A Decidable Class of Planar Linear Hybrid Systems

Pavithra Prabhakar, Vladimeros Vladimerou, Mahesh Visilzan, and Geir E.
Dullerud

University of lllinois at Urbana-Champaign.

Abstract. The paper shows the decidability of the reachability probfer pla-
nar, monotonic, linear hybrid automata without resets s€tmitomata are a spe-
cial class of linear hybrid automata with only two variablefose flows in all
states is monotonic along some direction in the plane, amchioh the continu-
ous variables are not reset on a discrete transition.

1 Introduction

The use of embedded devices in safety critical systems, faspted extensive re-
search in the formal modeling and analysis of hybrid systétyisrid automata [1] are

a widely used formalism for modeling such systems. Thesenaichines with finitely
many control states and finitely many real-valued variabies evolve continuously
with time. The transitions depend on the values of the cootiis variables and they
change both the discrete control state as well as the vafuitbs wariables. The safety

of systems modelled by such automata can often be reduckd tpuestion of whether

a certain state aregion of the state space can be reached during an execution. This is
called thereachability problem.

Due to its importance, the reachability problem for hybudcemata has been care-
fully investigated in the past couple of decades. The prolik@s been shown to be
decidable for special kinds of hybrid automata includiimged automata [2], certain
special classes oéctangular hybrid automata [6], ando-minimal hybrid automata [8].
These decidability results often rely on demonstratingekistence of a finite, com-
putable partition of the state space thatigmilar to the original system.

However, such decidability results are the exception rathan the norm. The
reachability problem remains stubbornly undecidable deemery simple and special
classes of hybrid automata, not just in the general cases@tespecial class is that of
linear hybrid automata. In these automata each variable is constrained to evaing a
constant slope (with time), and despite such simple dynsirhave been unamenable to
algorithmic analysis even in low dimension (i.e., with véew continuous variables).
Timed automata, where each variable evolves synchronasiitya global clock, but
where the machine is allowed to compare clock values at the tif discrete transi-
tions?, is undecidable even for systems with 6 clocks [2]. The cdsgeneral linear
hybrid automata in which variables are constrained to bepewed only to constants,
remains undecidable even for just 3 variables [1]. Unddsxiityaresults for dynamical

! The decidability result for timed automata holds when ctoake only compared with con-
stants.

systems with piecewise constant derivative in 3 dimensiand piecewise affine maps
in 2 dimensions [5] provide further evidence.

In this paper, we prove the decidability for a special clddmear hybrid automata
that areplanar, monotonic anddon’t have resets. Planar refers to the fact that the au-
tomata has only two variables. Monotonic refers to the faatwe require the existence
of a vectorp such that the derivatives of the variables (viewed as a véttbe plane) in
all states have a positive projection algnaote, this does not mean that both variables
have positive derivatives in each state. Finally, the aatomdoes not reset/change the
values of the variables when taking a discrete transition.

The automaton model that we consider here is more generahie sispects, and
at the same time more restrictive in some aspects, when gechpath other hybrid
automata models for which decidability results are knowrstfvariables are not re-
stricted to clocks, like timed automata. Second, variahtesnot required to have the
same slope in all states, or for them to be reset when the flalvdaged, as in some
rectangular hybrid automata. Next, transitions don't ketveng resets that decouple the
continuous dynamics from the discrete, as in o-minimalesyst Finally, the guards and
invariants are not required to be disjoint, as in dynamigateams with piecewise con-
stant derivatives [3] or polygonal hybrid systems [4]. Oa tiher hand, our automata
only have 2 variables, no resets, and monotonic flows.

Despite the restrictive dynamics and planarity, the desiita proof is very chal-
lenging. Like many decidability proofs in this area, we fipstrtition the plane into
regions, which in our case are convex polygons formed by considéirieg associated
with the constraints appearing in the automaton descriptind lines perpendicular to
the direction along which the flow is monotonic. Such regibage a very special geo-
metric structure in that they are bounded by 2 to 4 line seg¢snanleast one of which
is a line segment perpendicular to the monotonic direcfidre first key idea in the
proof is to observe the existence of a lihgerpendicular to the monotonic direction,
such that the behavior of the automaton beyénsl bisimilar to a finite state system.
Then reachability computation is broken up into two pha#iesfirst phase computes
all points beforée that are reachable, and the second phase constructs thefsiihu-
lation for the points beyondand does the search in the bisimilar transition system.

The computation of the reachable regions befatself relies on observing that any
execution of the automaton can be seen as a concatenatisedta ofalmost-inside
executions. An almost-inside execution is an execution that starthatbioundary of
a regionR, entersR, and then leaves to another boundary®fall the while staying
inside R, while taking both discrete and time steps. The first lemmawmee is that
the effect of such almost-inside executions is computatrialf regions. However, in
order for the decidability proof to go through we need a gjarnresult for certain
special regions that we calight pinched triangles, we need to show that the effect
of concatenating finitely many almost-inside executions lsa computed. We do this
through a tree construction reminiscent of the Karp-Mittee [7] for vector addition
systems. Finally, we solve the reachability result for oegi before? by another tree
construction. A carefully counting argument coupled witle tnonotonicity of flows
ensures that this tree will be finite and hence effectivehstuctable. Space constraints

prevent us from giving detailed proofs of the decidablityuie here; complete proofs
can be found in [9].

2 Anexample

We will first illustrate our algorithm for deciding reachétyi on an example. Con-
sider the hybrid systerfl given in Figure 1. It has five locations, - - - , s5, with flows
fi, -+, fs, respectively, associated with them. The locations arellieth by their in-
variants. For example, the invariant associated with lonat; isy < 1, and this says
that the control of the system can besinonly if the value of the variablg is less than
1. When in a certain location the values of the variables chaugording to their flow.
If the system starts withh = 0 andy = 0 at locations;, and spends a unit time, then
the values of the variables would be= 1 andy = 2. However in this case the system
is forced by the invariant to leave the location before hialEtunit. We note thatl is a
monotonelinear hybrid system, where by linear we mean that the flows assatiaith
the locations are constants, and by monotone that the flovesd@ositive projection
along some direction, in this case th&xis as shown in Figure 2.

f1
¥ | f3 = fs
: P

' fa

Fig. 1. Linear hybrid systent Fig. 2. Flows of the hybrid syster#l

We will consider the following reachability problem: Is tlecations; reachable
starting froms; with = 0 andy = 0? As shown in Figure 3, this translates to
checking if starting irs; at pointO, we can reach the shaded region in locatign

We first divide the plane into regions depending on the cairgs in H. Corre-
sponding to each constraint Bf, there is a straight line, as shown by the solid lines in
Figure 3. We also add lines parallel to theaxis passing through the points of inter-
sections of these lines, if one does not already exist. Aasgyeseen, the interior of a
region is invariant with respect to the locations in thateitit is contained in the invari-
ant of a location or is disjoint from it. Hence with each elernef a region which is its
interior, its edge without the end-points or its vertex, \ea associate a set of locations
whose invariants contain the element. For example, thefdetations corresponding
to the interior of region is {s1, s2, s3}.

The idea of the algorithm is to compute successors for themegGiven a part of
an edge, called a subedge, and a location, the successoesptict to a region is the set

Fig. 3. Regions of the hybrid systefii

of all points on the boundary of the region reachable by mgwinly in its interior, and
leaving and entering the boundary at most once. For exarstaleing from point4 in
locationss, we can reacly by following flow f5 of s3 and moving only in the interior
of region3. Hence(ss, J) is in the successor dksz, A). As a slightly more interesting
example, consider the problem of finding the successorsiaf pbin region1. These
are exactly the points betweehand B in locationss, andss, the points betwee
and C in locationss; andss and the pointB in locationss. We will represent this
succinctly agsy, B'C"), (s2, A’B’), (s3, BC") and(s3, A’ B), whereA’ indicates that
point A itself is excluded. The above subedges are computed in Hogvfog way. The
locations corresponding to regidnare s, s andss. Let us consider the underlying
graph ofH restricted to locations and guards which contain regidrhe same is shown
in Figure 4. We observe that any path fréhin locations; spends time alternately in

Fig. 4. Underlying graph of restricted to region

ands., and then possibly makes a transitiostavhere it spends additional time before
reaching the boundary. We will show that the set of all poietchable by alternating
betweens; andss is exactly the set of point in the cone generated’bynd f> which
are also in the interior of regioh namely, the points inside the parallelogré BC

in the figure. This is true only becausgands, belong to the same strongly connected
component of the underlying graph corresponding to regiowe then show how to
compute the set of points reachable starting from theseuwitth respect to the next

maximal strongly connected component, in this casén this example it turns out that
the points reachable by moving aloifg from points in the parallelograf® ABC' is
OABC itself.

Now coming back to our original problem of finding if there is execution oftl
starting at poinO in locations; to some point in the shaded region in locatignwe
will build a rooted tree, called theeachability tree. Its nodes are labelled with pairs
of locations and subedges and the root is labglled0). The children of any node are
labelled with the elements of the successors of the lab&leoftirrent node with respect
to every region it is adjacent to. The above computation isexh out with respect to
every region to the left of the line = 2. This gives us the set of all pairs of locations
and points reachable on this line. Figure 5 shows some périoiree.

(s1,0)

(s3,BC’) (s1,B'C') (sg,A’B’) (s3,A’B)

KEBE)(‘LDE) /]M\

(53, 1B) (s4,1BE) (s4, LE")(s4, FH)(s4, HE)(3 BE')(s3, KE)(4BE)(4KE)

(s4, HG)

Fig. 5. Reachability tree

Our next goal is to show that this tree is finite. As a first steqahieve this, we prune
some branches of the tree. The nddg LE’) is removed from the tree as its parent
(s4, BE') contains all the required information. The finiteness ofttke follows from
two observations, namely, the number of children of any risdmite and every path
in the tree is bounded. We can then apply Konig’s Lemma to lcoiecthat the tree is
finite. To show that a path is finite, we have from the monotionaf the flows that the
leftmost point of any child of a node is to the right of the teétst point of the node. For
example, thec-coordinate of the left-most point @@ which isO itself is less than that
of A which is the leftmost point o\’ B, which is in its successor. However, there is a
priori no minimum distance by which this shift to the right occurs. Such a boaists
if the successor is with respect to a region which is a trapezlike regionl. It is not
clear for a “left-pinched triangle” like regiof. However for this case we argue that
though a global minimum does not exist, given any path of the such a minimum
exists. In case of a “right-pinched triangle” like regidneven such a local minimum
does not exist. Hence, instead, in this case we compute rhesitive closure” of the
successor with respect to the region, which is the set ofalitp reachable on the
boundary by moving withinR and touching the boundary any number of times. We
show that this is computable when the constraints correfipgrio the boundary are

strict. We then use the assumption that there are no adjegaivpinched triangles, to
argue that the paths of the tree are finite.

We cannot continue with the construction of the tree beybadiher = 2, because
all regions to the right of this line are unbounded. This migtentially lead to infinite
paths in the tree. So we stop building the tree at the limdich passes through the
leftmost vertex, and show that there is a finite bisimulatibthe states corresponding
to the regions to the right of this line. This bisimulatiomdae computed. Hence we
can decide the reachability.

3 Preliminaries

3.1 Linear Hybrid Systems
A linear hybrid system (LHS) H is a tuple(S, Sy, E, X, flow, inv, guard) where

— Sis afinite set of locations,

— So C S'is the set of initial locations,

— FE C S x Sisthe set of edges,

— X =A{y1,---,yn} is afinite set of variables,

— flow : S — Q™ associates a flow with every state,

— inv : S — Guardsis a function associating an invariant with each state, and
— guard : E — Guardsis a function associating a guard with each edge,

whereGuards = 2€ andC is a finite subset of >0 aiyi ~ bi|a;, b € Q,~e {<,>
}}. We call the elements df which occur in the codomain @hw and guard, the set
of constraints associated witfil. The size ofX is called thedimension of H.

We note that the definition of the hybrid system above desifitam the standard
definition in that we danot allow resets and the constraints are restricted tostréct

We define the semantics of difiS in terms of atransition system. The transition
system offl is a triple(X, Xy, —), whereX = SxR" is the set of states &f, Xy C X
called the set of initial states consists of st@tev) such thats € Sy andv € inv(s),
and thetransition relation — is a binary relation on the set efates X'. The transition
relation— is defined as the union ofscrete transitions—, andcontinuoustransitions
—, which are defined as:

= (s,v) —q (¢,v') if v = v/ and there existe = (s,s’) € E such thatv €
inv(s) Ninv(s’) N guard(e).

— (s,v) —¢ (¢,v')if s = ¢ and there exists € R such thatt > 0 andv’ =
v+ flow(s)t, and for allt’ € [0,¢], v + flow(s)t’ € inv(s).

An execution of H from a stat€sq, v1) is a sequence of statés, v1) - - - (s, v,) Such
that foralll <i < n, (s;,v;) — (Si+1,vi+1). We then say thats,,, v,,) is reachable
from (s1,v1), and denote it by(si,v1) —* (s,,v,). We can represent an execution
(s1,v1)(s2,v2) - - (8p,v,) @s a functions : [0,¢] — ST x R"™. We defines as a
pair of functions(c?, 02), wheres! : [0,#] — ST gives the sequence of locations
at any time point and? : [0,t] — R™ gives the values of the variables. With each
(siyv;) — (Si+1,vi+1) We associate delay d;, whered; = 0 if v; = v;41, and

d; = (Vi1 — vi)/flow(s;) otherwise. Let; = 22:1 d;. We sett = t,,_;. We define
ol(t') = s; if t' € (ti—1,t;), otherwises! (¢') = s;--- s;, wheret’ = t; andt;_1 #
ti = tiz1 = -+ = t; # tj41. We defines?(t') for t’ € [t;_1,t;] inductively. We set
o? (O) =1 ando? (t/) = 0'2(151',1) —|—ﬂ0w(si)(t’ — tifl) fort’ e [tifl, tl] A run of H
is an execution starting from an initial state.

3.2 Elements of the two dimensional plane

We define some elements of the two dimensional plane formestrbjght lines. A
convex closed polygonal set P is the intersection of finitely many closed half-planes.
We simply call P a convex polygon. Thénterior of P, denotedinterior(P), is the
intersection of finitely many open half-planes correspogdo the closed half-planes
of P. Theboundary of P, denotedboundary(P), is P — interior(P). An edge of P

is @ maximal convex subset bbundary(P). We denote the set of all edges Bfby
edges(P). A vertex of P is a point of intersection of two distinct edges®f The set of
all vertices ofP will be denoted byvertices(P).

We call a convex subset of an edgesubedge. The end-points of a subedgeare
pointsa andb such thate consists of all points on the line segment joinim@ndb,
except possibly, andb themselves. We denote this byd-points(e) = {a} U {b}. The
subset ok without the end-points will be denotegen(e), which ise — end-points(e).
The elements of the subedgare then its end-points which are contained and the
open(e). This is denoted bglements(e) = {open(e)} U{a | a € end-points(e), a € e}.
From now on, by a convex set, we mean a polygon, interior oflggom, or a subedge
of a polygon.

3.3 Restricted hybrid systems

We call anL HS H monotone if there exists ary € R™ such that for all locations of
H, flow(s).f > 0, where. is the standard dot product. We call suchfaadirection of
H.

We will call a linear hybrid systenplanar, if its dimension is two. A planar lin-
ear hybrid system is said to tsEmple if no three distinct lines corresponding to its
constraints intersect at a common point, where the lineesponding to a constraint
S, aiy; ~ b; is the set of points satisfyiny .-, a;,y; = b;.

3.4 Notations for planar hybrid systems

Let us fix a simple monotone planar linear hybrid systére (S, Sy, F, X, flow, inv,
guard) for the rest of the paper. Le&X = {z,y} and fy be a direction ofH. Let
us fix our coordinate system such that thexis is parallel tofy and they-axis is
perpendicular to it. Given a subedgeve defineleft(e) to be the infimum of the:-
coordinates of the points imandright(e) to be the supremum of the-coordinates of
the points ire.

Let V be the set consisting of the points of intersections of theslicorresponding
to the constraints ifil. Let us associate withl a set of lines which are parallel to the

y-axis and contain some pointIn. We denote this blines(H). We can order the lines
of Hasly,ls, - ,l; such that forany <i < j <k, if v; andv; are the points in

V which are contained ify and/; respectively, theteft(v;) < left(v;).

Let L be a set of lines which contaitismes(H) and the lines corresponding to the
constraints irHl. We associate a set pdgionswith H which consists of polygons whose
interiors are non-empty and which are formed by choosingtéxane closed half-plane
corresponding to each line ih. We denote this byegions(H). We useregions(H, ¢, j)
to denote the regions @f which are contained in the set of points between lipesd
1; of lines(H). Also regions(H, 0, j) andregions(H, i, k + 1) denote the set of regions
contained in the set of points which occur to the lef{ pnd the set of points which
occur to the right of;, respectively. Note that two distinct regionsragions(H) have
non-intersecting interiors, and the union of all the regigives us the whole plari?.

Following are a few observations about the regionBlpf

1. The regions imegions(H, 0, 1) are unbounded and have two or three edges.

2. The regions iegions(H, 1, k) are either triangles, or trapeziums, or unbounded
regions with three edges. For the triangles, one of the eldgamntained in some
l; and its vertex not on that edge is contained in either or I;,_; . If the vertex is
contained in;11, then we call the triangle eght-pinched triangle otherwise we
call it aleft-pinched triangle. For the trapeziums in this region, we will call its edge
aparallel edge if it lies on one of thg’s.

3. The regions imegions(H, k, k + 1) are unbounded with two or three edges.

From now on by a subedge we mean a subedge of the edge of soioe irg
regions(H). We abuse notation and call a p&it e) wheres € S is a location an@ a
subedge, also a subedge. However it will be clear from théezomwhich one we mean.
The subedgés, e) is said to contain the stafe, v) wherev € e. Two subedgess, e)
and(s’,¢’) are said to be disjoint if the do not contain any common sByea state
(s,v) or a subedgés, e) being on a subedgé or a linel we mearw or e is contained
in ¢’ orl. Similarly we use regions also for pairs of states and region

We will focus on the following problems in the rest of the paphe point-to-
point reachability and the region-to-region reachabilitiie point-to-point reachabil-
ity problem s to decide given two statés;, v;) and(sq, ve), if (s1,v1) —* (s2,v2).
The region-to-region reachability problem is to decide given two location-regpairs
(s1, R1) and(sq, R2), if there exist point®; € R; andvy € R, such that(sy,v;) —*
(827 UQ).

4 Decidability of the reachability problem

In this section we show that the point-to-point and regiomeigion reachability prob-
lems for simple monotone planar linear hybrid systems isdadxe. We will continue
to use the notations introduced in the previous section. Wediesent a sketch of the
proof of decidability.

1. We first show that thedge-to-edge reachability problem is decidable: given a
subedge(s, e) of a regionR € regions(H, 0, k), we can compute the set of all
states ori; which are reachable from the states on the subedge.

2. We then show that there exists a computable finite bisitiomlaf the transition
system ofH restricted to the states on and aftgrwhich respects the partition
created by the elements of the regionsagions(H, &, k + 1).

3. We then use the above results to decide the point-to-amidtregion-to-region
reachability.

4.1 Edge-to-edge reachability

In this section we solve the problem of finding the set of @test on the liné; reach-
able from a subedgs, e) of some regionk € regions(H, 0, k). Any execution from
a state in(s, e) to a state ori, can be broken up into a sequence of executions each
of which is such that they move within a single region and éeaventer its boundary
at most once. Our approach is to build a tree whose nodessexgreubedges, and the
states corresponding to the nodes of the children of a nodetge set of all points
reachable from the states in the parent node by executioichwiove within a region.
Then any path in the tree would correspond to executionsirgjairom states in the
root. We call this theeachability tree. We show that the tree is computable and finite.
Then the set of all states in the tree which correspond totéttessonl;, will give us the
required.

We first compute the set of all states reachable from a subleggeoving only
within a region. We define asl most-inside execution with respect to a region to be an
execution which leaves the boundary of the region at most and enters the boundary
of the region at most once, and at all times during the execu$ in the region. An
almost-inside executio(-execution) from a statés, v) to a statgs’, v’) with respect
to a regionR is an executionr : [0,t] such thato!(0) containss ando2(0) = v,
ol(t) containss’ ando?(t) = ', and there exist;, to € [0,¢] such that for alt’ €
(0,t1]U[t2,), 0%(t') € boundary(R), and forallt’ € (t1,t2),0%(t') € interior(R). We
say thata subedde’, ¢’) is reachable from a subedse e) by almost-inside executions
with respect to a regioR, if for everyv’ € €, there exists @ € e and anAl-execution
from (s,v) to (s’,v). The successor of a subedgee) with respect to a regioR is a
subedge ofk reachable fron{s, e) by Al-executions with respect tB. We denote by
succ((s, e), R) the maximal successors ¢, e) with respect toR, where a successor
(s, ¢') is maximal if for every success@s’, "), ¢’ C €.

In the next lemma, we show thaticc((s, e), R) is computable. A notion that we
use is that of the underlying graph of the hybrid system iastt to those locations
and edges whose invariants and guards respectively asfieghtby the elements of
a region. Given a set of poinig, we define the underlying graph &f with respect
to V to begraph(H, V) = (Wi, Em,) such thatly = {s € S|V C inv(s)} and
Eg={ec E|V C guard(e)}.

Lemma 1. Given aregion R € regions(H) and a subedge (s, ¢) of R, succ((s, e), R)
is computable.

Proof We consider the maximal strongly connected componentafitiderlying graph
graph(H, interior (R)), and first compute the set of all states on the boundary rééeha
by moving in a single component. Then we show how this can bd tescompute all
the states reachable.

Given a graplG, let us call the graph with these strongly connected compisne
as vertices, the component graph@®f and denote it aSCC(G). There is an edge
between two vertices iBCC(G) if there is one between two states of the components
in the original graph. Note that maximality of the comporsagives us thaBCC(G) is
a directed acyclic graph.

We observe that anil -execution from a state ifs, e) to a state on the boundary of
R would correspond to a path BCC(G). For each such path = C,Cs - - - C,, where
C;’s are the strongly connected components, we compute ttessia the boundary of
R reachable byl -executions which follow this path. We do the computatierdtively.

We first find the states reachable by moving only in the compb@ie.

To compute the above, we need a notionpo$t of a convex subset of a region
with respect to a set of flows, which is the set of all pointshia tegion reachable by
following the flows and always remaining in the interior oétregion except possibly
at the end-points. We can show tipast(P, F, R) is computable, wher® is a convex
subset of regiork and F' is a set of at most two flows, and that it can be expressed
as a finite union of convex subsets. A crucial observatiomas torresponding to a
trajectory followingF" from a point inP to any point inR, there is one which moves
only within R. The only exceptions are the verticesifbut it can be tested separately
if they can be reached. It turns out that the set of all poim#® reachable from a point
in P are those in the cone generated by the flows.ifThis can also be extended to any
convex subset by taking the convex hull of the sets corredipgrto the vertices of.

The details of the computation pbst(P, F, R) are given in [9].

Now the set of all points reachable on the boundary by folhmflows in the com-
ponentC is given bypost(e, F, R), whereF contains those flows associated with the
locations inC; which make a maximum or a minimum angle wjih. Further the points
in post(e, F, R) which are in the interior o can be reached in any location@f. A
pointsp in post(e, F, R) which is on the boundary and is reached from some point in
e by moving in R for some non-zero time, can only be reached if there is aitmtat
which is in bothC; andgraph(H, e), that is, there is an execution which can move into
the interior, and there is a location which is in bath andgraph(H, p), that is, there
is an execution which moves from the interior to the boundafy then compute the
set of all states on an edge reached by moving along the boufrden points on the
boundary given byost(e, F, R). Suppose that we have found the set of all states on the
interior and boundary reachable by the prefix of the patii C;. We can then compute
the post of the interior points with respect to the flowshf ;, and compute the states
reached when id’; 1, similar to above. Again the details can be found in [9].

Once we have found the set of states reachable atomge can take the union of
all the states over all the's to get the set of all states on the boundary reachableeSinc
at each point in the procedure above we get a representdtthe eet of states on the
boundary reachable as a finite union of subedges, and thearwhpathsr is finite,
we can computsucc((s, e), R). O

Now that we have shown thaticc((s, e), R) is computable, we can construct the
reachability tree. However we also want to show that theigréinite, and we will show
this by ensuring that the paths in the tree are finite. We vdlthis by showing that
along any path the successors move to the right by at least stimimum distance.

In the case of a right-pinched triangle such a minimum doe¢®xist. Hence we will
compute the transitive closure afcc, calledsucc* where we consider points reachable
by a sequence dhl-executions such that the last state of an execution is sarttea
first state of the next execution. The intuition behind tkishat if we computeucc*
instead ofsucc for a subedge with respect to a region then we will not needtsicer

the succ of the elements iisucc* with respect to the region, as those states are already
included insucc*. We will see that the simplicity of the system can then be used
argue that the paths in the reachability tree are finite. N@xima says thatucc* is
computable.

Lemma 2. Given a right-pinched triangle R in regions(H, 1, k) and a subedge (s, ¢)
of R, succ*((s, e), R) iscomputable.

Proof Let the right-pinched triangl& beabc with the edgeib on somd,; andconl; 14
as shown in Figure 6. Lét, ¢) be a subedge aic. We first compute the set of all states

li Ly

Fig. 6. Right-pinched trianglebc

onac reachable by a sequence of one or mdieexecutions. For this, we build a tree
T*(s, e) rooted at nodés, ¢). We will need the following new notion of successor. Let
us denote byucc, ((s1,e1), R) the set of states reachable enby executions which
touchbc at most once in the following sensercc; ((s1, e1), R) = {(s2,€2) | (s2,e2) €
succ((s1,e1), R),e2 C act U {(s3,e3)]|(s3,e3) € succ(sz,e2),e3 C ac, (s2,e2) €
succ((s1,€e1), R),ea C be}.

We now define how the tree is constructed. We will simultasgomark nodes in
the partial tree constructed. The children of a n¢deec;) are the elements,, e5) in
succy ((s1, e1), R) such that there is no nods,, —) along the path from the root to the
node(sy, e1). For every elemertiss, e2) in succ; ((s1, e1), R) such that there is a node
(s2,€’2) along the path from the root to the noflg, e1), we mark the nodéss, '5).
Note that a node could get marked twice. The constructioneefwill terminate since
it is finite, which is due to the fact that the number of childog any node is finite and
the height of the tree is bounded by the number of locations.

We now describe how to compugecc* ((s, e)) from the tree constructed above. We
form a setd which contains all the nodes @f (s, ¢), and for each nodgs, e;) which
belongs to a subtree of some marked node, it containéull(e;)), wherefull (e;) is the
subedge: of ac such thateft(es) = left(er) andright(es) = right(c) ande, contains

the pointsieft(e1) andc if and only if e; contains themA contains all points omc¢’
reachable fronfs, e) by moving only within the triangle and touching the boundamy
number of times. This is because if from a stétev;) we can reach a state, v2) by
an executionr, whereuvs is strictly to the right ofv;, then we can reach any point to the
right of v; by taking a sequence of one or more executions whose tr@amsiiquence
is same as that of but with possibly less time spent in each location. Simjlafl
(s1,e1) can reach(sz, e2), then(sy, full(e1)) can reach sq, full(ez2)). For details, see
[9]. Hence it makes to sense to take fhé of all nodes in the subtree of a marked node.
To compute the set of states bl reachable, we observe that such a state is reach-
able only from and I-execution starting from some state @ti. Hence the reachable
states orbc’ B can be computed by taking ttsacc of the maximal subedges of.
Finally, if ¢ is reachable then it is reachable by 4f-execution starting from a state on
ac’ or bc’, hence will be included in theucc of the subedges id or that of B. Hence
all points insucc*((s,), R) can be computed. O

We show below that the set of all states reachable on theljing computable.
As already said before, we construct a tree usingstive and succ* to compute the
children of the nodes. The nodes of the tree will correspoattty to the states on
edges of regions iregions(H, 0, k) reachable from some subedge of some region in it
for which the tree is built.

Lemma 3. Given a subedge (s*, e*) of aregioninregions(H, 0, k), the set of all states
on [, reachable from some state on the subedge is computable.

Proof Construction of the reachability tree Treacn((s*, €*)). We construct the reach-
ability tree, in which the nodes correspond to subedgestrandhildren of a node cap-
ture the set of all states reachable from the states of therdurode byAl -executions. A
particular child of a node correspondsAb-executions with respect to a single region.

We first definetsucc of a subedge with respect to a region which consists of states
reachable byAl-executions in this region. We break up the subedges in&létaents,
because when computingucc, we require that all points of a subedge belong to the
same set of regions. Note that otherwise, the end-point abadge which is a vertex
could belong to a different set of regions than the subedteowt the end-points.

For a subedgés, e) of a regionR, tsucc((s, e, R)) is given by:

— If R is not a right-pinched trianglesucc((s,e, R)) = {(s',el,R")|(s',¢') €
succ((s, e), R), el € elements(e’),el C R', R' € regions(H, 0, k)}.

— If R is a right-pinched trianglesucc((s, e, R)) = {(s',el, R')| (s',¢’) € succ*
((s,e), R),el € elements(e’),el C R', R’ € regions(H, 0, k), R # R'}.

The root ofTreacn((s*, €*)) is *. The children of are the element of the sgts*, e*, R) |
e* € R, R € regions(H, 0, k) }. The children of any nodés, e, R) are the elements of
tsucc((s, e, R)) which contain at least one state which has not occurred icuhent
node or any of its ancestors, that is, an elerm@nte;, R;) is present in theésucc of
the current nodés, e, R) if for all nodes(s1, e3, R1) which is the current node or its
ancestor, there existsvasuch that € e; — es.

We sketch below a proof of finiteness of the tfegen((s*, e*)). Details are given
in [9]. First we make a few observations which are crucialrjuéng the finiteness.

1. Let(s,e) and(s’,¢’) be elements of subedges of a regiBnThen if (s',¢’) €
tsucc((s, e), R), thenleft(e) < left(e’) andright(e) < right(e’). This follows from
the monotonicity of the flows iffl.

2. Givenanyregiotk € regions(H, 1, k), and(s, ¢) and(s’, ¢’) elements of subedges
of R which are not on th&’s such tha(s’, ¢’) € tsucc((s, e), R), we have:

(@) If Ris atrapezium or an unbounded region, then eitight(e’) is on somé;

or there exists dr > 0 such thatight(e’) > right(e) + dg.
(b) If Ris aleft-pinched triangle, then eitheght(e’) is on somé; or there exists a

d which increases monotonically witight(e) such thatight(e’) > right(e) +

d.
Now turning to the proof, by construction the above tree isdip branching. To see
that every path in the tree is also finite, we can deduce frenaliove observations
that (a) there is a bound on the number of consecutive childdgose right-end
points do not move closer i (the bound is the number of locations), (b) when
the successors are computed with respect to a trapeziunhaniyht-end moves
strictly to the right, there is a minimum distance by whick #hift occurs namely
the minimum of all theig's, (c) when the successors are computed with respect to
a left-pinched triangle the minimum distance is non-zem @epends on the right-
end point of the first occurrence on the path of one of its efgmpot contained
in any/;. This along with the simplicity of the system which guarast¢hat two
right-pinched triangles are never adjacent to each otheghbtain a bound on the
length of any path. Finally, from Konig’s Lemma, we have tthett tree is finite.

O

4.2 Finite bisimulation

We show that the states Hf corresponding to the regionstiegions(H, k, k + 1) have

a finite bisimulation. A binary relation- over a set of states is l@simulation if it

is symmetric and for every pair of statés,, v1) and (sa,v2), if (s1,v1) ~ (s2,v2)
and (s1,v1) — (s'1,v'1), then there exists a stat@’s, v’2) such that(se,v2) —
(s'2,v'2) and(s’y,v'1) ~ (s'2,v'2). We will show that there exists a computable equiv-
alence relation- of finite index on the set of states magions(H, &, k + 1) which is a
bisimulation and which respects the partition created kyeflements of the regions in
regions(H, k, k+1). By partition created by, we mean the two parts, one consisting of
the states ofy, and the other consisting of the rest of the statesgons(H, &, k + 1).

We define~ as follows.(s1,v1) ~ (s2,v2) if s1 = s2 andvy, vy belong to the
same element of a region. To see that this is a bisimulatiosider(s, v;) and(s, vs)
wherewv; andv, belong to the same element of some regiortslf;) takes a discrete
transition to(s’, v1), then so cars, v2) to (s, v2) as the guards and invariants respect
the elements of the regions. Suppdsev;) takes a continuous transition {e, v'1),
then there is a straight line from the to v’; which passes through a finite sequence of
infinite edges and interiors of the regions. There existsagdtt line fromv, parallel
to the above which moves through the same sequence of eddjesgons. Hence we
can find a point’, in the required region.

Since the number of regionsiiegions(H, &, k£ + 1) is finite, the number of elements
of these regions is also finite. Hence we have a finite bisitiounla

4.3 Point-to-point and region-to-region reachability

Theorem 1. Point-to-point and region-to-region reachability problems are decidable
for simple monotone linear hybrid systems.

Proof To check if statés’, v’) is reachable fronfs, v), add two more lines ttines(H)
which pass through and+’, and are parallel tg-axis. Then check ifs’, v") corre-
sponds to any node ifieacn((s, v)).

To decide if(s’, R) is reachable fronfs, R), whereR, R’ € regions(H), first com-
pute the set of subedgest(R) of R reachable from points ifk. For each subedge
(s*,e*) € init(R), compute the set of subedgesiinreachable, and then take their
union. If R’ € regions(H, k, k + 1), then construct the finite bisimulation to decide if
R’ is reachable. Otherwise check if any statgsh R’) is reachable from the set of
subedges on its boundary reachable from statestfr). a

5 Conclusions

In this paper we identified a new class of planar linear hyadtbmata that have a de-
cidable reachability problem. The key aspect in definingdlags was requiring flows
to be monotonic. One can prove that the reachability prob¢eondecidable in 4 di-

mensions; see [9] for details. TBalimensional case is an interesting open problem.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. HenzingetfHPHo, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hgiteystemsTheoretical Computer
Science, 138(1):3-34, 1995.

2. Rajeev Alur and David L. Dill. A theory of timed automatéheoretical Computer Science,
126(2):183-235, 1994.

3. Eugene Asarin, Oded Maler, and Amir Pnueli. Reachabdlitglysis of dynamical systems
having piecewise-constant derivativ8$ieoretical Computer Science, 138(1):35-65, 1995.

4. Eugene Asarin, Gerardo Schneider, and Sergio Yovine.orilgnic analysis of polygonal
hybrid systems, part |: Reachabilityheor. Comput. Sci., 379(1-2):231-265, 2007.

5. Vincent D. Blondel, Olivier Bournez, Pascal Koiran, Glos H. Papadimitriou, and John N.
Tsitsiklis. Deciding stability and mortality of piecewiaéfine dynamical system3heoretical
Computer Science, 255(1-2):687-696, 2001.

6. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pradmaiya. What's decidable
about hybrid automata? Froc. 27th Annual ACM Symp. on Theory of Computing (STOC),
pages 373-382, 1995.

7. R.M. Karp and R.E. Miller. Parallel program schemafaurnal of Computer and System
Sciences, 3(2):147-195, 1969.

8. G. Lafferriere, G. Pappas, and S. Sastry. O-minimal laykystems, 1998.

9. P. Prabhakar, V. Vladimerou, M. Viswanathan, and G. Eldbudl. A Decidable Class of
Planar Linear Hybrid Systems. Technical Report UIUCDC8&R8-2927, UIUC, January
2008.

