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Abstract. Discretely controlled continuous systems (DCCS) represent
an important class of hybrid systems, in which a continuous process is
regulated by a discrete controller. The paper introduces a novel model-
based design procedure for periodically operated DCCS with the objec-
tive to produce a periodic stationary operation. The method exploits
an equivalence to periodic control systems to obtain an event-driven
switching strategy that locally stabilizes a predetermined limit cycle and
enforces a desired transient behavior. In contrast to earlier results, the
controller responds to deviations without a dead time.

1 Introduction

Discretely controlled continuous systems (DCCS) have recently received much
attention throughout the hybrid systems community [1,2,3,4,5,6,7]. Such systems
form a control loop composed of a continuous plant and a discrete-event con-
troller (Fig. 1(a)). This structure is found in many application domains, such as
power electronics, manufacturing systems, process engineering, mechanics and
robotics. The control task of DCCS is to switch the plant’s mode of operation
at opportune moments to meet specifications defined in terms of the continu-
ous variables at stationary operation. As a central characteristic, the working
principle of these systems demands a never ending switching action, which pre-
vents the continuous state trajectory to converge towards an equilibrium state.
Instead, a periodic or even a chaotic stationary motion is observed.

This paper presents a novel model-based design procedure for the event gen-
erator included in the discrete controller. The presented approach produces static
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Fig. 1. Structure of a DCCS: (a) control loop, (b) discrete controller.



switching planes and allows to influence the local loop properties systematically.
Compared to previously published approaches, the discrete controller is of lower
complexity and its control actions are instantaneously applied without any de-
lay. The method does not impose any restrictions on the number of continuous
states or the number of operation modes. Furthermore, it allows for a partial
design, if a subset of system-inherent switching surface must not be altered.

The paper is organized as follows: Section 2 recalls the model of a DCCS.
Following the problem formulation (Sect. 3), all design steps are presented in
Sect. 4. The key idea is to recast the original problem into a periodic linear
control problem (Sect. 4.1). With the equivalence stated in Theorem 1, novel
results for checking the local stabilizability of a DCCS along a closed orbit are
derived (Sect. 4.2) and summarized in Theorem 3. Section 4.3 classifies modes
as effective or ineffective, which is crucial for obtaining feasible design results.
Section 4.4 summarizes the design algorithm, which is successfully applied to
a laboratory plant in Sect. 5. The experimental data demonstrate the excellent
loop performance, which is attained by this discrete controller.

Literature. In the past, research work on DCCS primarily focused on anal-
ysis methods, whereas model-based design approaches have only been scarcely
developed. Recently, the optimal start-up of DCCS under known initial condi-
tions was addressed in [8,9] and extended to unknown initial states in [10,11].
Lyapunov-based switching with application to switching power converters was
discussed in [12,13]. The primary objective considered in these publications is to
drive the continuous trajectory into a neighborhood of a desired terminal state.

The problem of stabilizing limit cycles of smooth nonlinear systems, on the
other hand, has been investigated over the past two decades starting with [14].
It was extended to non-smooth dynamical systems in [15], where the authors
advocate the use of switching and state-resetting to affect the stability of recur-
rent motions. The question of how to systematically design the ”control law” in
case of multiple control interactions over one period remained unanswered, until
a model-based solution was presented in [16]. The approach proposed therein
relies on the dynamic adjustment of nominal switching surfaces by means of a
switching surface controller (SSC). Because the resulting controller responds to
deviations with a potentially large delay, the loop performance may be unsat-
isfactory in the presence of disturbances. Moreover, the approach assumes the
knowledge of nominal switching planes, which have a strong influence on the
amplitude of the control actions issued at runtime. Therefore, an important as-
pect is to determine the best possible nominal switching plane orientations with
respect to the control objective, which is addressed in this paper.

2 Modeling of periodically operated discretely controlled
continuous systems

2.1 Hybrid model

The main contribution of this paper is a novel model-based design method for the
event generator of periodically operated discretely controlled continuous systems



(DCCS), i.e. systems that recurrently execute a predetermined sequence

QLC =
(
q̄?
0 q̄?

1 . . . q̄?
p−1

)
(1)

of p distinct operation modes q̄?
i 6= q̄?

j . This section summarizes a model, which
reflects all relevant aspects of the closed-loop behavior and represents a tailored
version of the general hybrid model introduced in [16,17].

The model consists of three components: a continuous plant, an event gen-
erator and a discrete switching logic (Fig. 1(b)). The continuous dynamics are
governed by the state equation

ẋ(t) = f(x(t) , q(t)) , x(0) = x0 , (2)

where x ∈ IRn is the continuous state. The plant’s sole accessible input q(t)
is restricted to the finite set Q =

{
q̄?
0 , . . . , q̄?

p−1

}
of operation modes. For each

mode q̄?
k, the continuous dynamics (2) possess a different equilibrium state.

The event generator implements a piecewise affine event function

Φ(x, q) = cT(q) x(t)− d(q) , (3)

which implicitly defines a switching hyperplane

S (q) = {x : Φ(x, q) = 0} (4)

for each mode q. The vector cT(q) and the scalar d(q) determine a plane’s orien-
tation and its location in the state space. The event generator outputs a trigger
signal

clk(t) =
{

0 , if |Φ(x(t) , q(t))| > 0
1 , if Φ(x(t) , q(t)) = 0 ,

which initiates an update of the memory (D) according to

q̄(k+1) = q
(
t̄(k+1)+

)
= q̄?

((k+1) mod p), q̄(0) = q̄?
0 (5)

at the switching time

t̄(k+1) = min
t>t̄(k)

t : clk(t) = 1 .

Here t̄(k)+ denotes the limit from above. As the DCCS is assumed to execute the
predetermined mode sequence QLC, the second output e(t) of the event generator
(Fig. 1) can be omitted. In the following, signals

x̄(k) = x(t̄(k)) , q̄(k) = q
(
t̄(k)+

)

sampled at switching instants are indicated by a bar and enumerated by a counter
k. The time span

τ̄(k) = t̄(k+1)− t̄(k) > 0



is called the activation duration of mode q̄(k) and τ denotes the elapsed time
since the last switching. A DCCS execution over N switchings is denoted by

χ
(
xh

0 , t0, N
)

= (x(t) , q(t) , T (N)) , xh
0 =

(
x0 q̄?

0

)
T, t ∈ [t0, t̄(N)] (6)

with T (N) = (([ t0, t̄(0) ] , ( t̄(0), t̄(1) ] , ...) being a finite sequence of N activation
intervals. The continuous state evolution starting in

(
x0 q̄?

0

)
T is referred to as

x(τ, x0, q̄
?
0). Executions χ?(xh,?

0 , 0, N) that satisfy

q̄?(k + p) = q̄?(k)
x?(τ, x̄?(k + p), q̄?(k + p)) = x?(τ, x̄?(k), q̄?(k)) , ∀τ ∈(0, τ̄?(k) ]

for all k ≤ N − p are called periodic of order p and are indicated by a star. The
corresponding closed orbit LLC traced out by χ?(xh,?

0 , 0, p) is called the limit
cycle. For notational convenience, let x̄?(q̄?

k) denote the switch point x̄?(k) ∈
LLC, at which the mode q̄?(k) = q̄?

k is activated for the next τ̄?(q̄?
k) time units.

Remark 1. Any periodic execution χ?(xh
0 , 0, p) satisfies

min
τ∈[0, τ̄?(q̄?

k))

∣∣cT(q̄?
k)

(
x?(τ, x̄?(q̄?

k) , q̄?
k)− x̄?

(
q̄?
k+1

))∣∣ > 0 (7)

for all k = 0 . . . (p−1), since the first intersection of x?(τ, x̄?(q̄?
k) , q̄?

k) and the
planes S (q̄?

k) must occur at x̄?
(
q̄?
k+1

)
. Accordingly, (7) constitute critical con-

straints, if the event function (3) is not given but must be synthesized to enforce
a particular periodic execution.

2.2 Sampled data model

Sampling an execution (6) at switching instants yields the sampled execution

χ̄
(
xh

0 , t0, N
)

=
((

x̄(0) q̄(0) t̄(0)
)
T, . . . ,

(
x̄(N) q̄(N) t̄(N)

)
T
)

, (8)

which is obtained by N iterated applications of the system’s embedded map [18].
To synthesize switching planes (4) by means of a model, an analytic expression
of this map’s continuous component

x̄(k+1) = Hx(x̄(k) , q̄(k) , τ̄(k)) (9)

is needed. Unfortunately, a closed form representation of Hx is only possible for
very simple DCCS. Concerning the vicinity of a stationary periodic execution
χ?(xh,?

0 , 0, p) that transversally intersects with all switching planes, i.e.
∣∣cT(q̄?

k)f
(
x̄?

(
q̄?
k+1

)
, q̄?

k

)∣∣ > 0, ∀q̄?
k ∈ Q , (10)

at least a linear approximation of (9) for q̄(k) = q̄?
k can be obtained as [19]

δx̄(k+1) =
dHx

dx
(x̄?(q̄?

k) , q̄?
k, τ̄?(q̄?

k)) δx̄(k)

=

(
I − f

(
x̄?

(
q̄?
k+1

)
, q̄?

k

)
cT(q̄?

k)
cT(q̄?

k)f
(
x̄?

(
q̄?
k+1

)
, q̄?

k

)
)

∂x̄?
(
q̄?
k+1

)

∂x̄?(q̄?
k)

δx̄(k) . (11)



Here, ∂x̄?
(
q̄?
k+1

)
/∂x̄?(q̄?

k) is the fundamental matrix of (2) for q = q̄?
k and

x(0) = x̄?(q̄?
k) at t = τ̄?(q̄?

k). The difference δx̄(k) = x̄(k) − x̄?(q̄?
k) denotes the

sampled deviation of x(t) from the stationary periodic execution. Clearly, the
approximation (11) is only well defined, if the transversality condition (10) holds.

A composition of (9) over a complete cycle QLC yields a first return map

x̄(c+1) = Px(x̄(c) , q̄(c) , τ̄(c)) = Hx ◦ . . . ◦Hx(x̄(c) , q̄(c) , τ̄(c)) , (12)

which describes the evolution x̄(c) of the switch points in the switching plane
S (q̄(c)) associated to mode q̄(c+1) = q̄(c). The counter c is used to enumerate
the executed cycles. Similar to (12), the linearized return map

δx̄(c+1) =
dPx

dx
(x̄?(q̄?

0) , q̄?
0 , τ̄?(q̄?

0)) δx̄(c)

=

(
p−1∏

k=0

dHx

dx
(x̄?(q̄?

k) , q̄?
k, τ̄?(q̄?

k))

)
δx̄(c) (13)

is obtained by composing (11) over a complete cycle QLC, in this case starting at
q̄?
0 . Note that (13) represents a linear autonomous discrete-time periodic system,

which carries information about the local orbital stability of x?(t) [17].

Remark 2. In case of a piecewise constant vector field f(x, q) = b(q), the ex-
pressions (11) and (13) describe Hx and Px exactly [5].

Remark 3. Assuming a transversal intersection of χ?(xh,?
0 , 0, p) with all switch-

ing planes S (q̄?
k), the map Hx is a local C1-diffeomorphism in a neighborhood

of all x̄?(q̄?
k) [19]. As Px results from the composition of Hx over a switching

cycle, it is a local C1-diffeomorphism in a neighborhood of x̄?(q̄?
0) as well.

3 Problem formulation

Problem 1. Consider a continuous plant (2), a switching logic (5) that cyclically
generates the mode sequence QLC (1) and a predetermined stationary periodic
execution χ?(xh,?

0 , 0, p) starting in xh,?
0 =

(
x̄?(q̄?

0) q̄?
0

)
T. The task considered

in this paper is to find an event function (3) that renders the limit cycle LLC

associated to χ?(xh,?
0 , 0, p) locally orbitally stable [16].

According to Prob. 1, the task is to find switching planes (4) that implicitly
parameterize the activation duration τ̄(q̄(k) , δx(τ))= τ̄?(q̄(k))+δτ̄(q̄(k) , δx(τ))
in terms of the mode and the deviation δx(τ)=dist(x(τ, x̄(k) , q̄(k)) ,LLC) and
thereby assure local orbital stability of LLC. The latter implies that all multipliers

mi = λi

(
p−1∏

k=0

dHx

dx
(x̄?(q̄?

k) , q̄?
k, τ̄?(q̄?

k))

)
(14)

of the return map’s Jacobian (13) must lie inside the unit circle.



4 Switching Surface Design

4.1 Equivalent discrete-time periodic linear system

According to (11), the event generator design concentrates on finding vectors
cT(q̄?

k) that ensure orbital stability of LLC. The sequel shows that by solving
a classical linear periodic control problem, a set of feasible vectors cT(q̄?

k) for
k = 1 . . . (p− 1) is obtained, which result in multipliers (14) satisfying |mi| < 1.

In the first step, the denominator of (11) is removed, by which the normals
cT(q̄?

k) enter the linearized return map (13) nonlinearly. This nonlinear depen-
dence vanishes, iff the design procedure generates vectors cT(q̄?

k) that satisfy

cT(q̄?
k) f

(
x̄?

(
q̄?
k+1

)
, q̄?

k

)
= 1, ∀q̄?

k ∈ Q . (15)

The following Lemma translates the constraints (15) into equivalent conditions
that can be explicitly accounted for in the design.

Lemma 1. A vector cT(q̄?
k) satisfies the constraint (15), iff

det
(
I − f

(
x̄?

(
q̄?
k+1

)
, q̄?

k

)
cT(q̄?

k)
)

= 0 . (16)

Proof. The equivalence of (15) and (16) readily follows from the matrix deter-
minant lemma [20], which says that det

(
I − abT

)
= 1− aTb. ut

With Lemma 1, a key result of the paper follows. Recall that two periodic lin-
ear system Σi = {Ai(k) , bi(k)} , i = 1, 2 are equivalent, if their monodromy
matrices Ψ i(p, 0) =

∏p−1
k=0 Ai(k) are similar.

Theorem 1. The p-periodic linear system Σ = {Ad(k) , bd(k)} given by

ζ(k+1) = Ad(k) ζ(k) + bd(k)u(k) with (17)

Ad(k+p) = Ad(k) = ∂x̄?
(
q̄?
k+2

)
/∂x̄?

(
q̄?
k+1

)
(18)

bd(k+p) = bd(k) = Ad(k)f
(
x̄?

(
q̄?
k+1

)
, q̄?

k

)
(19)

under a p-periodic state feedback

u(k) = −kT(k) ζ(k) with kT(k+p) = kT(k) (20)

is equivalent to the periodic system (13), iff for all k the following is true:

1. α(k) = cT(q̄?
k)f

(
x̄?

(
q̄?
k+1

)
, q̄?

k

) 6= 0 (21)

2. kT(k) = cT(q̄?
k) /α(k) (22)

3. det
(
Ad(k)− bd(k)kT(k)

)
= 0 . (23)

Proof. First, define the scaled normal vectors

c̃T(q̄?
k) = cT(q̄?

k) /α(k) , (24)



which is only feasible, if (21) holds. Then applying the periodic equivalence
transformation

δx̄(k) = T (k) ζ(k) , T (k) =
(
∂x̄?

(
q̄?
k+1

)
/∂x̄?(q̄?

k)
)−1

to the linearized return map (13) and considering (11) and (24) yields

ζ(c+1) =
p−1∏

k=0

(
∂x̄?

(
q̄?
k+2

)

∂x̄?
(
q̄?
k+1

) − ∂x̄?
(
q̄?
k+2

)

∂x̄?
(
q̄?
k+1

)f
(
x̄?

(
q̄?
k+1

)
, q̄?

k

)
c̃T(q̄?

k)

)
ζ(c) . (25)

To assure the identity of the loop (17), (20) and (25), Ad(k), bd(k) and kT(k)
must be equal to the expressions (18), (19) and (22). Moreover, the state tran-
sition matrix ∂x̄?

(
q̄?
k+2

)
/∂x̄?

(
q̄?
k+1

)
is regular and c̃T(q̄?

k)f
(
x̄?

(
q̄?
k+1

)
, q̄?

k

)
= 1

holds. Hence, by Lemma 1 the last constraint (23) must be satisfied as well. ut

From (22) it follows that kT(k) and cT(q̄?
k) are colinear vectors, which can be

directly exploited for solving Problem 1.

Theorem 2. By defining the event function (3) as

Φ(x(t) , q̄?
k) = kT(k)

(
x(t)− x̄?

(
q̄?
k+1

))
, (26)

where the periodic state feedback gain kT(k) stabilizes the equivalent periodic
system Σ and (26) satisfies the condition (7), local orbital stability of the limit
cycle LLC is guaranteed.

Proof. Theorem 1 states that the eigenvalues

λp,i (Ψ cl(p, 0)) = λp,i

(
p−1∏

k=0

(
Ad(k)− bd(k) kT(k)

)
)

of the closed-loop monodromy matrix Ψ cl(p, 0) of system (17)–(20) are identical
to the characteristic multipliers mi of (14). Hence, if these eigenvalues satisfy
the condition |λp,i| < 1, then all mi are stable as well. Moreover, the event
function (26) vanishes at all switch points x̄?

(
q̄?
k+1

)
of the limit cycle, which

under the assumption (7) guarantees that any trajectory x(t) starting in a local
neighborhood of LLC actually converges to LLC. The constraints (10) are trivially
satisfied because (15) holds for all q̄?

k. ut

By Theorems 1 and 2, the event generator design amounts to solving a con-
strained pole placement problem for the periodic discrete-time linear system
(17)-(19). For the unconstrained problem, a well developed theory exists. How
to integrate the constraint sets (7) and (23) in the design procedure is explained
in Sect. 4.4. Besides ensuring stability, the equivalence stated in Theorem 1 al-
lows a goal-oriented shaping of the local loop behavior, if the target eigenvalues
λd

p,i are specified appropriately.



4.2 Local stabilizability along a limit cycle

A solution to the control problem only exists if the DCCS is locally stabilizable
along the orbit LLC. A definition of this property on the basis of the concept of
local controllability along a trajectory [21] is given here.

Definition 1. Let Bδ(LLC) = {x : dist(x,LLC) < δ} , δ > 0 define a local
neighborhood of the limit cycle LLC. A state x0 ∈ Bδ(LLC) is locally stabilizable
along the orbit LLC, if there exists an ε > 0, a mode sequence q(t) and a trigger
signal clk(t), such that the following holds:

1. x(t,x0, q(0)) ∈ Bε(LLC) , ∀t > 0
2. lim

t→∞
dist(x(t, x0, q(0)) ,LLC) = 0 .

Definition 2. A periodically operated DCCS is called locally stabilizable along
the orbit LLC, if all states x0 in an open neighborhood Bδ(LLC) , δ > 0 of LLC

are locally stabilizable.

From the results of Theorems 1 and 2 a sufficient condition immediately follows,
which ensures local stabilizability along a limit cycle for a DCCS.

Theorem 3. A periodically operated DCCS (2), (5) is locally stabilizable along
the orbit LLC, if the equivalent system Σ ={Ad(k) , bd(k)} is stabilizable.

Proof. To prove Theorem 3, pick any mode q̄?
k ∈ Q and assume that the equi-

valent periodic system Σ is stabilizable. Then by Theorems 1 and 2, stabilizing
gains kT(k) exists, which translate into stabilizing normal directions cT(q̄?

k). As
the return map P x is a local C1 diffeomorphism, there exists a non-empty in-
variant open region Bγ(x̄?(q̄?

k)) =
{
x | (x− x̄?(q̄?

k))TV (x− x̄?(q̄?
k)) < γ

}
with

V , γ > 0 in the plane S (q̄?
k), for which all trajectories that emanate from

Bγ(x̄?(q̄?
k)) asymptotically converge to the limit cycle. The backward reachable

set of Bγ(x̄?(q̄?
k)) then defines a non-empty neighborhood of stabilizable states

along LLC, from which the values ε > 0 and δ > 0 can be extracted (Fig. 2). Now,
for all x0 ∈ Bδ(LLC) the event generator equipped with the event function (26)
generates a trigger signal clk(t), such that x(t,x0, q(0)) converges towards LLC.
Therefore, stabilizability of Σ is sufficient for the local stabilizability of the un-
derlying DCCS along LLC. ut
Stabilizability of periodic systems is defined in [22] and can be checked numeri-
cally as described in [23].

B Lg( )LC

B Le( )LC

B Ld( )LC

LLC

Fig. 2. Limit cycle LLC, backward reachable set of Bγ(LLC) and neighborhoods
Bδ(LLC), Bε(LLC) defining the region of locally stabilizable states.



4.3 Local effectivity of operation modes

Regarding the design task, it is crucial to identify all effective mode transitions,
which can be employed for altering the continuous evolution.

Definition 3. A mode q̄?
k ∈ Q of a periodically operated DCCS is called locally

effective with respect to the limit cycle LLC, if it is deactivated upon a controlled
switching and a perturbation of τ̄?(q̄?

k) affects the future run of x(t).

All modes q̄?
k, which do not meet these two properties, are called ineffective.

Modes that are deactivated by an autonomous switching are ineffective, since
the corresponding switching conditions must not be altered in the design process.
As a result of the above, the periodic sequence QLC = Qeff,1

LC Qineff,1
LC . . . Qeff,j

LC can
be decomposed into effective and ineffective subsequences.

Proposition 1. A mode q̄?
k is locally effective, if it is deactivated by a controlled

switching and the mode transition causes a discontinuity in the vector field:

f
(
x̄?

(
q̄?
k+1

)
, q̄?

k

) 6= f
(
x̄?

(
q̄?
k+1

)
, q̄?

k+1

)
. (27)

Proof. While the first part of the proposition is clear, the last part can be proved
by contradiction. Assume that (27) is violated. Then, concatenating the lin-
earized embedded map (11) over two consecutively activated modes q̄?

k and q̄?
k+1

yields the expression

δx̄(k+2) =

(
I − f

(
x̄?

(
q̄?
k+2

)
, q̄?

k+1

)
cT

(
q̄?
k+1

)

cT
(
q̄?
k+1

)
f

(
x̄?

(
q̄?
k+2

)
, q̄?

k+1

)
)

∂x̄?
(
q̄?
k+2

)

∂x̄?
(
q̄?
k+1

) ∂x̄?
(
q̄?
k+1

)

∂x̄?(q̄?
k)

δx̄(k)

and reveals that δx̄(k+2) is independent of cT(q̄?
k). Therefore, the mode q̄?

k is
ineffective with respect to the control task. ut
Identifying all ineffective modes prior to performing the design is crucial, as
ineffective modes lead to infeasible design results, which include switching planes
that violate assumption (10). To reduce computational effort, locally ineffective
subsequences Qineff,j

LC may be condensed into single modes.

4.4 Design Algorithm

Design procedure for QLC = Qeff ,1
LC . With the results of Theorems 1 and 2,

an event function that guarantees the loop properties specified in Sect. 3 can be
obtained as follows:

Algorithm 1 Determination of a stabilizing event function.

Given: a DCCS (2), (5) and an admissible sampled periodic execution χ̄?(xh
0 , 0, p)

evolving on the limit cycle LLC to be stabilized.

1. Compute the periodic matrices Ad(k) , bd(k) according to (18), (19).
2. Verify stabilizability of the equivalent periodic system Σ = {Ad(k) , bd(k)}.



3. Apply periodic pole placement [24] to obtain a periodic feedback gain kT(k)
that simultaneously satisfies the conditions (23) and places the eigenvalues
at desired locations md

i in the complex plane.
4. According to (26), set the event function coefficients to cT(q̄?

k) = kT(k) /‖kT(k) ‖
and compute d(q̄?

k) = cT(q) x̄?
(
q̄?
k+1

)
.

5. Verify the constraints (7), otherwise introduce additional ”counter modes”.

Result: Event generator (3), that guarantees local orbital stability of the limit
cycle LLC and enforces a desired local transient behavior.

The scaling of the normal vectors in Step 4 is admissible, because the Jacobian
dPx/dt is independent of the length of cT(q̄?

k). If stabilizability of (17) is given,
the existences of a periodic state feedback kT(k) that stabilizes the equivalent
periodic system is assured for the unconstrained control problem. How to cope
with the constraints introduced earlier is explained next.

Handling constraints (23). To explicitly account for the constraints (23) in
the design procedure is easy. These conditions only reduce the space of admissible
multipliers md

i by one or more dimensions, but a stabilizing solution always
exists. The number of multipliers, which must be placed at the origin, depends
on the structure of the system (17). It is in general enough to place just one mi

at zero, while the remaining ones can be freely assigned in order to shape the
transient loop behavior as desired.

Handling constraints (7). Constraints of type (7) are accounted for after
the pole assignment. Assume, that Step 5 of Algorithm 1 identifies a mode q̄?

k, for
which (7) is violated. Then, there exist one or more additional intersections of
x?(τ, x̄?(q̄?

k) , q̄?
k) with S (q̄?

k) in the time interval [0, τ̄?(q̄?
k)). Since the periodic

execution χ̄?(xh
0 , 0, p) requires all mode transitions q̄?

k → q̄?
k+1 to exactly occur

at τ̄?(q̄?
k), the cyclic mode sequence QLC must be extended by auxiliary counter

modes q̄?
k,j (Fig. 3). These counter modes are inserted in between q̄?

k and q̄?
k+1

and keep track of the number of previous intersections of x(t) and S (q̄?
k). They

are associated to the same continuous dynamics f(x, q̄?
k,j) = f(x, q̄?

k) as q̄?
k and

require to augment the event function (3) by

Φ
(
x, q̄?

k,j

)
= cT(q̄?

k) x− d(q̄?
k) + ε(−1)j , ε ¿ d(q̄?

k) .

Design in the presence of ineffective modes. If a subset of modes is locally
ineffective, Algorithm 1 is still applicable. In this case, the system matrices (18)
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Fig. 3. Introduction of a counter mode into the cyclic mode sequence, due to
violation of the constraint (7).



and (19) of all ineffective modes become

Ad(k+p) = Ad(k) = ∂x̄?
(
q̄?
k+2

)
/∂x̄?

(
q̄?
k+1

) (
I−f

(
q̄?
k, x̄?

(
q̄?
k+1

))
cT
0 (q̄?

k)
)

bd(k+p) = bd(k) = 0 .

In this expression, cT
0 (q̄?

k) represents a nominal normal that satisfies the condi-
tion cT

0 (q̄?
k)f

(
q̄?
k, x̄?

(
q̄?
k+1

))
= 1. Its orientation is either determined from the

associated autonomous switching condition or it must be properly chosen, in
case q̄?

k is ineffective, because it violates (27).

5 Experimental validation

To compare the performance of the novel design approach with earlier results
from [16], the new method was successfully applied to the same 2-Tank system
consisting of two coupled tanks and a controllable number of inlets and outlets
(Fig. 4(a)). For the design, the linear 2-Tank model, its parameters and the
desired stationary limit cycle listed in [16] are adopted here again. At stationary
operation, the plant recurrently executed the mode sequence QLC = (1234). For
this sequence, the matrices (18), (19) of the equivalent periodic system Σ are

Ad(1) =
(

0.5572 0
0.3544 0.6575

)
, Ad(2) =

(
0.6421 0
0.2693 0.5747

)
,

Ad(3) =
(

0.6534 0
0.2637 0.5874

)
, Ad(4) =

(
0.8004 0
0.1839 0.8525

)
,

bd(1) =
(−0.001007 −9.117e− 005

)
T , bd(2) =

(
0.0009182 0.001224

)
T ,

bd(3) =
(
0.0006 −0.0001484

)
T , bd(4) =

(−0.001808 −0.001525
)
T .

Since Σ turns out to be stabilizable, the underlying DCCS is locally stabilizable
along LLC. It shows that all multipliers mi can be arbitrarily assigned by only
using one of the four available feedback gains kT(k). The large surplus of design
parameters is exploited here to maximize the local convergence rate and obtain
a dead-beat behavior. Therefore, all desired eigenvalues λd

i are set to zero.
The event function coefficients resulting from the application of Algorithm 1

are listed in Tab. 1. They define the switching planes depicted in Figure 4(b)
(dashed black lines). The diamonds indicate the switch points x̄(k) of the de-
picted execution. Note that all switching planes touch the simulated limit cycle
LLC tangentially (thick grey dashed line), which is a characteristic feature of
a dead-beat switching law. For reasons of comparison, the additional thin grey

q 1 2 3 4

cT(q)
(−0.3096 0.9509

)
T

(
0.7875 0.6163

)
T

(
0.1889 −0.9820

)
T

(−0.5449 −0.8385
)
T

d(q) 0.005 0.0286 0.0266 0.0058

Table 1. Event function parameters derived from the model-based design pro-
cedure. These parameters maximize the convergence rate towards LLC.
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Fig. 4. 2-Tank system: (a) experimental setup, (b) switching surfaces resulting
in local dead-beat behavior.

dashed lines illustrate the paraxial switching planes of the heuristic switching
policy explained in [16].

Figure 5 presents a series of state space plots showing experimental data
obtained at the laboratory system. They disclose the strong influence of distur-
bances and model uncertainties, which cause orbital instability when applying
the heuristic switching policy. Under the model-based strategy, however, stabil-
ity is preserved. The experiment was conducted as follows: At runtime, the event
function coefficients cT(q̄?

k) , d(q̄?
k) were toggled every 1000 seconds between the

values listed in Tab. 1 and the values implementing the paraxial planes of the
heuristic switching policy. Afterwards, the observed behavior was plotted in a
separate figure for each switching policy. For example, the data acquired in the
first interval [0s, 1000s] until the substitution of the switching strategy, is plotted
in the top-left subplot. Likewise, the behavior observed in the second interval
[1000s, 2000s] associated to the heuristic policy is plotted in the top-middle sub-
plot and so on.

As can be concluded from every other subplot, the heuristic switching policy
does not succeed in stabilizing LLC, while the model-based switching policy
generates the expected, fast decaying transient loop behavior. The latter is best
verified from the subplot ”bottom-middle”, where the transition onto the limit
cycle is finished two switchings after toggling the switching policy. Indeed, the
desired periodic operation is preserved even under the influence of considerable
disturbances, which is crucial in practical applications.

6 Conclusion

The main contribution of this paper is a novel model-based design methodology
for the event generator of a periodically operated discretely controlled conti-
nuous system. The approach applies to systems of arbitrary state dimension
and imposes no restrictions on the number of operation modes. It allows for
a goal-oriented shaping of the system’s local behavior, in particular to achieve
local orbital stability and a fast transient response. Compared to earlier control
concepts, the resulting controller issues its actions instantaneously instead of



Fig. 5. State space snapshots showing experimental data obtained at the labo-
ratory 2-Tank system. For comparison, the event-generator was toggled between
a heuristic and a model-based event-driven policy.

postponing them to the next switching. Thus, the implemented switching strat-
egy guarantees the best possible local loop behavior in the presence of distur-
bances. As a core feature, the proposed design procedure exploits an equivalence
between the original design problem and a classical periodic linear control prob-
lem. Based on this idea, the local stabilizability of the DCCS can be investigated.
Furthermore, the design is simplified through the application of well known pole
placement algorithms for periodic systems.

Future research directions focus on ways for exploiting excessive degrees of
freedom to maximize the region of attraction of the stabilized cycle and on
concepts for the dynamic adjustment of the switching planes to enable set-point
transitions and to compensate for varying parameters. Concerning the method’s
practical application, it is necessary develop approaches for the design of output-
dependent switching laws.
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