Skip to main content

Protein Function Prediction Based on Patterns in Biological Networks

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4955))

Abstract

In this paper, we propose a pattern-based protein function annotation framework, employing protein interaction networks, to predict annotation functions of proteins. More specifically, we first detect patterns that appear in the neighborhood of proteins with a particular functionality, and then transfer annotations between two proteins only if they have similar annotation patterns. We show that, in comparison with other techniques, our approach predicts protein annotations more effectively. Our technique (a) produces the highest prediction accuracy of 70-80% precision and recall for different organism specific datasets, and (b) is robust to false positives in protein interaction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bader, G.D., Hogue, C.W.: Analyzing yeast protein–protein interaction data obtained from different sources. Nat. Biotechnol. 20, 991–997 (2002)

    Google Scholar 

  • Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

    Google Scholar 

  • Brohée, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488 (2006)

    Google Scholar 

  • Berg, J., Lässig, M.: Local graph alignment and motif search in biological networks. PNAS 101, 14689–14694 (2004)

    Google Scholar 

  • Berg, J., Lässig, M.: Cross-species analysis of biological networks by Bayesian alignment. PNAS 103, 10967–10972 (2006)

    Google Scholar 

  • Blatt, M., Wiseman, S., Domany, E.: Superparamagnetic clustering of data. Phys. Rev. Lett. 76(18), 3251–3254 (1996)

    Google Scholar 

  • Cakmak, A., Kirac, M., Reynolds, M.R., Ozsoyoglu, Z.M., Ozsoyoglu, G.: Gene Ontology-Based Annotation Analysis and Categorization of Metabolic Pathways. SSDBM 33 (2007)

    Google Scholar 

  • Couto, F., Silva, M., Coutinho, P.: Measuring Semantic Similarity between Gene Ontology Terms. DKE 61, 137–152 (2007)

    Google Scholar 

  • Chua, H.N., Sung, W.K., Wong, L.: Using indirect protein interactions for the prediction of Gene Ontology functions. BMC Bioinformatics 8(Suppl 4), 8 (2007)

    Google Scholar 

  • Van Dongen, S.: Graph clustering by flow simulation. PhD thesis Centers for mathematics and computer science (CWI), University of Utrecht (2000)

    Google Scholar 

  • Deng, M., Tu, Z., Sun, F., Chen, T.: Mapping gene ontology to proteins based on protein–protein interaction data. Bioinformatics 20, 895–902 (2004)

    Google Scholar 

  • Friedberg, I.: Automated protein function prediction—the genomic challenge. Briefings in Bioinformatics 7(3), 225–242 (2006)

    Google Scholar 

  • Consortium, Gene Ontology: The GO database and informatics resource. Nucleic Acids Res, 32, D258-D261 (2004)

    Google Scholar 

  • Gene Ontology Annotations Database, http://www.geneontology.org/GO.current.annotations.shtml

  • Goldberg, D.S., Roth, F.: Assessing experimentally derived interactions in a small world. PNAS 100(8), 4372–4376 (2003)

    Google Scholar 

  • Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast 18, 523–531 (2001)

    Google Scholar 

  • Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21(Suppl 1), i213–i221 (2005)

    Google Scholar 

  • King, O.D., Foulger, R.E., Dwight, S.S., White, J.V., Roth, F.P.: Predicting gene function from patterns of annotation. Genome Res 13(5), 896–904 (2003)

    Google Scholar 

  • Kitano, H.: Biological Robustness. Nat Genet 5, 826–838 (2004)

    Google Scholar 

  • Kashima, H., Inokuchi, A.: Kernels for Graph Classification. In: ICDM 2002 (AM-2002) (2002)

    Google Scholar 

  • Koyutürk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics 20(Suppl 1), i200–i207 (2004)

    Google Scholar 

  • Kirac, M., Ozsoyoglu, G., Yang, J.: Annotating proteins by mining protein interaction networks. Bioinformatics 22, e260–e270 (2006)

    Google Scholar 

  • King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)

    Google Scholar 

  • Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M.: A Probabilistic Functional Network of Yeast Genes. Science 306(5701), 1555–1558 (2004)

    Google Scholar 

  • Letovsky, S., Kasif, S.: Predicting protein function from protein–protein interaction data: a probabilistic approach. Bioinformatics 19, i197–i204 (2003)

    Google Scholar 

  • Lee, et al.: Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)

    Google Scholar 

  • von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002)

    Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 824–827 (2002)

    Google Scholar 

  • Nabieva, E., Jim, K., Agarwal, A., Chazelle, B.: Whole-proteome prediction of protein function via graphtheoretic analysis of interaction maps. Bioinformatics 21(Suppl. 1), i302–i310 (2005)

    Google Scholar 

  • Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet. 31, 64–68 (2002)

    Google Scholar 

  • Pandey, J., Koyuturk, M., Kim, Y., Szpankowski, W., Subramaniam, S., Grama, A.: Functional annotation of regulatory pathways. Bioinformatics 23(13), i377–i386 (2007)

    Google Scholar 

  • Rost, B.: Enzyme function less conserved than anticipated. J Mol. Biol. 318, 595–608 (2002)

    Google Scholar 

  • Ronald, C.R., Corneil, D.G.: The graph isomorphism disease. Journal of Graph Theory 1(4), 339–363 (1977)

    Google Scholar 

  • Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)

    Google Scholar 

  • Shaw, W.M.J., Burgin, R., Howell, P.: Performance standards and evaluations in IR test collections: Vector-space and other retrieval models. Info Proc. Manag. 33(1), 15–36 (1997)

    Google Scholar 

  • Saccharomyces Genome Database (SGD), http://www.yeastgenome.org/

  • Samanta, M.P., Liang, S.: Predicting protein functions from redundancies in large-scale protein interaction networks. PNAS 100, 12579–12583 (2003)

    Google Scholar 

  • Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R., Ideker, T.: Conserved patterns of protein interaction in multiple species. PNAS 102, 1974–1979 (2005)

    Google Scholar 

  • Saito, R., Suzuki, H., Hayashizaki, Y.: Construction of reliable protein–protein interaction networks with a new interaction generality measure. Bioinformatics 19(6), 756–763 (2003)

    Google Scholar 

  • Schwikowski, B., Uetz, P., Fields, S.: A network of protein–protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261 (2000)

    Google Scholar 

  • Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. Sys. Bio. 3, 88 (2007)

    Google Scholar 

  • Troyanskaya, O.G., Dolinski, K., Owen, A.B., Altman, R.B., Botstein, D.: A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). PNAS 100(14), 8348–8353 (2003)

    Google Scholar 

  • Tong, et al.: Global Mapping of the Yeast Genetic Interaction Network. Science 303(5659), 808–813 (2004)

    Google Scholar 

  • Tian, W., Skolnick, J.: How well is enzyme function conserved as a function of pairwise sequence identity? J Mol. Biol. 333, 863–882 (2003)

    Google Scholar 

  • Valencia, A.: Automatic annotation of protein function. Curr. Opin. Struct. Biol. 15, 267–274 (2005)

    Google Scholar 

  • Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein–protein interaction networks. Nat. Biotechnol. 21, 697–700 (2003)

    Google Scholar 

  • Wagner, A.: The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes. Mol. Biol. Evol. 18(7), 1283–1292 (2001)

    Google Scholar 

  • Weskamp, N., Hüllermeier, E., Kuhn, D., Klebe, G.: Multiple graph alignment for the structural analysis of protein active sites. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(2), 310–320 (2007)

    Google Scholar 

  • Yu, H., Luscombe, N.M., Lu, H.X., Zhu, X., Xia, Y., Han, J.J., Bertin, N., Chung, S., Vidal, M., Gerstein, M.: Annotation Transfer Between Genomes: Protein–Protein Interologs and Protein–DNA Regulogs. Genome Res. 14, 1107–1118 (2004)

    Google Scholar 

  • Zhao, X., Chen, L., Aihara, K.: Gene Function Prediction with the Shortest Path in Functional Linkage Graph. OSB, 68–74 (2007)

    Google Scholar 

  • Zhou, X., Kao, M.C.J., Wong, W.H.: From the Cover: Transitive functional annotation by shortest-path analysis of gene expression data. PNAS 99, 12783–12788 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirac, M., Ozsoyoglu, G. (2008). Protein Function Prediction Based on Patterns in Biological Networks. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics