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Abstract. In this paper we want to investigate two notions of the car-
dinality of relations in the context of allegories. The different axiom sys-
tems are motivated on the existence of injective and surjective functions,
respectively. In both cases we provide a canonical cardinality function
and show that it is initial in the category of all cardinality functions over
the given allegory.

1 Introduction

The calculus relations, and its categorical versions in particular, are often used
to model programming languages, classical and non-classical logics and different
methods of data mining (see for example [1–3, 7, 8]). In certain applications the
cardinality of those relations is of interest. For example, finite trees can be char-
acterized as those connected graphs satisfying the numerical equation e = n− 1
relating the number of edges e and vertices n. Since graphs can be considered
as binary relation an abstract formulation of the property above in the theory
of allegories needs a notion of cardinality.

In this paper we want to investigate two notions of the cardinality of relations
in the context of allegories. The first notion is motivated by the standard cardinal
(pre)ordering of sets, i.e. a set A is smaller than a set B if there is an injective
function from A to B. The second notion will be based on surjective function,
i.e. we consider a set A smaller than a set B if there is a surjective function from
B to A. Ignoring the empty set, the two notions are equivalent in regular set
theory with the axiom of choice. Since the theory of allegories is much weaker
we cannot expect such a result in general.

In both cases we provide a canonical cardinality function and show that it is
initial in the category of all cardinality functions over the given allegory. Last but
not least, we give an additional axiom characterizing the canonical cardinality
function (up to isomorphism).
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2 Categories of Relations

Given a category C we denote its collection of objects by ObjC and its collection
of morphisms by MorC . To indicate that a morphism f has source A and target
B we usually write f : A → B. The collection of all morphisms between A and
B is denoted by C[A,B]. We use ; for composition of morphisms, which has to
be read from left to right, i.e. f ; g means first f then g. The identity morphism
on the object A is written as IA.

Definition 1. An allegory R is a category satisfying the following:

1. For all objects A and B the class R[A,B] is a lower semi-lattice. Meet and the
induced ordering are denoted by u,v,respectively. The elements in R[A,B]
are called relations.

2. There is a monotone operation ` (called the converse operation) such that
for all relations Q,R : A → B and S : B → C the following holds

(Q; S)` = S`;Q` and (Q`)
`

= Q.

3. For all relations Q : A → B, R,S : B → C we have Q; (RuS) v Q; RuQ;S.
4. For all relations Q : A → B, R : B → C and S : A → C the following

modular law holds Q; R u S v Q; (R uQ`; S).

A relation R : A → B is called univalent (or a partial function) iff R`; R v IB
and total iff IA v R; R`. Functions are total and univalent relations and are usu-
ally denoted by lower letters. Furthermore, R is called injective iff R` is univalent
and surjective iff R` is total. In the following lemma we have summarized several
basic properties of relations used in this paper. A proof can be found in [4, 7, 8].

Lemma 1. Let R be an allegory. Then we have:

1. Q; RuS v (QuS;R`); (RuQ`;S) for all relations Q : A → B,R : B → C
and S : A → C (Dedekind formula);

2. If Q : A → B is univalent, then Q; (R u S) = Q; R u Q;S for all relations
R, S : B → C;

3. If R : B → C is univalent, then Q; R u S = (Q u S;R`); R for all relations
Q : A → B and S : A → C.

Another important property of commuting squares of function is as follows:

Lemma 2. Let R be an allegory, and f : A → B, g : A → C, h : B → D and
k : C → D be function with f`; g = h; k`. Then we have f ;h = g; k.

Proof. Consider the following computation

f ; h v g; g`; f ;h g total

= g; k;h`;h assumption
v g; k h univalent

v f ; f`; g; k f total

= f ; h; k`; k assumption
v f ; h. k univalent



This completes the proof. ut
Two functions f : C → A and g : C → B with common source are said

to tabulate a relation R : A → B iff R = f`; g and f ; f` u g; g` = IC . If
for all relations of an allegory R there is tabulation, then R is called tabular.
Notice that a function f : A → B and its converse f` : B → A always have a
tabulation. The tabulation is given by (IA, f) and (f, IB), respectively.

Lemma 3. Let R be an allegory, and R : A → B a relation that is tabulated
by f : C → A and g : C → B. Furthermore, let h : D → A and k : D → B be
functions with h`; k v R, and define l := h; f` u k; g` : D → C. Then we have
the following:

1. l is the unique function with h = l; f and k = l; g.
2. If h`; k = R, then l is surjective.
3. If h : D → A and k : D → B is a tabulation, i.e. h; h` u k; k` = ID, then l

is injective.
4. If R is a partial identity, i.e. A = B and R v IA, then f (or g) is a tabulation

of R, i.e. R = f`; f and f ; f` = IC .

Proof. 1. This was already shown in 2.143 of [4].
2. Assume h`; k = R. Then we have

IC = IC u f ; f`; g; g` f, g total

= IC u f ; h`; k; g` assumption

v (f ; h` u g; k`); (h; f` u k; g`) Lemma 1(1)

= l`; l.

3. Assume h; h` u k; k` = ID. Then we have

l; l` = (h; f` u k; g`); (f ; h` u g; k`)

v h; f`; f ; h` u k; g`; g; k`

v h;h` u k; k` f, g univalent
= ID. assumption

4. This was already shown in 2.145 of [4]. ut
The previous lemma also implies that tabulations are unique up to isomor-

phism.
The next lemma is concerned with a tabulation of the meet of two relations.

Lemma 4. Let R be an allegory, and Qi : A → B be relations tabulated by
fi : Ci → A and gi : C → B for i = 1, 2. If f : D → A and g : D → B is a
tabulation of Q1 u Q2, then there are unique injections hi : D → Ci (i = 1, 2)
satisfying the following:

1. hi; fi = f and hi; gi = g;



2. If there are functions ki : E → C with k1; f1 = k2; f2 and k1; g1 = k2; g2,
then there is a unique function m : E → D with ki = m; hi (i = 1, 2).

A
Qi // B

Ci

fi

``@@@@@@@ gi

>>~~~~~~~

D

hi

OOf

PP

g

MM

E

m

OO ki

]]

Proof. From Lemma 3 (1) and (3) we get hi = f ; f`
i u gi; g

`
i . It just remains

to verify the second property. Assume ki : E → C are as required, and let
p := k1; f1 = k2; f2 and q := k1; g1 = k2; g2. Then we have

p`; q = p`; q u p`; q

= (k1; f1)
`; k1; g1 u (k2; f2)

`; k2; g2 by definition

= f`
1 ; k`

1 ; k1; g1 u f`
2 ; k`

2 ; k2; g2

v f`
1 ; g1 u f`

1 ; g1 ki univalent
= Q1 uQ2.

Since f, g is a tabulation of Q1 u Q2 there is a unique function m : E → D
with m; f = p and m; g = q. We conclude m;hi; fi = m; f = p = ki; fi and
m; hi; gi = m; g = q = ki; gi for = 1, 2. This implies

m; hi = m; hi; (fi; f
`
i u gi; g

`
i ) fi, gi is a tabulation

= m; hi; fi; f
`
i um; hi; gi; g

`
i Lemma 1(2)

= ki; fi; f
`
i u ki; gi; g

`
i see above

= ki; (fi; f
`
i u gi; g

`
i ) Lemma 1(2)

= ki. fi, gi is a tabulation

Suppose n : E → D is another function with n; hi = ki. Then n; f = n;hi; fi =
ki; fi = p and n; g = n;hi; gi = ki; gi = q so that we conclude n = m. ut

The last lemma of this section is a technical lemma that will be used in
Section 5.

Lemma 5. Let R be an allegory, and Q : A → B and R : A → C be relations
tabulated by f : D → A, g : D → B and h : E → A, k : E → C, respectively.
Furthermore, let h0 : F → D, f0 : F → E be a tabulation of f ;h`. Then
Q; Q` uR; R` v IA iff h0; g; g`;h`

0 u f0; k; k`; f`
0 = IF .
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Proof. ’⇒’: Assume Q;Q` uR; R` v IA. Then we have

h0; g; g`; h`
0 u f0; k; k`; f`

0

v h0; f ; f`; g; g`; f ; f`;h`
0 u f0; h; h`; k; k`; h;h`; f`

0 f, h total

= f0;h; f`; g; g`; f ;h`; f`
0 u f0; h;h`; k; k`; h; h`; f`

0 Lemma 2

= f0;h; (f`; g; g`; f u h`; k; k`; h);h`; f`
0 Lemma 1(2)

= f0;h; (Q; Q` uR; R`); h`; f`
0 tabulations

v f0;h; h`; f`
0 . assumption

We conclude

h0; g; g`; h`
0 u f0; k; k`; f`

0

= h0; g; g`; h`
0 u f0; h;h`; f`

0 u f0; k; k`; f`
0 u f0; h; h`; f`

0 see above

= h0; g; g`; h`
0 u h0; f ; f`;h`

0 u f0; k; k`; f`
0 u f0;h; h`; f`

0 Lemma 2

= h0; (g; g` u f ; f`); h`
0 u f0; (k; k` u h; h`); f`

0 Lemma 1(2)

= h0; h
`
0 u f0; f

`
0 tabulations

= IF . tabulation

’⇐’: Now, assume h0; g; g`;h`
0 u f0; k; k`; f`

0 = IF . Then we have

Q;Q` uR;R`

= f`; g; g`; f u h`; k; k`; h tabulation

= f`; (g; g`; f ; h` u f ;h`; k; k`); h Lemma 1(3)

= f`; (g; g`; h`
0 ; f0 u h`

0 ; f0; k; k`); h tabulation

= f`; h`
0 ; (h0; g; g`; h`

0 u f0; k; k`; f`
0 ); f0; h Lemma 1(3)

= f`; h`
0 ; f0; h assumption

= f`; f ;h`; h tabulation
v IA. f, h univalent

This completes the proof. ut



Notice that in the situation of the previous lemma we always have

g`;h`
0 ; f0; k = g`; f ;h`; k = Q`; R

so that the assertion could be formulated alternatively as follows:

Q; Q` uR; R` v IA iff h0; g and f0; k is a tabulation of Q`;R.

3 Cardinal Preorderings on Objects

In this section we want to study two notions of preordering on the class of objects
of an allegory.

Definition 2. Let R be an allegory. Then the relations .i and .s on the class
of objects of R are defined by

1. A .i B iff there is an injective function f : A → B;
2. A .s B iff there is a surjective function f : B → A.

By ∼i and ∼s we denote the equivalence relations on the class of objects induced
by .i and .s, respectively.

In set theory (with the axiom of choice) both notions are equivalent for non-
empty sets. Since the theory of allegories is much weaker we cannot expect the
same for arbitrary allegories. We want to give several examples showing that .i

and .s are different in general - even in the case of tabular allegories.

Example 1. Consider the structure consisting of two sets A := {1} and B :=
{1, 2} as objects and the following morphisms:

– The identity relations on A and B.
– The inclusion function f := {(1, 1)} from A to B and its converse.
– The partial identity f`; f = {(1, 1)} on B.

The structure can be visualized by the following graph:

AIA 88

f
$$
B IB ,f`;fff

f`
dd

It is easy to verify that this structure is closed under composition, converse and
intersection, and is, therefore, an allegory. Furthermore, this allegory is tabular.
The only relation that is not a function or a converse of a function is f`; f ,
which is tabulated by the pair (f, f).

f is an injective function so that we get A .i B. On the other hand, there
is no surjective function from B to A so that A .s B does not hold. The order
structure induced by .s is discrete whereas the order structure induced by .i

is a linear.
This example can be extended by adding the objects {1, 2, 3}, {1, 2, 3, 4}, . . .

and the corresponding inclusion functions. .s remains to be discrete and .i is
linear of length ω.



Example 2. Let Rp
n ⊆ ω×ω with n ≥ 0 and p an arbitrary integer be defined by

(x, y) ∈ Rp
n : ⇐⇒ x + p = y and min(x, y) ≥ n.

It is easy to verify that the following properties are satisfied:

1. R0
0 = Iω,

2. (Rp
n)` = R−p

n

3. Rp
m uRq

n =
{∅ : p 6= q

Rp
max(m,n) : p = q,

4. Rp
m;Rq

n = Rp+q
max(m,m−p,n,n+q) for an l ≥ 0.

The properties above show that the set of relations {Rp
n | n ≥ 0, p ∈ Z} is closed

under all operations of an allegory.
Consider the allegory given by two copies of the natural numbers ω1, ω2 and

the morphism sets as indicated in the following diagram:

ω177
((
ω2hh gg

{Rp
n | p is even} {Rp

n | p is odd} {Rp
n | p is even}

In this allegory there is an injection R1
0 : ω1 → ω2 (the successor function).

By the symmetric definition of the allegory the same relation is also an injection
from ω2 to ω1. The only bijection R0

0 is not a relation between ω1 and ω2 since
its exponent is even. Notice that R0

0 is also the only surjective function in the
given set of relations. Consequently, ω1 ∼i ω2 but we have neither ω1 .s ω2 nor
ω2 .s ω1.

This example is pre-tabular, i.e. every relation is in included in a tabular
relation. This follows from the fact that every relation is included in an injection
or in the converse of such a relation. The embedding of a pre-tabular in a tabular
allegory by splitting partial identities is full. Consequently, the resulting allegory
omits the same example as above but is tabular.

Example 3. Again, consider the structure consisting of the two sets A := {1}
and B := {1, 2} as objects and the following morphisms:

– The identity relations on A and B.
– The function g := {(1, 1), (2, 1)} from B to A and its converse.
– The universal relation >>BB = {(1, 1), (1, 2), (2, 1), (2, 2)} on B.

The structure can be visualized by the following graph:

AIA 88

g`

$$
B IB ,>>BBff

g

dd



It is easy to verify that this structure is closed under composition, converse and
intersection, and is, therefore, an allegory. This allegory is not tabular since >>BB

has no tabulation.
g is a surjection so that we get A .s B, but there is no injective function

from A to B so that A .i B doe not hold.

There is also an example of tabular allegory omitting two objects A and B
with A .s B and A 6.i B. This example uses a substructure of a model of ZF
not satisfying the axiom of choice and its tabular closure within the given model
of set theory. Details can be found in [6].

4 Cardinality Function (injective case)

We now give the definition of cardinality function motivated by the preordering
.i.

Definition 3. Let R be an allegory, and (C,≤) be an ordered class. A function
|.|i : MorR → C mapping the morphisms of R to elements of C is called a
(injective) cardinality function iff

C0: |R`|i = |R|i for all relations R;
I1: |.|i is monotonic, i.e. R v S implies |R|i ≤ |S|i for all relations R,S : A →

B;
I2: If U : C → A and V : C → B are univalent with U ;U` u V ; V ` v IC , then

|U`; V |i = |U ;U` u V ; V `|i.

|.|i is called strong iff it is surjective as a function and |IA|i ≤ |IB |i implies that
there is an injection i : A → B.

The first axiom has its obvious motivation in concrete relations. All versions
of cardinality functions in this paper use this axiom so that we call it C0. It turns
out in the next section that the second axiom actually characterizes the usage
of injective functions. An immediate consequence of the last axiom (see Lemma
6(2)) is that one may compute the cardinality of a relation using its tabulation
(if it exists). This idea is the motivation of Axiom (3). We will show later that
the strong property makes the cardinality function unique (up to isomorphism).

The first part of the next lemma shows that an (injective) cardinality function
is based on the preoredering .i.

Lemma 6. Let |.|i be a cardinality function over the allegory R. Then:

1. If i : A → B is an injection, then |IA|i ≤ |IB |i.
2. If R : A → B has a tabulation f : C → A and g : C → B, then |R|i = |IC |i.

Proof. 1. i is univalent and we have i; i` = i; i`u i; i` = IA since i is total and
injective so that Axiom I2 shows |IA|i = |i`; i|i. The latter is less than or
equal to |IB |i, which follows from i`; i v IB by Axiom I1.



2. This is an immediately consequence of Axiom I2 since f and g are functions
with f ; f` u g; g` = IC and R = f`; g. ut

In order to define the canonical cardinality function on allegories for the
injective case we need tabulations. Consequently, we will assume for the rest of
this section that the given allegory R is tabular.

Let us denote by [A]i the equivalence class of an object with respect to ∼i

and by (ObjR/ ∼i,≤i) the ordered class of those equivalence classes.

Definition 4. The canonical cardinality function |.|∗i is defined by |R|∗i := [C]i
where R : A → B has a tabulation f : C → A and g : C → B.

Notice that the canonical cardinality function is well-defined since tabulations
are unique up to isomorphism.

Lemma 7. The canonical cardinality function |.|∗i is a cardinality function.

Proof. C0: Notice that (g, f) is a tabulation of R` iff (f, g) is a tabulation of
R. We conclude |R|∗i = [C]i = |R`|∗i .

I1: Assume R v S, R is tabulated by f : C → A, g : C → B and S by
h : D → A, k : D → B. Then by Lemma 3(3) there is an injection i : C → D.
This implies |R|∗i = [C]i ≤i [D]i = |S|∗i .

I2: Assume that U : C → A and V : C → B are univalent relations with
U ;U` u V ; V ` v IC . Since U ; U` u V ;V ` is a partial identity we conclude
from Lemma 3(4) that there is a function f : D → C with U ; U` uV ; V ` =
f`; f and f ; f` = ID. The relation h := f ; U is univalent because it is the
composition of univalent relations. Furthermore, we have

f ;U ; (f ;U)` = f ;U ;U`; f`

w f ; (U ; U` u V ;V `); f`

= f ; f`; f ; f` f tabulates U ; U` u V ;V `

= ID, see above

i.e. h is a function. Analogously, k := f ; V is a function. We get

h`; k = U`; f`; f ; V

= U`; (U ; U` u V ; V `); V f tabulates U ;U` u V ; V `

= U`;V. Lemma 1(3)

We conclude that h : D → A, k : D → B is a tabulation of U`; V , and,
hence, |U`;V |∗i = [D]i = |U ;U` u V ; V `|∗i . ut

In order to characterize the canonical cardinality function we use the category
Cardi(R). The objects of this category are the cardinality functions based on
R. A morphism between two cardinality functions |.|1i : MorR → C1 and |.|2i :
MorR → C2 is a monotonic function G : C1 → C2 so that the following diagram



commutes:

R
|.|1i
~~~~

~~
~~

~ |.|2i
ÃÃ@

@@
@@

@@

C1
G

// C2

Theorem 1. A strong cardinality function is an initial object of Cardi(R).

Proof. Assume |.|si : MorR → D is a strong cardinality function. First, we want
to show that every element of D is image of an identity relation via |.|si . Let x be
an element of D. Since |.|si is strong there is a relation R : A → B with |R|si = x.
Let f : C → A and g : C → B be a tabulation of R. Then by Lemma 6(2) we
have |IC |si = |R|si = x.

Let |.|i : MorR → C be an arbitrary cardinality function, and define G(x) :=
|IA|i with |IA|si = x. We have to show that G is well-defined, i.e. it is independent
of the choice of IA. Assume |IA|si = |IB |si = x. Since |.|si is strong there are
injections i1 : A → B and i2 : B → A. By Lemma 6(2) we conclude |IA|i = |IB |i.
A similar argument shows that G is also monotonic.

Now, let R : A → B be a relation and f : C → A and g : C → B a tabulation
of R. Then we have G(|R|si ) = |IC |i = |R|i again by Lemma 6(2). G is obviously
the unique function with that property. ut

The canonical cardinality function is strong by definition so that we get the
following corollary:

Corollary 1. The canonical cardinality function is an initial object of Cardi(R).

A further consequence is that any initial object of Cardi(R) must be strong
because it is isomorphic to the canonical cardinality function.

Corollary 2. A cardinality function is an initial object of Cardi(R) iff it is
strong.

5 Cardinality Function (surjective case)

We now give the definition of cardinality function motivated by the preordering
.s.

Definition 5. Let R be an allegory, and (C,≤) be an ordered class. A function
|.|s : MorR → C mapping the morphisms of R to elements of C is called a
(surjective) cardinality function iff

C0: |R`|s = |R|s for all relations R;
S1: If Q; Q` u S; S` v IB for relations Q : A → B and S : A → C, then for all

R : B → C
|Q;R u S|s ≤ |R uQ`; S|s.



|.|s is called strong iff it is surjective as a function and |IA|s ≤ |IB |s implies that
there is a surjection s : B → A.

S1 is also called the Dedekind inequality because of its similarity to the
Dedekind formula. Notice that a weaker version was already used in [5].

The first part of the next lemma shows that a (surjective) cardinality function
is based on the preordering .s.

Lemma 8. Let |.|s be a cardinality function over the allegory R. Then:

1. If s : B → A is a surjection, then |IA|s ≤ |IB |s.
2. Axiom I2 is valid.
3. If R : A → B has a tabulation f : C → A and g : C → B, then |R|s = |IC |s.

Proof. 1. We have s`; s = IA and IB v s; s` and conclude

|IA|s = |IA u s`; s|s s`; s = IA
≤ |s u s|s S1 since s`; s u IA; I`A v IA
= |s` u s`|s C0

≤ |s; s` u IB |s S1 since s`; s v IA
= |IB |s.

2. Let U : C → A and V : C → B be univalent relations with U ;U`uV ; V ` v
IC . Then the assertion follows from

|U`;V |s = |U`;V u U`; V |s
≤ |V u U ; U`; V |s S1 since U`;U v IA
= |V `; U ;U` u V `|s C0

≤ |U ; U` u V ; V `|s S1 since V `; V v IB
≤ |U` u U`; V ; V `|s S1 since U ; U` u V ; V `; V ; V `

v U ; U` u V ; V ` v IC
= |V ; V `; U u U |s C0

≤ |V `; U u V `; U |s S1 since V ; V ` u U ;U` v IC
= |U`;V |s. C0

3. This property uses the same proof as in Lemma 6(2) using (2) of the current
lemma. Notice that monotonicity of the cardinality function is not used in
that proof. ut
Again, we are just able to define the canonical cardinality function using

tabulations. Therefore, we will assume for the rest of this section that the given
allegory R is tabular.

As before, let us denote by [A]s the equivalence class of an object with respect
to ∼i s and by (ObjR/ ∼s,≤s) the ordered class of those equivalence classes.



Definition 6. The canonical cardinality function |.|∗s is defined by |R|∗s := [C]i
where R : A → B has a tabulation f : C → A and g : C → B.

Notice that the canonical cardinality function in the surjective case has the
same definition as in the injective case. The main difference is in the ordered
classes (ObjR/ ∼i,≤i) and (ObjR/ ∼s,≤s).

Lemma 9. The canonical cardinality function |.|∗s is a cardinality function.

Proof. C0: Analogously to the injective case.
S1: Let Q : A → B, R : B → C and S : A → C be relations with Q;Q`uS; S` v

IB . Furthermore, suppose that we have the following tabulations:

Q = f`
Q ; gQ, fQ; f`

Q u gQ; g`
Q = IX ,

R = f`
R ; gR, fR; f`

R u gR; g`
R = IY ,

S = f`
S ; gS , fS ; f`

S u gS ; g`
S = IZ ,

Q; R = f`
Q;R; gQ;R, fQ;R; f`

Q;R u gQ;R; g`
Q;R = IU ,

fS ; f`
Q = h`; k, h; h` u k; k` = IV ,

gQ; f`
R = m`; n, m;m` u n;n` = IW .

By definition of the canonical cardinality function we get |Q|∗s = [X]s, |R|∗s =
[Y ]s, |S|∗s = [Z]s and |Q; R|∗s = [U ]s. Since Q; Q` u S; S` v IB Lemma 5
shows that h; gS and k; gQ is a tabulation of S`;Q so that |Q`; S|∗s = [V ]s
follows. Assume D is the object used in the tabulation of Q; R u S, i.e.
|Q; RuS|∗s = [D]s. By using the construction of Lemma 4 we obtain injections
x1 : D → Z and x2 : D → U with x1; fS = x2; fQ;R, x1; gS = x2; gQ;R and
(x1; fS)`; x1; gS = (x2; fQ;R)`; x2; gQ;R = Q;R u S. Analogously, assuming
that |S;Q` u R|∗s = [E]s we obtain two injection y1 : E → V and y2 : E →
Y with y1; k; gQ = y2; fR, y1;h; gS = y2; gR and (y1; k; gQ)`; y1; h; gS =
(y2; fR)`; y2; gR = S;Q` uR. The following computation

k`; y`
1 ; y2 v k`; y`

1 ; y2; fR; f`
R fR total

= k`; y`
1 ; y1; k; gQ; f`

R y1; k; gQ = y2; fR

v gQ; f`
R y1, k univalent

shows that k`; y`
1 ; y2 is included in the tabulation m,n so that there is a

unique function w : E → W with w;m = y1; k and w; n = y2 by Lemma
3(1). Furthermore, we have Q;R = f`

Q ; gQ; f`
R ; gR = f`

Q ; m`; n; gR so that
there is a surjection e : W → U with e; fQ;R = m; fQ and e; gQ;R = n; gR by



Lemma 3(2). Finally, consider the computations

y1; h; fS = y1; k; fQ Lemma 2 since h, k tabulates fS ; f`
Q

= w;m; fQ w; m = y1; k
= w; e; fQ;R, e; fQ;R = m; fQ

y1;h; gS = y2; gR y1; h; gS = y2; gR

= w;n; gR w; n = y2

= w; e; gQ;R. e; gQ;R = n; gR

From Lemma 4(2) we conclude that there is a unique s : E → D with
y1; h = s; x1 and w; e = s; x2. The whole situation is visualized in the fol-
lowing diagram:

C D
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ttiiiiiiiiiiiiiiiiiiiiii
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fS
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``AAAAAAAA

Q

ÃÃA
AA

AA
AA

A U
fQ;Roo

gQ;R

²²

V

h

OO

k
// X

fQ

OO

gQ

// B
R

ÃÃ@
@@

@@
@@

E

y1

OO

y2

99w
//

s

((

W

m

OO

n
//

e

22

Y

fR

OO

gR

// C

It remains to show that s is surjective. First, we have

s = s; x1; x
`
1 x1 injective

= y1;h; x`
1 y1; h = s;x1

= y1;h; (fS ; f`
S u gS ; g`

S ); x`
1 fs, gS tabulation

= y1;h; fS ; (x1; fS)` u y1; h; gS ; (x1; gS)`
. Lemma 1(2)

From the computation

h; fS = h; fS u k; fQ Lemma 2

v h; gS ; g`
S ; fS u k; gQ; g`

Q; fQ gS , gQ total

= h; gS ;S` u k; gQ; Q`,

= h; gS ; g`
S ; fS u k; gQ; g`

Q; fQ

v (h; gS ; g`
S u k; gQ; g`

Q; fQ; f`
S ); fS

= (h; gS ; g`
S u k; gQ; g`

Q; k`;h); fS h, k tabulates fS ; f`
Q



v (h; gS ; g`
S ; h` u k; gQ; g`

Q; k`); h; fS

= h; fS Lemma 5

we conclude h; fS = h; gS ; S` u k; gQ; Q`. In addition, from

(y1;h; fS)`; y1;h; gS

= (s; x1; fS)`; s; x1; gS y1;h = s; x1

= (x1; fS)`; s`; s;x1; gS

= (x1; fS)`; x1; gS s univalent
= Q; R u S tabulation
= Q; R u S u S

v Q; (R uQ`;S) u S

= Q; (y1; k; gQ)`; y1; h; gS u S tabulation

= (k; gQ; Q`)
`

; y`
1 ; y1;h; gS u S

= ((k; gQ; Q`)
` u S; (y`

1 ; y1; h; gS)
`

); y`
1 ; y1; h; gS

v ((k; gQ; Q`)
` u S; (h; gS)`); y`

1 ; y1; h; gS y1 univalent

= (k; gQ; Q` u h; gS ;S`)
`

; y`
1 ; y1; h; gS

= (h; fS)`; y`
1 ; y1; h; gS see above

= (y1;h; fS)`; y1;h; gS

we obtain (y1; h; fS)`; y1; h; gS = (x1; fS)`; x1; gS . Now, we are ready to
establish that s is indeed surjective.

ID = ID u x1; fS ; (x1; fS)`
x1; gS ; (x1; gS)`

x1, fS , gS total

= ID u x1; fS ; (y1; h; fS)`; y1; h; gS ; (x1; gS)` see above

v (x1; fS ; (y1;h; fS)` u x1; gS ; (y1;h; gS)`); Lemma 1(1)

(y1; h; gS ; (x1; gS)` u y1;h; fS ; (x1; fS)`)

= s`; s. see above

This completes the proof. ut
As in the injective case we want to characterize the canonical cardinality

function. Again we use the category of cardinality functions Cards(R), which is
defined analogously to Cardi(R).

Theorem 2. A strong cardinality function is an initial object of Cards(R).

Proof. The proof of this theorem is similar to the proof of Theorem 1 using
Lemma 8(3) instead of Lemma 6(2). ut



As in the injective case we get the following corollaries:

Corollary 3. The canonical cardinality function is an initial object of Cards(R).

Corollary 4. A cardinality function is an initial object of Cards(R) iff it is
strong.

6 Conclusion and Outlook

In this paper we have instigated two notions of the cardinality of relations based
on the preordering of object induced by the existence of injective and surjective
functions, respectively. An obvious extension is to combine both notion into one
concept. The abstract definition will use the Axioms C0, I1 and S1, of course. As
the examples in Section 3 show a suitable definition of a a canonical cardinality
function requires more structure of the underlying allegory. One may require a
relational version of the Axiom of Choice:

(AC) For all relations R : A → B there is a function f : A → B with f v R and
IA u f ; f` = IA uR; R`.

Notice that the axiom above for tabular power allegories implies that the each
lower semi-lattice R[A, B] is in fact a Boolean algebra. This is just the allegorical
version of the fact that the Axiom of Choice in a topos implies that the topos is
Boolean.
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7. Schmidt G., Ströhlein T.: Relationen und Graphen. Springer (1989); English ver-
sion: Relations and Graphs. Discrete Mathematics for Computer Scientists, EATCS
Monographs on Theoret. Comput. Sci., Springer (1993).

8. Winter, M.: Goguen Categories. A Categorical Approach to L-Fuzzy Relations.
Trends in Logic Vol. 25, Springer (2007).


