Skip to main content

Automatic Recognition of Cells (ARC) for 3D Images of C. elegans

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4955))

Abstract

The development of high-resolution microscopy makes possible the high-throughput screening of cellular information, such as gene expression at single cell resolution. One of the critical enabling techniques yet to be developed is the automatic recognition or annotation of specific cells in a 3D image stack. In this paper, we present a novel graph-based algorithm, ARC, that determines cell identities in a 3D confocal image of C. elegans based on their highly stereotyped arrangement. This is an essential step in our work on gene expression analysis of C. elegans at the resolution of single cells. Our ARC method integrates both the absolute and relative spatial locations of cells in a C. elegans body. It uses a marker-guided, spatially-constrained, two-stage bipartite matching to find the optimal match between cells in a subject image and cells in 15 template images that have been manually annotated and vetted. We applied ARC to the recognition of cells in 3D confocal images of the first larval stage (L1) of C. elegans hermaphrodites, and achieved an average accuracy of 94.91%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riddle, D., Blumenhal, T., Meyer, B., Priess, J.R.: C. Elegans II. Cold Spring Harbor Laboratory Press, New York (1997)

    Google Scholar 

  2. Long, F., Peng, H., Liu, X., Kim, S., Myers, E.W.: A 3D digital cell atlas for the first larval stage of C. elegans hermaphrodite, HHMI JFRC Technical Report (2007), (Also Appear on 2007 Int. Conference of C. elegans)

    Google Scholar 

  3. Peng, H., Long, F., Liu, X., Kim, S., Myers, E.: Straightening C.elegans Images. Bioinformatics 24(2), 234-242 (2008)

    Google Scholar 

  4. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years of Graph Matching in Pattern Recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)

    Article  Google Scholar 

  5. Ullman, J.R.: An Algorithm for Subgraph Isomorphism. J. Assoc. Comput. Mach. 23, 31–42 (1976)

    MathSciNet  MATH  Google Scholar 

  6. Llados, J., Marti, E., Villanueva, J.J.: Symbol Recognition by Error-Tolerant Sub-Graph Matching Between Region Adjacency Graphs. IEEE Trans. Patt. Anal. Mach. Intell. 23, 1137–1143 (2001)

    Article  Google Scholar 

  7. Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching. IEEE Trans Patt. Anal. Mach. Intell. 18, 377–388 (1996)

    Article  Google Scholar 

  8. Christmas, W.J., Kittler, J., Petrou, M.: Structural Matching in Computer Vision Using Probabilistic Relaxation. IEEE Trans. Patt. Anal. Mach. Intell. 17(8), 749–764 (1995)

    Article  Google Scholar 

  9. Umeyama, S.: An Eigendecomposition Approach to Weighted Graph Matching Problems. IEEE Trans. Patt. Anal. Mach. Intell. 10, 695–703 (1988)

    Article  MATH  Google Scholar 

  10. Wilson, R.C., Hancock, E.R.: Structural Matching by Discrete Relaxation. IEEE Trans. Patt. Anal. Mach. Intell. 19, 634–648 (1997)

    Article  Google Scholar 

  11. Kotropoulos, C., Tefas, A., Pitas, I.: Frontal Face Authentication Using Morphological Elastic Graph Matching. IEEE Trans. Imag. Process. 9, 555–560 (2000)

    Article  Google Scholar 

  12. Chen, H.T., Lin, H., Liu, T.L.: Multi-object Tracking Using Dynamical Graph Matching. In: Proc. 2001 IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition, pp. 210–217 (2001)

    Google Scholar 

  13. Berretti, S., Del Bimbo, A., Vicario, E.: Efficient Matching and Indexing of Graph Models in Content-based Retrieval. IEEE Trans. Patt. Anal. Mach. Intell. 23, 1089–1105 (2001)

    Article  Google Scholar 

  14. Ton, J., Jain, A.K.: Registering Landsat Images by Point Matching. IEEE Trans. Geoscience and Remote Sensing 27(5), 642–651 (1989)

    Article  Google Scholar 

  15. Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Long, F., Peng, H., Liu, X., Kim, S., Myers, G. (2008). Automatic Recognition of Cells (ARC) for 3D Images of C. elegans . In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics