elderly, Auton. Robots 16(15), 53–66 (2003)

    Article  Google Scholar 

  14. A. Morris, R. Donamukkala, A. Kapuria, A. Steinfeld, J. Matthews, J. Dunbar-Jacobs, S. Thrun: A robotic walker that provides guidance, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Taipei 2003)

    Google Scholar 

  15. P. Médéric, V. Pasqui, F. Plumet, P. Bidaud: Elderly people sit to stand transfer experimental analysis, Proc. 8th Int. Conf. Climb. Walk. Robots (CLAWAR 2005) (2005) pp. 953–960

    Google Scholar 

  16. C. Bühler, H. Heck, J. Nedza, R. Wallbruchr: Evaluation of the MOBIL walking and fifting aid. In: Assistive Technology Added Value to the Quality of Life, ed. by C. Marincek, C. Bühler, H. Knops, R. Andrich (IOS, Washington 2001) pp. 210–215

    Google Scholar 

  17. O. Chuy Jr., Y. Hirata, Z. Whand, K. Kosuge: Approach in assisting a sit-to-stand movement using robotic walking support system, IEEE/RSJ Int. Conf. Intell. Robots Syst. (Beijing 2006) pp. 4343–4348

    Google Scholar 

  18. A.M. Sabatini, V. Genovese, E. Pacchierotti: A mobility aid for the support to walking and object transportation of people with motor impairments, Proc. IEEE/RSJ Intl. Conf. Int. Robots Syst. (2002)

    Google Scholar 

  19. R.A. Cooper: Intelligent control of power wheelchairs, Eng. Med. Biol. Mag. 14(4), 423–431 (1995)

    Article  Google Scholar 

  20. S.P. Levine, D.A. Bell, L.A. Jaros, R.C. Simpson, Y. Koren, J. Borenstein: The NavChair assistive wheelchair navigation system, IEEE Trans. Rehab. Eng. 7(4), 443–451 (1999)

    Article  Google Scholar 

  21. G. Bourhis, O. Horn, O. Habert, A. Pruski: An autonomous vehicle for people with motor disabilities, IEEE Robot. Autom. Mag. 8(1), 20–28 (2001)

    Article  Google Scholar 

  22. S.P. Parikh, V. Grassi Jr., V. Kumar, J. Okamoto Jr.: Incorporating user inputs in motion planning for a smart wheelchair, IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 2043–2048

    Google Scholar 

  23. E. Prassler, J. Scholz, P. Fiorini: A robotic wheelchair for crowded public environments, IEEE Robot. Autom. Mag. 8(1), 38–45 (2001)

    Article  Google Scholar 

  24. H.A. Yanco: Shared User-Computer Control of a Robotic Wheelchair System. Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge 2000)

    Google Scholar 

  25. R.A. Brooks: A Robust Layered Control System for a Mobile Robot (A.I. Memo 864, Massachusetts Institute of Technology, Artificial Intelligence Laboratory 1985)

    Google Scholar 

  26. T. Röfer, A. Lankenau: Ein Fahrassistent für ältere und behinderte Menschen, Auton. Mobile Syst. 15, 334–343 (1999), in German

    Google Scholar 

  27. G. Pires, R. Araujo, U. Nunes, A.T. de Almeida: ROBCHAIR – a powered wheelchair using a behaviour-based navigation, 5th Int. Workshop Adv. Motion Control (Coimbra 1998) pp. 536–541

    Google Scholar 

  28. D. Vanhooydonck, E. Demeester, M. Nuttin, H. Van Brussel: Shared control for intelligent wheelchairs: an implicit estimation of the user intention, ASERʼ03 1st Int. Workshop Adv. Serv. Robot. (2003) pp. 176–182

    Google Scholar 

  29. H. Hoyer: The OMNI wheelchair, Serv. Robot Int. J. 1(1), 26–29 (1995)

    Google Scholar 

  30. Toyota Motor Corporation: Robot Technology, http://www.toyota.co.jp/en/tech/robot/ (last accessed February 17, 2009)

  31. S. Shoval, I. Ulrich, J. Borenstein: NavBelt and the GuideCane, IEEE Robot. Autom. Mag. 10(1), 9–20 (2003)

    Article  Google Scholar 

  32. M. Montemerlo, J. Pineau, N. Roy, S. Thrun, V. Verma: Experiences with a mobile robotic guide for the elderly, Proc. AAAI Natl. Conf. Artif. Intell. (2002)

    Google Scholar 

  33. B. Graf, O. Barth: Entertainment robotics: examples, key technologies and perspectives, Robots in Exhibitions, Proc. Workshop WS9 (Lausanne 2002)

    Google Scholar 

  34. H.F.M. van der Loos, J.J. Wagner, N. Smaby, K.S. Chang, O. Madrigal, L.J. Leifer, O. Khatib: ProVAR assistive robot system architecture, Proc. ICRA (Detroit 1999) pp. 741–746

    Google Scholar 

  35. T. Jones: RAID – toward greater independence in the office and home environment, Proc. 6th Int. Conf. Rehab. Robot. (ICORRʼ99) (Stanford 1999)

    Google Scholar 

  36. Rehab Robotics Ltd: Handy1, http://ourworldcompuserve.com/homepages/rehabrobotics/Hand1.htm (last accessed February 17, 2009)

  37. Exact Dynamics BV: ARM: Assistent Robot Manipulator, http://www.exactdynamics.nl/ (last accessed February 17, 2009)

  38. American Honda Motor Co. Inc.: ASIMO, http://asimo.honda.com (last accessed February 17, 2009)

  39. Kawada Industries, Inc.: Humanoid Robot HRP-2 “Promet”, http://www.kawada.co.jp/global/ams/hrp_2.html (last accessed February 17, 2009)

  40. Sarcos Inc.: High-performace humanoid robot, http://www.sarcos.com/telespec.atr.html (last accessed February 17, 2009)

  41. P. Dario, E. Guglielmelli, C. Laschi, G. Teti (SSSA): MOVAID: a personal robot in everyday life of disabled and elderly people, Technol. Disabil. J. 10, 77–93 (1999)

    Google Scholar 

  42. R. Bischoff: HERMES – a humanoid experimental robot for mobile manipulation and exploration services. Video Proc, IEEE Int. Conf. Robot. Autom. ICRA ʼ01 (Seoul 2001), III–1

    Google Scholar 

  43. Universität Karlsruhe, Institut für Technische Informatik: SFB 588 Humanoide Roboter – Lernende und kooperierende multimodale Roboter, http://www.sfb588.uni-karlsruhe.de (last accessed February 17, 2009)

  44. Fraunhofer IPA: Care-O-bot, http://www.care-o-bot.de (last accessed February 17, 2009)

  45. Hitachi, Ltd.: Robotics, http://www.hitachi.com/rd/research/robotics.html (last accessed February 17, 2009)

  46. Yaskawa Electric Corporation: Yaskawa develops a service robot “SmartPal V (SmartPal Five)”. Press release November 28, 2007 http://www.yaskawa.co.jp/en/newsrelease/2007/04.htm

  47. Fujitsu Frontech Ltd.: Fujitsu Service Robot (enon), http://www.frontech.fujitsu.com/en/forjp/robot/servicerobot/ (last accessed February 17, 2009)

  48. D.H. Plettenburg: Basic requirements for upper extremity prostheses: the WILMER approach, Proc. 20th IEEE Int. Conf. Eng. Med. Biol. Soc. 5, 2276–2281 (1998)

    Google Scholar 

  49. P. Berkelman, T. Lu, J. Ma, P. Rossi: Passive orthosis linkage for locomotor rehabilitation, Proc. 10th Int. Conf. Rehab. Robot. ICORR 2007 (Noordwijk 2007) pp. 425–431

    Google Scholar 

  50. D. Odell, A. Barr, R. Goldberg, J. Chung, D. Rempel: Evaluation of a dynamic arm support for seated and standing tasks: a laboratory study of electromyography and subjective feedback, J. Ergon. 50(4), 520–535 (2007)

    Article  Google Scholar 

  51. A.H.A. Stienen, E.E.G. Hekman, F.C.T. Van der Helm, G.B. Prange, M.J.A. Jannink, A.M.M. Aalsma, H. Van der Kooij: Freebal: dedicated gravity compensation for the upper extremities, Proc. Int. Conf. Rehab. Robot. ICORR 2007 (Noordwijk 2007) pp. 804–808

    Google Scholar 

  52. A. Jackson, P. Culmer, S. Makower, M. Levesley, R. Richardson, A. Cozens, M. Mon Williams, B. Bhakta: Initial patient testing of iPAM – a robotic system for stroke rehabilitation, Proc. 10th Int. Conf. Rehab. Robot. ICORR (Noordwijk 2007)

    Google Scholar 

  53. H. Hirai, R. Ozawa, S. Goto, H. Fujigaya, S. Yamasaki, Y. Hatanaka, S. Kawamura: Development of an ankle-foot orthosis with a pneumatic passive element, Proc. 15th IEEE Int. Symp. Robot Human Interact. Commun. (RoMan 06) (2006) pp. 220–225

    Google Scholar 

  54. P. Beyl, J. Naudet, R. Van Ham, D. Lefeber: Mechanical design of an active knee orthosis for gait rehabilitation, Proc. 10th Int. Conf. Rehab. Robot. ICORR 2007 (Noordwijk 2007) pp. 100–105

    Google Scholar 

  55. Fraunhofer IPK: Rehabilitation Robotics, http://www.ipk.fraunhofer.de/rehabrobotics (last accessed February 17, 2009)

  56. D. Surdilovic, R. Bernhardt, T. Schmidt, J. Zhang: STRING-MAN: a novel wire-robot for gait rehabilitation, Advances in Rehabilitation Robotics. In: Advances in Rehabilitation Robotics, Lecture Notes in Control and Information Science, Vol. 306 (Springer, Berlin, Heidelberg 2004) pp. 413–426

    Chapter  Google Scholar 

  57. L. Luenenburger, G. Colombo, R. Riener: Biofeedback for robotic gait rehabilitation, J. NeuroEng. Rehab. 4(1), (2007), http://www.balgrist.ch/display.cfm?id=101935

  58. S.K. Banala, S.K. Agrawal, J.P. Scholz: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients, Proc. 10th Int. Conf. Rehab. Robot. ICORR 2007 (Noordwijk 2007) pp. 401–407

    Google Scholar 

  59. Berkeley Robotics and Human Engineering Laboratory: BLEEX Project, http://bleex.me.berkeley.edu/bleex.htm (last accessed February 17, 2009)

  60. University of Tsukuba, Cybernics Laboratory: Robot suit HAL (Hybrid Assistive Limb), http://sanlab.kz.tsukuba.ac.jp/english/r_hal.php (last accessed February 17, 2009)

  61. Touch Bionics Inc. and Touch EMAS Ltd.: Touchbionics, http://www.touchbionics.com (last accessed February 17, 2009)

  62. A. Kargov, C. Pylatiuk, S. Schulz, G. Bretthauer: Modularly designed lightweight anthropomorphic robot hand, Proc. IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. (Heidelberg 2006) pp. 155–159

    Google Scholar 

  63. Otto Bock HealthCare GmbH: http://www.ottobock.de (last accessed February 17, 2009)

  64. Ossur hf: POWER KNEE, http://www.ossur.com/bionictechnology/powerknee (last accessed February 17, 2009)

  65. K.B. Fite, T.J. Withrow, K.W. Wait, M. Goldfarb: Liquid-fueled actuation for an anthropomorphic upper extremity prosthesis, Proc. 28th Annual Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS ʼ06 (2006) pp. 5638–5642

    Google Scholar 

  66. S.K. Au, J. Weber, H. Herr: Biomechanical design of a powered ankle-foot prosthesis, Proc. 10th Int. Conf. Rehab. Robot. ICORR 2007 (Noordwijk 2007) pp. 298–303

    Google Scholar 

  67. F. Sup, A. Bohara, M. Goldfarb: Design and control of a powered knee and ankle prosthesis, Proc. IEEE Int. Conf. Robot. Autom. (2007) pp. 4134–4139

    Google Scholar 

  68. R.D. Schraft, C. Schaeffer, T. May: The concept of a system for assisting elderly or disabled persons in home environments, Proc. 24th IEEE Int. Conf. Ind. Electron. Control Instrum. (IECON), Vol. 4 (Aachen 1998)

    Google Scholar 

  69. B. Graf, M. Hans, R.D. Schraft: Care-O-bot II – development of a next generation robotic home assistant, Auton. Robots 16(2), 193–205 (2004)

    Article  Google Scholar 

  70. M. Hans, B. Graf, R.D. Schraft: Robotic home assistant Care-O-bot: past-present-future, Proc. IEEE Int. Workshop Robot Human Interact. Commun. (RoMan) (Paris 2001) pp. 407–411

    Google Scholar 

  71. B. Graf: Dependability of mobile robots in direct interaction with humans. In: Advances in Human-Robot Interaction, Springer Tracts in Advanced Robotics, Vol. 14 (Springer, Berlin, Heidelberg 2005) pp. 223–239

    Google Scholar 

  72. J.-C. Latombe: Robot Motion Planning (Kluwer Academic, Boston 1996)

    Google Scholar 

  73. T. Oggier, M. Lehmann, R. Kaufmann, M. Schweizer, M. Richter, P. Metzler, G. Lang, F. Lustenberger, N. Blanc: An all-solid-state optical range camera for 3-D real-time imaging with sub-centimeter depth resolution SwissRangerTM, Proc. SPIE 5249, 534–545 (2003)

    Article  Google Scholar 

  74. M. Pontil, A. Verri: Support vector machines for 3-D object recognition, IEEE Trans. Pattern Anal. Mach. Intell. 20(6), 637–646 (1998)

    Article  Google Scholar 

  75. J. Kubacki, W. Baum: Towards open-ended 3-D rotation and shift invariant object detection for robot companions, Proc. IEEE/RSJ Int. Conf. (IEEE, Piscataway 2006) pp. 3352–3357

    Google Scholar 

  76. B. Rohrmoser, C. Parlitz: Implementation of a path-planning algorithm for a robot arm, Robotik 2002: Leistungsstand, Anwendungen, Visionen, Trends (Ludwigsburg 2002), ed. by R. Dillmann et al., VDI/VDE-Gesellschaft Meß- und Automatisierungstechnik (GMA) (VDI Düsseldorf 2002) VDI Rep. 1679, pp. 59–64

    Google Scholar 

  77. C. Parlitz, W. Baum, U. Reiser, M. Hägele: Intuitive human–machine interaction and implementation on an household robot companion. In: Human Interface and the Management of Information. Methods, Techniques and Tools in Information Design, Lecture Notes in Computer Science, Vol. 4557 (Springer, Berlin, Heidelberg 2007) pp. 922–929

    Chapter  Google Scholar 

  78. B. Graf, R.D. Schraft: Behavior-based path modification for shared control of robotic walking aids, 10th Int. Conf. Rehab. Robot. (Piscataway IEEE, Noordwijk 2007) pp. 317–322

    Google Scholar 

  79. C. Cocaud, A. Jnifene: Analysis of a two DOF anthropomorphic arm driven by artificial muscles, Proc. 2nd IEEE Int. Workshop Haptic Audio Vis. Env. Appl. (HAVE 2003) pp. 20–21

    Google Scholar 

  80. J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, I.W. Hunter: Artificial muscle technology: physical principles and naval prospects, IEEE J. Ocean. Eng. 29(3), 706–728 (2004)

    Article  Google Scholar 

  81. V. Nickel, J. Perry, A. Garrett: Development of useful function in the seveerely paralyzed hand, J. Bone Jt. Surg. 45A(5), 933–952 (1963)

    Google Scholar 

  82. I. Boblan, R. Bannasch, H. Schwenk, F. Prietzel, L. Miertsch, A. Schultz: A human-like robot hand and arm with fluidic muscles: biologically inspired construction and functionality. In: Embodied Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 3139 (Springer, Berlin, Heidelberg 2004) pp. 160–179

    Chapter  Google Scholar 

  83. Festo AG: Brochure Airacuda (Festo, Esslingen 2006), www.festo.com

    Google Scholar 

  84. C. Pfeiffer, K. DeLaurentis, C. Mavroidis: Shape memory alloy actuated robot prostheses: initial experiments, Proc. IEEE Int. Conf. Robot. Autom., Vol. 3 (1999) pp. 2385–2391

    Google Scholar 

  85. S. Arora, T. Gosh, J. Muth: Dielectric elastomer based prototype fiber actuators, Sens. Actuators A: Phys. 136(1), 321–328 (2006)

    Article  Google Scholar 

  86. H.R. Choi, K. Jung, S. Ryew, J.D. Nam, J.C. Koo, J. Jeon, K. Tanie: Biomimetic soft actuator: design, modeling, control, and applications, IEEE/ASME Trans. Mechatron. 10(5), 581–593 (2005)

    Article  Google Scholar 

  87. K. Takagi, M. Yamamura, Z.W. Luo, M. Onishi, S. Hirano, K. Asaka, Y. Hayakawa: Development of a Rajiform swimming robot using ionic polymer artificial muscles, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2006) pp. 1861–1866

    Google Scholar 

  88. T. Niino, S. Egawa, H. Kimura, T. Higuchi: Electrostatic artificial muscle: compact, high-power linear actuators with multiplelayer structures, Proc. IEEE Workshop Micro Electro Mechan. Syst. (1994)

    Google Scholar 

  89. K. Takemura, S. Yokota, K. Edamura: A micro artificial muscle actuator using electro-conjugate fluid, Proc. IEEE Int. Conf. (2005)

    Google Scholar 

  90. H. Staab, A. Sonnenburg: Studies and guidelines on the design of the DOHELIX technical muscle. In: Robotics and Applications, IRA 2007, 13th IASTED Int. Conf. (Würzburg 2007) (ACTA Press, Calgary 2007)

    Google Scholar 

  91. H. Staab, A. Sonnenburg, C. Hieger: The DOHELIX-muscle: a novel technical muscle for bionic robots and actuating drive applications, Autom. Sci. Eng. 3rd IEEE Conf. (Scottsdale 2007) pp. 306–311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Birgit Graf PhD or Harald Staab Dr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graf, B., Staab, H. (2009). Service Robots and Automation for the Disabled/Limited. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics