
A Decidable Class of Planar Linear Hybrid Systems

Pavithra Prabhakar, Vladimeros Vladimerou, Mahesh Viswanathan, and Geir E.
Dullerud

University of Illinois at Urbana-Champaign.

Abstract. The paper shows the decidability of the reachability problem for pla-
nar, monotonic, linear hybrid automata without resets. These automata are a spe-
cial class of linear hybrid automata with only two variables, whose flows in all
states is monotonic along some direction in the plane, and inwhich the continu-
ous variables are not reset on a discrete transition.

1 Introduction

The use of embedded devices in safety critical systems, has prompted extensive re-
search in the formal modeling and analysis of hybrid systems. Hybrid automata [1] are
a widely used formalism for modeling such systems. These aremachines with finitely
many control states and finitely many real-valued variablesthat evolve continuously
with time. The transitions depend on the values of the continuous variables and they
change both the discrete control state as well as the values of the variables. The safety
of systems modelled by such automata can often be reduced to the question of whether
a certain state orregion of the state space can be reached during an execution. This is
called thereachability problem.

Due to its importance, the reachability problem for hybrid automata has been care-
fully investigated in the past couple of decades. The problem has been shown to be
decidable for special kinds of hybrid automata includingtimed automata [2], certain
special classes ofrectangular hybrid automata [6], ando-minimal hybrid automata [8].
These decidability results often rely on demonstrating theexistence of a finite, com-
putable partition of the state space that isbisimilar to the original system.

However, such decidability results are the exception rather than the norm. The
reachability problem remains stubbornly undecidable evenfor very simple and special
classes of hybrid automata, not just in the general case. Onesuch special class is that of
linear hybrid automata. In these automata each variable is constrained to evolve along a
constant slope (with time), and despite such simple dynamics, have been unamenable to
algorithmic analysis even in low dimension (i.e., with veryfew continuous variables).
Timed automata, where each variable evolves synchronouslywith a global clock, but
where the machine is allowed to compare clock values at the time of discrete transi-
tions 1, is undecidable even for systems with 6 clocks [2]. The case of general linear
hybrid automata in which variables are constrained to be compared only to constants,
remains undecidable even for just 3 variables [1]. Undecidability results for dynamical

1 The decidability result for timed automata holds when clocks are only compared with con-
stants.



systems with piecewise constant derivative in 3 dimensions, and piecewise affine maps
in 2 dimensions [5] provide further evidence.

In this paper, we prove the decidability for a special class of linear hybrid automata
that areplanar, monotonic anddon’t have resets. Planar refers to the fact that the au-
tomata has only two variables. Monotonic refers to the fact that we require the existence
of a vectorρ such that the derivatives of the variables (viewed as a vector in the plane) in
all states have a positive projection alongρ; note, this does not mean that both variables
have positive derivatives in each state. Finally, the automaton does not reset/change the
values of the variables when taking a discrete transition.

The automaton model that we consider here is more general in some aspects, and
at the same time more restrictive in some aspects, when compared with other hybrid
automata models for which decidability results are known. First variables are not re-
stricted to clocks, like timed automata. Second, variablesare not required to have the
same slope in all states, or for them to be reset when the flow ischanged, as in some
rectangular hybrid automata. Next, transitions don’t havestrong resets that decouple the
continuous dynamics from the discrete, as in o-minimal systems. Finally, the guards and
invariants are not required to be disjoint, as in dynamical systems with piecewise con-
stant derivatives [3] or polygonal hybrid systems [4]. On the other hand, our automata
only have 2 variables, no resets, and monotonic flows.

Despite the restrictive dynamics and planarity, the decidability proof is very chal-
lenging. Like many decidability proofs in this area, we firstpartition the plane into
regions, which in our case are convex polygons formed by consideringlines associated
with the constraints appearing in the automaton description, and lines perpendicular to
the direction along which the flow is monotonic. Such regionshave a very special geo-
metric structure in that they are bounded by 2 to 4 line segments, at least one of which
is a line segment perpendicular to the monotonic direction.The first key idea in the
proof is to observe the existence of a lineℓ, perpendicular to the monotonic direction,
such that the behavior of the automaton beyondℓ is bisimilar to a finite state system.
Then reachability computation is broken up into two phases:the first phase computes
all points beforeℓ that are reachable, and the second phase constructs the finite bisimu-
lation for the points beyondℓ and does the search in the bisimilar transition system.

The computation of the reachable regions beforeℓ itself relies on observing that any
execution of the automaton can be seen as a concatenation of aseries ofalmost-inside
executions. An almost-inside execution is an execution that starts at the boundary of
a regionR, entersR, and then leaves to another boundary ofR, all the while staying
insideR, while taking both discrete and time steps. The first lemma weprove is that
the effect of such almost-inside executions is computable for all regions. However, in
order for the decidability proof to go through we need a stronger result for certain
special regions that we callright pinched triangles; we need to show that the effect
of concatenating finitely many almost-inside executions can be computed. We do this
through a tree construction reminiscent of the Karp-Millertree [7] for vector addition
systems. Finally, we solve the reachability result for regions beforeℓ by another tree
construction. A carefully counting argument coupled with the monotonicity of flows
ensures that this tree will be finite and hence effectively constructable. Space constraints



prevent us from giving detailed proofs of the decidablity result here; complete proofs
can be found in [9].

2 An example

We will first illustrate our algorithm for deciding reachability on an example. Con-
sider the hybrid systemH given in Figure 1. It has five locationss1, · · · , s5, with flows
f1, · · · , f5, respectively, associated with them. The locations are labelled by their in-
variants. For example, the invariant associated with location s1 is y < 1, and this says
that the control of the system can be ins1 only if the value of the variabley is less than
1. When in a certain location the values of the variables change according to their flow.
If the system starts withx = 0 andy = 0 at locations1, and spends a unit time, then
the values of the variables would bex = 1 andy = 2. However in this case the system
is forced by the invariant to leave the location before half time unit. We note thatH is a
monotone linear hybrid system, where by linear we mean that the flows associated with
the locations are constants, and by monotone that the flows have a positive projection
along some direction, in this case thex-axis as shown in Figure 2.

s1 s2 s3

y < 1 x < 1

x > 1

s5 s4

f1 = (1, 2) f2 = (2, 3/2) f3 = (2, 7/4)

f5 = (2, 7/4) f4 = (1, −1)

∧x > 2

x < 2y

x < 2y

Fig. 1.Linear hybrid systemH

f1

f3 = f5

f2

f4

x

y

Fig. 2. Flows of the hybrid systemH

We will consider the following reachability problem: Is thelocations5 reachable
starting froms1 with x = 0 and y = 0? As shown in Figure 3, this translates to
checking if starting ins1 at pointO, we can reach the shaded region in locations5.

We first divide the plane into regions depending on the constraints in H. Corre-
sponding to each constraint ofH, there is a straight line, as shown by the solid lines in
Figure 3. We also add lines parallel to they-axis passing through the points of inter-
sections of these lines, if one does not already exist. As is easily seen, the interior of a
region is invariant with respect to the locations in that either it is contained in the invari-
ant of a location or is disjoint from it. Hence with each element of a region which is its
interior, its edge without the end-points or its vertex, we can associate a set of locations
whose invariants contain the element. For example, the set of locations corresponding
to the interior of region1 is {s1, s2, s3}.

The idea of the algorithm is to compute successors for the regions. Given a part of
an edge, called a subedge, and a location, the successor withrespect to a region is the set



��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

O

A

C

K

I

B

D

F

G

E

J

H

L

y

x

1

3 4

5

2

6

Fig. 3. Regions of the hybrid systemH

of all points on the boundary of the region reachable by moving only in its interior, and
leaving and entering the boundary at most once. For example,starting from pointA in
locations3, we can reachJ by following flow f3 of s3 and moving only in the interior
of region3. Hence(s3, J) is in the successor of(s3, A). As a slightly more interesting
example, consider the problem of finding the successors of point O in region1. These
are exactly the points betweenA andB in locationss2 ands3, the points betweenB
andC in locationss1 ands3 and the pointB in locations3. We will represent this
succinctly as(s1, B

′C′), (s2, A
′B′), (s3, BC′) and(s3, A

′B), whereA′ indicates that
pointA itself is excluded. The above subedges are computed in the following way. The
locations corresponding to region1 ares1, s2 ands3. Let us consider the underlying
graph ofH restricted to locations and guards which contain region1. The same is shown
in Figure 4. We observe that any path fromO in locations1 spends time alternately ins1

s1 s2 s3

f1 f2 f3

Fig. 4.Underlying graph ofH restricted to region1

ands2, and then possibly makes a transition tos3 where it spends additional time before
reaching the boundary. We will show that the set of all pointsreachable by alternating
betweens1 ands2 is exactly the set of point in the cone generated byf1 andf2 which
are also in the interior of region1, namely, the points inside the parallelogramOABC
in the figure. This is true only becauses1 ands2 belong to the same strongly connected
component of the underlying graph corresponding to region1. We then show how to
compute the set of points reachable starting from these points with respect to the next



maximal strongly connected component, in this cases3. In this example it turns out that
the points reachable by moving alongf3 from points in the parallelogramOABC is
OABC itself.

Now coming back to our original problem of finding if there is an execution ofH
starting at pointO in locations1 to some point in the shaded region in locations5, we
will build a rooted tree, called thereachability tree. Its nodes are labelled with pairs
of locations and subedges and the root is labelled(s1, 0). The children of any node are
labelled with the elements of the successors of the label of the current node with respect
to every region it is adjacent to. The above computation is carried out with respect to
every region to the left of the linex = 2. This gives us the set of all pairs of locations
and points reachable on this line. Figure 5 shows some part ofthis tree.

(s3, BC′)

(s4, DE′)

(s3, IE) (s4, IE) (s4, LE′)(s4, F H)(s4, HE′)

(s3, BJ)

(s3, BE′)(s3, KE′)(s4, BE) (s4, KE)

(s1, O)

(s4, HG)

(s1, B′C′) (s2, A′B′) (s3, A′B)

(s3, BE′)(s4, BE′)

Fig. 5. Reachability tree

Our next goal is to show that this tree is finite. As a first step to achieve this, we prune
some branches of the tree. The node(s4, LE′) is removed from the tree as its parent
(s4, BE′) contains all the required information. The finiteness of thetree follows from
two observations, namely, the number of children of any nodeis finite and every path
in the tree is bounded. We can then apply Konig’s Lemma to conclude that the tree is
finite. To show that a path is finite, we have from the monotonicity of the flows that the
leftmost point of any child of a node is to the right of the leftmost point of the node. For
example, thex-coordinate of the left-most point ofO which isO itself is less than that
of A which is the leftmost point ofA′B, which is in its successor. However, there is a
priori no minimum distance by which this shift to the right occurs. Such a boundexists
if the successor is with respect to a region which is a trapezium, like region1. It is not
clear for a “left-pinched triangle” like region6. However for this case we argue that
though a global minimum does not exist, given any path of the tree such a minimum
exists. In case of a “right-pinched triangle” like region2, even such a local minimum
does not exist. Hence, instead, in this case we compute the “transitive closure” of the
successor with respect to the region, which is the set of all points reachable on the
boundary by moving withinR and touching the boundary any number of times. We
show that this is computable when the constraints corresponding to the boundary are



strict. We then use the assumption that there are no adjacentright-pinched triangles, to
argue that the paths of the tree are finite.

We cannot continue with the construction of the tree beyond the linex = 2, because
all regions to the right of this line are unbounded. This might potentially lead to infinite
paths in the tree. So we stop building the tree at the linel which passes through the
leftmost vertex, and show that there is a finite bisimulationof the states corresponding
to the regions to the right of this line. This bisimulation can be computed. Hence we
can decide the reachability.

3 Preliminaries

3.1 Linear Hybrid Systems

A linear hybrid system (LHS ) H is a tuple(S, S0, E, X,flow , inv , guard) where

– S is a finite set of locations,
– S0 ⊆ S is the set of initial locations,
– E ⊆ S × S is the set of edges,
– X = {y1, · · · , yn} is a finite set of variables,
– flow : S → Qn associates a flow with every state,
– inv : S → Guards is a function associating an invariant with each state, and
– guard : E → Guards is a function associating a guard with each edge,

whereGuards = 2C andC is a finite subset of{
∑n

i=1
aiyi ∼ bi | ai, bi ∈ Q,∼∈ {<, >

}}. We call the elements ofC which occur in the codomain ofinv andguard , the set
of constraints associated withH. The size ofX is called thedimension of H.

We note that the definition of the hybrid system above deviates from the standard
definition in that we donot allow resets and the constraints are restricted to bestrict

We define the semantics of anLHS in terms of atransition system. The transition
system ofH is a triple(X, X0,→), whereX = S×Rn is the set of states ofH, X0 ⊆ X
called the set of initial states consists of state(s, v) such thats ∈ S0 andv ∈ inv (s),
and thetransition relation → is a binary relation on the set ofstates X . The transition
relation→ is defined as the union ofdiscrete transitions→d andcontinuous transitions
→c, which are defined as:

– (s, v) →d (s′, v′) if v = v′ and there existse = (s, s′) ∈ E such thatv ∈
inv(s) ∩ inv(s′) ∩ guard(e).

– (s, v) →c (s′, v′) if s = s′ and there existst ∈ R such thatt ≥ 0 andv′ =
v + flow(s)t, and for allt′ ∈ [0, t], v + flow(s)t′ ∈ inv(s).

An execution of H from a state(s1, v1) is a sequence of states(s1, v1) · · · (sn, vn) such
that for all1 ≤ i < n, (si, vi) → (si+1, vi+1). We then say that(sn, vn) is reachable
from (s1, v1), and denote it by(s1, v1) →∗ (sn, vn). We can represent an execution
(s1, v1)(s2, v2) · · · (sn, vn) as a functionσ : [0, t] → S+ × Rn. We defineσ as a
pair of functions(σ1, σ2), whereσ1 : [0, t] → S+ gives the sequence of locations
at any time point andσ2 : [0, t] → Rn gives the values of the variables. With each
(si, vi) → (si+1, vi+1) we associate adelay di, wheredi = 0 if vi = vi+1, and



di = (vi+1 − vi)/flow (si) otherwise. Letti =
∑i

j=1
dj . We sett = tn−1. We define

σ1(t′) = si if t′ ∈ (ti−1, ti), otherwiseσ1(t′) = si · · · sj , wheret′ = ti andti−1 6=
ti = ti+1 = · · · = tj 6= tj+1. We defineσ2(t′) for t′ ∈ [ti−1, ti] inductively. We set
σ2(0) = v1 andσ2(t′) = σ2(ti−1) + flow (si)(t

′ − ti−1) for t′ ∈ [ti−1, ti]. A run of H

is an execution starting from an initial state.

3.2 Elements of the two dimensional plane

We define some elements of the two dimensional plane formed bystraight lines. A
convex closed polygonal set P is the intersection of finitely many closed half-planes.
We simply callP a convex polygon. Theinterior of P , denotedinterior(P ), is the
intersection of finitely many open half-planes corresponding to the closed half-planes
of P . Theboundary of P , denotedboundary(P ), is P − interior(P ). An edge of P
is a maximal convex subset ofboundary(P ). We denote the set of all edges ofP by
edges(P ). A vertex of P is a point of intersection of two distinct edges ofP . The set of
all vertices ofP will be denoted byvertices(P ).

We call a convex subset of an edge, asubedge. The end-points of a subedgee are
pointsa andb such thate consists of all points on the line segment joininga andb,
except possiblya andb themselves. We denote this byend-points(e) = {a} ∪ {b}. The
subset ofe without the end-points will be denotedopen(e), which ise− end-points(e).
The elements of the subedgee are then its end-points which are contained ine and the
open(e). This is denoted byelements(e) = {open(e)}∪{a | a ∈ end-points(e), a ∈ e}.
From now on, by a convex set, we mean a polygon, interior of a polygon, or a subedge
of a polygon.

3.3 Restricted hybrid systems

We call anLHS H monotone if there exists anf ∈ Rn such that for all locationss of
H, flow (s).f > 0, where. is the standard dot product. We call such anf a direction of
H.

We will call a linear hybrid systemplanar, if its dimension is two. A planar lin-
ear hybrid system is said to besimple if no three distinct lines corresponding to its
constraints intersect at a common point, where the line corresponding to a constraint∑n

i=1
aiyi ∼ bi is the set of points satisfying

∑n

i=1
aiyi = bi.

3.4 Notations for planar hybrid systems

Let us fix a simple monotone planar linear hybrid systemH = (S, S0, E, X,flow , inv ,
guard) for the rest of the paper. LetX = {x, y} and fH be a direction ofH. Let
us fix our coordinate system such that thex-axis is parallel tofH and they-axis is
perpendicular to it. Given a subedgee we defineleft(e) to be the infimum of thex-
coordinates of the points ine andright(e) to be the supremum of thex-coordinates of
the points ine.

Let V be the set consisting of the points of intersections of the lines corresponding
to the constraints inH. Let us associate withH a set of lines which are parallel to the



y-axis and contain some point inV . We denote this bylines(H). We can order the lines
of H asl1, l2, · · · , lk such that for any1 ≤ i < j ≤ k, if vi andvj are the points in

V which are contained inli andlj respectively, thenleft(vi) < left(vj).
Let L be a set of lines which containslines(H) and the lines corresponding to the

constraints inH. We associate a set ofregions with H which consists of polygons whose
interiors are non-empty and which are formed by choosing exactly one closed half-plane
corresponding to each line inL. We denote this byregions(H). We useregions(H, i, j)
to denote the regions ofH which are contained in the set of points between linesli and
lj of lines(H). Also regions(H, 0, j) andregions(H, i, k + 1) denote the set of regions
contained in the set of points which occur to the left oflj and the set of points which
occur to the right ofli, respectively. Note that two distinct regions inregions(H) have
non-intersecting interiors, and the union of all the regions gives us the whole planeR2.

Following are a few observations about the regions ofH:

1. The regions inregions(H, 0, 1) are unbounded and have two or three edges.
2. The regions inregions(H, 1, k) are either triangles, or trapeziums, or unbounded

regions with three edges. For the triangles, one of the edgesis contained in some
li and its vertex not on that edge is contained in eitherli+1 or li−1. If the vertex is
contained inli+1, then we call the triangle aright-pinched triangle otherwise we
call it a left-pinched triangle. For the trapeziums in this region, we will call its edge
a parallel edge if it lies on one of theli’s.

3. The regions inregions(H, k, k + 1) are unbounded with two or three edges.

From now on by a subedge we mean a subedge of the edge of some region in
regions(H). We abuse notation and call a pair(s, e) wheres ∈ S is a location ande a
subedge, also a subedge. However it will be clear from the context which one we mean.
The subedge(s, e) is said to contain the state(s, v) wherev ∈ e. Two subedges(s, e)
and(s′, e′) are said to be disjoint if the do not contain any common state.By a state
(s, v) or a subedge(s, e) being on a subedgee′ or a linel we meanv or e is contained
in e′ or l. Similarly we use regions also for pairs of states and regions.

We will focus on the following problems in the rest of the paper: the point-to-
point reachability and the region-to-region reachability. Thepoint-to-point reachabil-
ity problem is to decide given two states(s1, v1) and(s2, v2), if (s1, v1) →∗ (s2, v2).
Theregion-to-region reachability problem is to decide given two location-region pairs
(s1, R1) and(s2, R2), if there exist pointsv1 ∈ R1 andv2 ∈ R2 such that(s1, v1) →

∗

(s2, v2).

4 Decidability of the reachability problem

In this section we show that the point-to-point and region-to-region reachability prob-
lems for simple monotone planar linear hybrid systems is decidable. We will continue
to use the notations introduced in the previous section. We first present a sketch of the
proof of decidability.

1. We first show that theedge-to-edge reachability problem is decidable: given a
subedge(s, e) of a regionR ∈ regions(H, 0, k), we can compute the set of all
states onlk which are reachable from the states on the subedge.



2. We then show that there exists a computable finite bisimulation of the transition
system ofH restricted to the states on and afterlk which respects the partition
created by the elements of the regions inregions(H, k, k + 1).

3. We then use the above results to decide the point-to-pointand region-to-region
reachability.

4.1 Edge-to-edge reachability

In this section we solve the problem of finding the set of all states on the linelk reach-
able from a subedge(s, e) of some regionR ∈ regions(H, 0, k). Any execution from
a state in(s, e) to a state onlk can be broken up into a sequence of executions each
of which is such that they move within a single region and leave or enter its boundary
at most once. Our approach is to build a tree whose nodes represent subedges, and the
states corresponding to the nodes of the children of a node give the set of all points
reachable from the states in the parent node by executions which move within a region.
Then any path in the tree would correspond to executions starting from states in the
root. We call this thereachability tree. We show that the tree is computable and finite.
Then the set of all states in the tree which correspond to the states onlk will give us the
required.

We first compute the set of all states reachable from a subedgeby moving only
within a region. We define analmost-inside execution with respect to a region to be an
execution which leaves the boundary of the region at most once and enters the boundary
of the region at most once, and at all times during the execution is in the region. An
almost-inside execution (AI-execution) from a state(s, v) to a state(s′, v′) with respect
to a regionR is an executionσ : [0, t] such thatσ1(0) containss andσ2(0) = v,
σ1(t) containss′ andσ2(t) = v′, and there existt1, t2 ∈ [0, t] such that for allt′ ∈
(0, t1]∪[t2, t), σ2(t′) ∈ boundary(R), and for allt′ ∈ (t1, t2), σ2(t′) ∈ interior(R). We
say that a subedge(s′, e′) is reachable from a subedge(s, e) by almost-inside executions
with respect to a regionR, if for everyv′ ∈ e′, there exists av ∈ e and anAI-execution
from (s, v) to (s′, v′). The successor of a subedge(s, e) with respect to a regionR is a
subedge ofR reachable from(s, e) by AI-executions with respect toR. We denote by
succ((s, e), R) the maximal successors of(s, e) with respect toR, where a successor
(s′, e′) is maximal if for every successor(s′, e′′), e′′ ⊆ e′.

In the next lemma, we show thatsucc((s, e), R) is computable. A notion that we
use is that of the underlying graph of the hybrid system restricted to those locations
and edges whose invariants and guards respectively are satisfied by the elements of
a region. Given a set of pointsV , we define the underlying graph ofH with respect
to V to be graph(H, V ) = (VH, EH, ) such thatVH = {s ∈ S |V ⊆ inv (s)} and
EH = {e ∈ E |V ⊆ guard(e)}.

Lemma 1. Given a region R ∈ regions(H) and a subedge (s, e) of R, succ((s, e), R)
is computable.

Proof We consider the maximal strongly connected components of the underlying graph
graph(H, interior(R)), and first compute the set of all states on the boundary reachable
by moving in a single component. Then we show how this can be used to compute all
the states reachable.



Given a graphG, let us call the graph with these strongly connected components
as vertices, the component graph ofG, and denote it asSCC(G). There is an edge
between two vertices inSCC(G) if there is one between two states of the components
in the original graph. Note that maximality of the components gives us thatSCC(G) is
a directed acyclic graph.

We observe that anyAI-execution from a state in(s, e) to a state on the boundary of
R would correspond to a path inSCC(G). For each such pathπ = C1C2 · · ·Cn where
Ci’s are the strongly connected components, we compute the states on the boundary of
R reachable byAI-executions which follow this path. We do the computation iteratively.
We first find the states reachable by moving only in the component C1.

To compute the above, we need a notion ofpost of a convex subset of a region
with respect to a set of flows, which is the set of all points in the region reachable by
following the flows and always remaining in the interior of the region except possibly
at the end-points. We can show thatpost(P, F, R) is computable, whereP is a convex
subset of regionR andF is a set of at most two flows, and that it can be expressed
as a finite union of convex subsets. A crucial observation is that corresponding to a
trajectory followingF from a point inP to any point inR, there is one which moves
only within R. The only exceptions are the vertices ofR, but it can be tested separately
if they can be reached. It turns out that the set of all points in R reachable from a point
in P are those in the cone generated by the flows inF . This can also be extended to any
convex subset by taking the convex hull of the sets corresponding to the vertices ofP .
The details of the computation ofpost(P, F, R) are given in [9].

Now the set of all points reachable on the boundary by following flows in the com-
ponentC1 is given bypost(e, F, R), whereF contains those flows associated with the
locations inC1 which make a maximum or a minimum angle withfH. Further the points
in post(e, F, R) which are in the interior ofR can be reached in any location ofC1. A
pointsp in post(e, F, R) which is on the boundary and is reached from some point in
e by moving inR for some non-zero time, can only be reached if there is a location
which is in bothC1 andgraph(H, e), that is, there is an execution which can move into
the interior, and there is a location which is in bothC1 andgraph(H, p), that is, there
is an execution which moves from the interior to the boundary. We then compute the
set of all states on an edge reached by moving along the boundary from points on the
boundary given bypost(e, F, R). Suppose that we have found the set of all states on the
interior and boundary reachable by the prefix of the pathπ till Ci. We can then compute
the post of the interior points with respect to the flows ofCi+1, and compute the states
reached when inCi+1 similar to above. Again the details can be found in [9].

Once we have found the set of states reachable alongπ, we can take the union of
all the states over all theπ’s to get the set of all states on the boundary reachable. Since
at each point in the procedure above we get a representation of the set of states on the
boundary reachable as a finite union of subedges, and the number of pathsπ is finite,
we can computesucc((s, e), R). ⊓⊔

Now that we have shown thatsucc((s, e), R) is computable, we can construct the
reachability tree. However we also want to show that the treeis finite, and we will show
this by ensuring that the paths in the tree are finite. We will do this by showing that
along any path the successors move to the right by at least some minimum distance.



In the case of a right-pinched triangle such a minimum does not exist. Hence we will
compute the transitive closure ofsucc, calledsucc∗ where we consider points reachable
by a sequence ofAI-executions such that the last state of an execution is same as the
first state of the next execution. The intuition behind this is that if we computesucc∗

instead ofsucc for a subedge with respect to a region then we will not need to consider
thesucc of the elements insucc∗ with respect to the region, as those states are already
included insucc∗. We will see that the simplicity of the system can then be usedto
argue that the paths in the reachability tree are finite. Nextlemma says thatsucc∗ is
computable.

Lemma 2. Given a right-pinched triangle R in regions(H, 1, k) and a subedge (s, e)
of R, succ∗((s, e), R) is computable.

Proof Let the right-pinched triangleR beabc with the edgeab on someli andc on li+1

as shown in Figure 6. Let(s, e) be a subedge ofac. We first compute the set of all states

c

b

a

li li+1

Fig. 6.Right-pinched triangleabc

onac reachable by a sequence of one or moreAI -executions. For this, we build a tree
T∗(s, e) rooted at node(s, e). We will need the following new notion of successor. Let
us denote bysucc1((s1, e1), R) the set of states reachable onac by executions which
touchbc at most once in the following sense:succ1((s1, e1), R) = {(s2, e2) | (s2, e2) ∈
succ((s1, e1), R), e2 ⊆ ac} ∪ {(s3, e3) | (s3, e3) ∈ succ(s2, e2), e3 ⊆ ac, (s2, e2) ∈
succ((s1, e1), R), e2 ⊆ bc}.

We now define how the tree is constructed. We will simultaneously mark nodes in
the partial tree constructed. The children of a node(s1, e1) are the elements(s2, e2) in
succ1((s1, e1), R) such that there is no node(s2,−) along the path from the root to the
node(s1, e1). For every element(s2, e2) in succ1((s1, e1), R) such that there is a node
(s2, e

′

2) along the path from the root to the node(s1, e1), we mark the node(s2, e
′

2).
Note that a node could get marked twice. The construction of tree will terminate since
it is finite, which is due to the fact that the number of children of any node is finite and
the height of the tree is bounded by the number of locations.

We now describe how to computesucc∗((s, e)) from the tree constructed above. We
form a setA which contains all the nodes ofT∗(s, e), and for each node(s1, e1) which
belongs to a subtree of some marked node, it contains(s1, full(e1)), wherefull(e1) is the
subedgee2 of ac such thatleft(e2) = left(e1) andright(e2) = right(c) ande2 contains



the pointsleft(e1) andc if and only if e1 contains them.A contains all points onac′

reachable from(s, e) by moving only within the triangle and touching the boundaryany
number of times. This is because if from a state(s, v1) we can reach a state(s, v2) by
an executionσ, wherev2 is strictly to the right ofv1, then we can reach any point to the
right of v1 by taking a sequence of one or more executions whose transition sequence
is same as that ofσ but with possibly less time spent in each location. Similarly if
(s1, e1) can reach(s2, e2), then(s1, full(e1)) can reach(s2, full(e2)). For details, see
[9]. Hence it makes to sense to take thefull of all nodes in the subtree of a marked node.

To compute the set of states onbc′ reachable, we observe that such a state is reach-
able only from anAI -execution starting from some state onac′. Hence the reachable
states onbc′ B can be computed by taking thesucc of the maximal subedges ofA.
Finally, if c is reachable then it is reachable by anAI -execution starting from a state on
ac′ or bc′, hence will be included in thesucc of the subedges inA or that ofB. Hence
all points insucc∗((s, e), R) can be computed. ⊓⊔

We show below that the set of all states reachable on the linelk is computable.
As already said before, we construct a tree using thesucc andsucc∗ to compute the
children of the nodes. The nodes of the tree will correspond exactly to the states on
edges of regions inregions(H, 0, k) reachable from some subedge of some region in it
for which the tree is built.

Lemma 3. Given a subedge (s∗, e∗) of a region in regions(H, 0, k), the set of all states
on lk reachable from some state on the subedge is computable.

Proof Construction of the reachability tree Treach((s
∗, e∗)). We construct the reach-

ability tree, in which the nodes correspond to subedges, andthe children of a node cap-
ture the set of all states reachable from the states of the current node byAI-executions. A
particular child of a node corresponds toAI-executions with respect to a single region.

We first definetsucc of a subedge with respect to a region which consists of states
reachable byAI-executions in this region. We break up the subedges into itselements,
because when computingtsucc, we require that all points of a subedge belong to the
same set of regions. Note that otherwise, the end-point of a subedge which is a vertex
could belong to a different set of regions than the subedge without the end-points.

For a subedge(s, e) of a regionR, tsucc((s, e, R)) is given by:

– If R is not a right-pinched triangle,tsucc((s, e, R)) = {(s′, el, R′) | (s′, e′) ∈
succ((s, e), R), el ∈ elements(e′), el ⊆ R′, R′ ∈ regions(H, 0, k)}.

– If R is a right-pinched triangle,tsucc((s, e, R)) = {(s′, el, R′) | (s′, e′) ∈ succ∗

((s, e), R), el ∈ elements(e′), el ⊆ R′, R′ ∈ regions(H, 0, k), R 6= R′}.

The root ofTreach((s
∗, e∗)) is∗. The children of∗ are the element of the set{(s∗, e∗, R) |

e∗ ∈ R, R ∈ regions(H, 0, k)}. The children of any node(s, e, R) are the elements of
tsucc((s, e, R)) which contain at least one state which has not occurred in thecurrent
node or any of its ancestors, that is, an element(s1, e1, R1) is present in thetsucc of
the current node(s, e, R) if for all nodes(s1, e2, R1) which is the current node or its
ancestor, there exists av such thatv ∈ e1 − e2.

We sketch below a proof of finiteness of the treeTreach((s
∗, e∗)). Details are given

in [9]. First we make a few observations which are crucial in arguing the finiteness.



1. Let (s, e) and (s′, e′) be elements of subedges of a regionR. Then if (s′, e′) ∈
tsucc((s, e), R), thenleft(e) ≤ left(e′) andright(e) ≤ right(e′). This follows from
the monotonicity of the flows inH.

2. Given any regionR ∈ regions(H, 1, k), and(s, e) and(s′, e′) elements of subedges
of R which are not on theli’s such that(s′, e′) ∈ tsucc((s, e), R), we have:
(a) If R is a trapezium or an unbounded region, then eitherright(e′) is on someli

or there exists adR > 0 such thatright(e′) ≥ right(e) + dR.
(b) If R is a left-pinched triangle, then eitherright(e′) is on someli or there exists a

d which increases monotonically withright(e) such thatright(e′) ≥ right(e)+
d.

Now turning to the proof, by construction the above tree is finitely branching. To see
that every path in the tree is also finite, we can deduce from the above observations
that (a) there is a bound on the number of consecutive children whose right-end
points do not move closer tolk (the bound is the number of locations), (b) when
the successors are computed with respect to a trapezium and the right-end moves
strictly to the right, there is a minimum distance by which the shift occurs namely
the minimum of all thedR’s, (c) when the successors are computed with respect to
a left-pinched triangle the minimum distance is non-zero and depends on the right-
end point of the first occurrence on the path of one of its elements not contained
in any li. This along with the simplicity of the system which guarantees that two
right-pinched triangles are never adjacent to each other, we obtain a bound on the
length of any path. Finally, from Konig’s Lemma, we have thatthe tree is finite.

⊓⊔

4.2 Finite bisimulation

We show that the states ofH corresponding to the regions inregions(H, k, k + 1) have
a finite bisimulation. A binary relation∼ over a set of states is abisimulation if it
is symmetric and for every pair of states(s1, v1) and (s2, v2), if (s1, v1) ∼ (s2, v2)
and (s1, v1) → (s′1, v

′

1), then there exists a state(s′2, v′2) such that(s2, v2) →
(s′2, v

′

2) and(s′1, v
′

1) ∼ (s′2, v
′

2). We will show that there exists a computable equiv-
alence relation∼ of finite index on the set of states inregions(H, k, k + 1) which is a
bisimulation and which respects the partition created by the elements of the regions in
regions(H, k, k+1). By partition created bylk we mean the two parts, one consisting of
the states onlk and the other consisting of the rest of the states inregions(H, k, k + 1).

We define∼ as follows.(s1, v1) ∼ (s2, v2) if s1 = s2 andv1, v2 belong to the
same element of a region. To see that this is a bisimulation consider(s, v1) and(s, v2)
wherev1 andv2 belong to the same element of some region. If(s, v1) takes a discrete
transition to(s′, v1), then so can(s, v2) to (s′, v2) as the guards and invariants respect
the elements of the regions. Suppose(s, v1) takes a continuous transition to(s, v′1),
then there is a straight line from thev1 to v′1 which passes through a finite sequence of
infinite edges and interiors of the regions. There exists a straight line fromv2 parallel
to the above which moves through the same sequence of edges and regions. Hence we
can find a pointv′2 in the required region.

Since the number of regions inregions(H, k, k+1) is finite, the number of elements
of these regions is also finite. Hence we have a finite bisimulation.



4.3 Point-to-point and region-to-region reachability

Theorem 1. Point-to-point and region-to-region reachability problems are decidable
for simple monotone linear hybrid systems.

Proof To check if state(s′, v′) is reachable from(s, v), add two more lines tolines(H)
which pass throughv andv′, and are parallel toy-axis. Then check if(s′, v′) corre-
sponds to any node inTreach((s, v)).

To decide if(s′, R′) is reachable from(s, R), whereR, R′ ∈ regions(H), first com-
pute the set of subedgesinit(R) of R reachable from points inR. For each subedge
(s∗, e∗) ∈ init(R), compute the set of subedges inlk reachable, and then take their
union. If R′ ∈ regions(H, k, k + 1), then construct the finite bisimulation to decide if
R′ is reachable. Otherwise check if any state in(s′, R′) is reachable from the set of
subedges on its boundary reachable from states ininit(R). ⊓⊔

5 Conclusions

In this paper we identified a new class of planar linear hybridautomata that have a de-
cidable reachability problem. The key aspect in defining theclass was requiring flows
to be monotonic. One can prove that the reachability problemis undecidable in 4 di-
mensions; see [9] for details. The3 dimensional case is an interesting open problem.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.Theoretical Computer
Science, 138(1):3–34, 1995.

2. Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical Computer Science,
126(2):183–235, 1994.

3. Eugene Asarin, Oded Maler, and Amir Pnueli. Reachabilityanalysis of dynamical systems
having piecewise-constant derivatives.Theoretical Computer Science, 138(1):35–65, 1995.

4. Eugene Asarin, Gerardo Schneider, and Sergio Yovine. Algorithmic analysis of polygonal
hybrid systems, part I: Reachability.Theor. Comput. Sci., 379(1-2):231–265, 2007.

5. Vincent D. Blondel, Olivier Bournez, Pascal Koiran, Christos H. Papadimitriou, and John N.
Tsitsiklis. Deciding stability and mortality of piecewiseaffine dynamical systems.Theoretical
Computer Science, 255(1–2):687–696, 2001.

6. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and PravinVaraiya. What’s decidable
about hybrid automata? InProc. 27th Annual ACM Symp. on Theory of Computing (STOC),
pages 373–382, 1995.

7. R.M. Karp and R.E. Miller. Parallel program schemata.Journal of Computer and System
Sciences, 3(2):147–195, 1969.

8. G. Lafferriere, G. Pappas, and S. Sastry. O-minimal hybrid systems, 1998.
9. P. Prabhakar, V. Vladimerou, M. Viswanathan, and G. E. Dullerud. A Decidable Class of

Planar Linear Hybrid Systems. Technical Report UIUCDCS-R-2008-2927, UIUC, January
2008.


