Skip to main content

High-Resolution Modeling of Cellular Signaling Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4955))

Abstract

A central challenge in systems biology is the reconstruction of biological networks from high-throughput data sets. A particularly difficult case of this is the inference of dynamic cellular signaling networks. Within signaling networks, a common motif is that of many activators and inhibitors acting upon a small set of substrates. Here we present a novel technique for high-resolution inference of signaling networks from perturbation data based on parameterized modeling of biochemical rates. We also introduce a powerful new signal-processing method for reduction of batch effects in microarray data. We demonstrate the efficacy of these techniques on data from experiments we performed on the Drosophila Rho-signaling network, correctly identifying many known features of the network. In comparison to existing techniques, we are able to provide significantly improved prediction of signaling networks on simulated data, and higher robustness to the noise inherent in all high-throughput experiments. While previous methods have been effective at inferring biological networks in broad statistical strokes, this work takes the further step of modeling both specific interactions and correlations in the background to increase the resolution. The generality of our techniques should allow them to be applied to a wide variety of networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedman, A., Perrimon, N.: Genetic screening for signal transduction in the era of network biology. Cell 128, 225–231 (2007)

    Article  Google Scholar 

  2. Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A.M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., Friend, S.H.: Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000)

    Article  Google Scholar 

  3. Sahai, E., Marshall, C.J.: Rho-gtpases and cancer. Nat. Rev. Cancer 2(2), 133–142 (2002)

    Article  Google Scholar 

  4. Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118(21), 4947–4957 (2005)

    Article  Google Scholar 

  5. Csete, M., Doyle, J.: Bow ties, metabolism and disease. Trends in Biotechnology 22(9), 446–450 (2004)

    Article  Google Scholar 

  6. Michiels, F., Habets, G.G.M., Stam, J.C., van der Kammen, R.A., Collard, J.G.: A role for rac in tiaml-induced membrane ruffling and invasion. Nature 375, 338–340 (1995)

    Article  Google Scholar 

  7. Fields, S., Song, O.-K.: A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989)

    Article  Google Scholar 

  8. Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y.L., Ooi, C.E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C.A., Finley, R.L.: A protein interaction map of drosophila melanogaster. Science 302(5651), 1727–1736 (2003)

    Article  Google Scholar 

  9. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303(5659), 799–805 (2004)

    Article  Google Scholar 

  10. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)

    Article  Google Scholar 

  11. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. of Computational Biology 7(3-4), 601–620 (2000)

    Article  Google Scholar 

  12. Peõer, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks from perturbed expression profiles. Bioinformatics 17, S214–S224 (2001)

    Article  Google Scholar 

  13. Li, C., Suzuki, S., Ge, Q.-W., Nakata, M., Matsuno, H., Miyano, S.: Structural modeling and analysis of signaling pathways based on petri nets. J. Bioinformatics and Computational Biology 4(5), 1119–1140 (2006)

    Article  Google Scholar 

  14. Nachman, I., Regev, A., Friedman, N.: Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20(suppl. 1), i248–i256 (2004)

    Article  Google Scholar 

  15. Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Nemenman, I., Califano, A.: Reverse engineering cellular networks. Nature Protocols 1, 662–671 (2006)

    Article  Google Scholar 

  16. Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.: Reverse engineering of regulatory networks in human B cells. Nature Genetics 37(4), 382–390 (2005)

    Article  Google Scholar 

  17. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  18. Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.-P., Subramanian, A., Ross, K.N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S.A., Haggarty, S.J., Clemons, P.A., Wei, R., Carr, S.A., Lander, E.S., Golub, T.R.: The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science 313(5795), 1929–1935 (2006)

    Article  Google Scholar 

  19. Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., Pistell, P.J., Poosala, S., Becker, K.G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K.W., Spencer, R.G., Lakatta, E.G., Couteur, D.L., Shaw, R.J., Navas, P., Puigserver, P., Ingram, D.K., de Cabo, R., Sinclair, D.A.: Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117), 337–342 (2006)

    Article  Google Scholar 

  20. Michaelis, L., Menten, M.: Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369 (1913)

    Google Scholar 

  21. Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 339–339 (1925)

    Google Scholar 

  22. Borup, R., Zhao, P., Nagaraju, K., Bakay, E.P.H.M., Chen, Y.-W.: Sources of variability and effect of experimental approach on expression profiling data interpretation. BMC Bioinformatics 3(4) (2002)

    Google Scholar 

  23. Larkin, J.E., Frank, B.C., Gavras, H., Sultana, R., Quackenbush, J.: Independence and reproducibility across microarray platforms. Nature Methods 2(5), 337–344 (2005)

    Article  Google Scholar 

  24. Coleman, T., Li, Y.: An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization 6, 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. The Mathworks: Optimization toolbox 3.1.2 (2007), http://www.mathworks.com/products/optimization/

  26. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Amer. Stat. Assoc. 74, 829–836 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Macqueen, J.B.: Some methods of classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathemtical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  28. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sone, M., Hoshino, M., Suzuki, E., Kuroda, S., Kaibuchi, K., Nakagoshi, H., Saigo, K., Nabeshima, Y.-i., Hama, C.: Still life, a protein in synaptic terminals of drosophila homologous to gdp-gtp exchangers. Science 275(5299), 543–547 (1997)

    Article  Google Scholar 

  31. Newsome, T.P., Schmidt, S., Dietzl, G., Keleman, K., Asling, B., Debant, A., Dickson, B.J.: Trio combines with dock to regulate pak activity during photoreceptor axon pathfinding in drosophila. Cell 101(3), 283–294 (2000)

    Article  Google Scholar 

  32. Billuart, P., Winter, C.G., Maresh, A., Zhao, X., Luo, L.: Regulating axon branch stability: the role of p190 rhogap in repressing a retraction signaling pathway (2001)

    Google Scholar 

  33. Bashaw, G.J., Hu, H., Nobes, C.D., Goodman, C.S.: A novel dbl family rhogef promotes rho-dependent axon attraction to the central nervous system midline in drosophila and overcomes robo repulsion (2001)

    Google Scholar 

  34. Gonzalez, C.: Cell division: The place and time of cytokinesis. Current Biology 13(9), R363–R365 (2003)

    Article  Google Scholar 

  35. Rossman, K.L., Der, C.J., Sondek, J.: Gef means go: turning on rho gtpases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6(2), 167–180 (2005)

    Article  Google Scholar 

  36. Hu, H., Li, M., Labrador, J.P., McEwen, J., Lai, E.C., Goodman, C.S., Bashaw, G.J.: Cross gtpase-activating protein (crossgap)/vilse links the roundabout receptor to rac to regulate midline repulsion (2005)

    Google Scholar 

  37. Nahm, M., Lee, M., Baek, S.-H., Yoon, J.-H., Kim, H.-H., Lee, Z.H., Lee, S.: Drosophila rhogef4 encodes a novel rhoa-specific guanine exchange factor that is highly expressed in the embryonic central nervous system. Gene 384, 139–144 (2006)

    Article  Google Scholar 

  38. Reid, T., Bathoorn, A., Ahmadian, M.R., Collard, J.G.: Identification and characterization of hpem-2, a guanine nucleotide exchange factor specific for cdc42. J. Biol. Chem. 274(47), 33587–33593 (1999)

    Article  Google Scholar 

  39. Shamah, S.M., Lin, M.Z., Goldberg, J.L., Estrach, S., Sahin, M., Hu, L., Bazalakova, M., Neve, R.L., Corfas, G., Debant, A., Greenberg, M.E.: Epha receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105(2), 233–244 (2001)

    Article  Google Scholar 

  40. Hall, C., Michael, G.J., Cann, N., Ferrari, G., Teo, M., Jacobs, T., Monfries, C., Lim, L.: alpha2-chimaerin, a cdc42/rac1 regulator, is selectively expressed in the rat embryonic nervous system and is involved in neuritogenesis in n1e-115 neuroblastoma cells (2001)

    Google Scholar 

  41. Niu, J., Profirovic, J., Pan, H., Vaiskunaite, R., Voyno-Yasenetskaya, T.: G protein βγ subunits stimulate p114rhogef, a guanine nucleotide exchange factor for rhoa and rac1: Regulation of cell shape and reactive oxygen species production. Circ. Res. 93(9), 848–856 (2003)

    Article  Google Scholar 

  42. Nagata, K.-I., Inagaki, M.: Cytoskeletal modification of rho guanine nucleotide exchange factor activity: identification of a rho guanine nucleotide exchange factor as a binding partner for sept9b, a mammalian septin. Oncogene 24(1), 65–76 (2004)

    Article  Google Scholar 

  43. Wells, C.D., Fawcett, J.P., Traweger, A., Yamanaka, Y., Goudreault, M., Elder, K., Kulkarni, S., Gish, G., Virag, C., Lim, C., Colwill, K., Starostine, A., Metalnikov, P., Pawson, T.: A rich1/amot complex regulates the cdc42 gtpase and apical-polarity proteins in epithelial cells. cell 125(3), 535–548 (2006)

    Article  Google Scholar 

  44. Cho, Y.J., Cunnick, J.M., Yi, S.J., Kaartinen, V., Groffen, J., Heisterkamp, N.: Abr and bcr, two homologous rac gtpase-activating proteins, control multiple cellular functions of murine macrophages (2007)

    Google Scholar 

  45. Dalva, M.B.: There’s more than one way to skin a chimaerin (2007)

    Google Scholar 

  46. Mitin, N., Betts, L., Yohe, M.E., Der, C.J., Sondek, J., Rossman, K.L.: Release of autoinhibition of asef by apc leads to cdc42 activation and tumor suppression. Nat. Struct. Mol. Biol. 14(9), 814–823 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baym, M., Bakal, C., Perrimon, N., Berger, B. (2008). High-Resolution Modeling of Cellular Signaling Networks. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics