Skip to main content

Stochastic Satisfiability Modulo Theory: A Novel Technique for the Analysis of Probabilistic Hybrid Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4981))

Abstract

The analysis of hybrid systems exhibiting probabilistic behaviour is notoriously difficult. To enable mechanised analysis of such systems, we extend the reasoning power of arithmetic satisfiability-modulo-theory solving (SMT) by a comprehensive treatment of randomized (a.k.a. stochastic) quantification over discrete variables within the mixed Boolean-arithmetic constraint system. This provides the technological basis for a fully symbolic analysis of probabilistic hybrid automata. Generalizing SMT-based bounded model-checking of hybrid automata [2,11], stochastic SMT permits the direct and fully symbolic analysis of probabilistic bounded reachability problems of probabilistic hybrid automata without resorting to approximation by intermediate finite-state abstractions.

This work has been partially supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley - Interscience (1974)

    Google Scholar 

  2. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial hybrid systems with MathSAT. BMC, ENTCS 119, 17–32 (2004)

    Google Scholar 

  3. Biere, A., Cimatti, A., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Blom, H.A.P., Krystul, J., Bakker, G.J.: A particle system for safety verification of free flight in air traffic. In: Decision and Control, pp. 1574–1579. IEEE, Los Alamitos (2006)

    Google Scholar 

  5. Bordeaux, L., Samulowitz, H.: On the stochastic constraint satisfaction framework. In: SAC, pp. 316–320. ACM Press, New York (2007)

    Google Scholar 

  6. Bujorianu, L., Lygeros, J.: Toward a general theory of stochastic hybrid systems. In: Stochastic Hybrid Systems: Theory and Safety Critical Applications, LNCIS, vol. 337, pp. 3–30 (2006)

    Google Scholar 

  7. Bujorianu, M.L., Lygeros, J.: Reachability questions in piecewise deterministic Markov processes. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 126–140. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Davis, M.: Markov Models and Optimization. Chapman & Hall, London (1993)

    MATH  Google Scholar 

  9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Comm. of the ACM 5, 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model checking of hybrid systems. Formal Methods in System Design 30, 179–198 (2007)

    Article  MATH  Google Scholar 

  12. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure. Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)

    Google Scholar 

  13. Groote, J.F., Koorn, J.W.C., van Vlijmen, S.F.M.: The Safety Guaranteeing System at Station Hoorn-Kersenboogerd. In: Conference on Computer Assurance, pp. 57–68. National Institute of Standards and Technology (1995)

    Google Scholar 

  14. Hehner, E.C.R.: Predicative programming. Comm. of the ACM 27, 134–151 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hespanha, J.P.: Polynomial stochastic hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 322–338. Springer, Heidelberg (2005)

    Google Scholar 

  16. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Koutsoukos, X.D., Riley, D.: Computational methods for reachability analysis of stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 377–391. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean satisfiability. Journal of Automated Reasoning 27(3), 251–296 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  20. Sproston, J.: Model Checking of Probabilistic Timed and Hybrid Systems. PhD thesis, University of Birmingham (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Magnus Egerstedt Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fränzle, M., Hermanns, H., Teige, T. (2008). Stochastic Satisfiability Modulo Theory: A Novel Technique for the Analysis of Probabilistic Hybrid Systems. In: Egerstedt, M., Mishra, B. (eds) Hybrid Systems: Computation and Control. HSCC 2008. Lecture Notes in Computer Science, vol 4981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78929-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78929-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78928-4

  • Online ISBN: 978-3-540-78929-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics