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Abstract. For stochastic hybrid systems, the reachability analysis is
an important and difficult problem. In this paper, we prove that, under
natural assumptions, reachability analysis can be characterised as an
optimal stopping problem. In this way, one can apply numerical methods
from optimal control to solve the reachability verification problems.
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1 Introduction

The paper addresses the reachability problem for stochastic hybrid systems,
which are a class of non-linear stochastic continuous time/space hybrid dynam-
ical systems. For a stochastic hybrid system, we show that the reach set prob-
abilities coincide with the value functions of some particular optimal stopping
problems corresponding to the indicator functions of the target sets. These op-
timal stopping problems are formulated in the language of the Markov process
that describes the realizations of the given hybrid system. Our method is based
on the (Riesz) representation of the value function for the optimal stopping prob-
lem and it was successfully used for some particular classes of Markov processes
[7]. The application of this method is sketched for stochastic hybrid systems.

2 Stochastic Hybrid Systems

Stochastic Hybrid Systems can be described as an interleaving between a finite
or countable family of diffusion processes and a Markov chain. We adopt the
General Stochastic Hybrid System model presented in [2]. Let Q be a set of
discrete states. For each q ∈ Q, we consider the Euclidean space R

d(q) with
dimension d(q) and we define an invariant as an open subset Xq of R

d(q).
The hybrid state space is the set X(Q, d,X ) =

⋃
i∈Q{i} × X i. The closure

of X(Q, d,X ) will be X = X ∪ ∂X, where ∂X =
⋃

i∈Q{i} × ∂X i. (X,B(X)) is
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a Borel space, where B(X) is the Borel σ-algebra of X . Let B(X) be the Ba-
nach space of bounded positive measurable functions on X with the norm given
by the supremum. A (General) Stochastic Hybrid System (SHS) is a collection
H = ((Q, d,X ), b, σ, Init, λ, R), where the full meaning of the constituents can
be find in [2]. The realization of an SHS is built as a Markov string H [2]. This
string is a Markov process. Denote by M = (Ω,F ,Ft, xt, Px) this Markov pro-
cess. Let P = (Pt)t>0 denote the semigroup of operators associated to M , which
maps B(X) into itself given by Ptf(x) = Exf(xt), ∀x ∈ X , where Ex is the
expectation w.r.t. Px. A nonnegative function f ∈ B(X) is called (α-)excessive
(α ≥ 0) if (e−αt)Ptf ≤ f for all t ≥ 0 and (e−αt)Ptf ↗ f as t ↘ 0. Let EM

be the cone of excessive functions. Suppose that M is transient1, i.e. there is
a strictly positive measurable function q such that Uq ≤ 1. The infinitesimal
generator L is the derivative of Pt at t = 0. Under the standard assumptions the
realization M of an SHS is a Borel right process with cadlag property and the
infinitesimal generator of an SHS is an integro-differential operator [2].

3 Stochastic Reachability as an Optimal Stopping
Problem

In this section, in the framework of SHS, we prove that the stochastic reachability
problem is equivalent with an optimal stopping problem.

Let us consider M = (Ω,F ,Ft, xt, Px) a (strong right) Markov process, being
the realization of an SHS. For this Markov process we address the stochas-
tic reachability problem as follows. Given a target set, the objective of the
reachability problem is to compute the probability that the system trajecto-
ries from an arbitrary initial state will reach the target set. Formally, given a
set A ∈ B(X) and a time horizon T ∈ [0, ζ] (where ζ is the life time of M),
define ReachT (A) := {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ A}. The reachability problem
consists of determining the probabilities of such a set, i.e. P (TA < T ), where
TA is the first hitting time of A (i.e. TA = inf{t > 0|xt ∈ A}) and (Ω,F , P ) is
the underlying probability space of M . P can be chosen to be Px, if we want to
consider the trajectories that start in x.

For any f : X → R+, we denote he réduite of f by Rf , i.e Rf := inf{u ∈
EM |u ≥ f}. Rf differs from f only on a negligible set. For any A ⊂ X and
v ∈ EM , the function RAv = R(1Av) is called the réduite2 of v on A. The bal-
ayage of the excessive function v on A denoted by BAv, is the U-excessive regu-
larization of RAv [3]. For any x ∈ X and A ∈ B(X), we have Px[Reach∞(A)] =
BA1(x) = Px[TA < ζ] [3]. Since RAv = BAv on X\A (see [3]), when the process
starts in x /∈ A, finding the reach set probability Px[Reach∞(A)] is equivalent to
finding the reduite R(1A)(x). The existence of the réduite for g ∈ B(X) is based
on the following equality: Rg(x) = sup{Ex[g(xS)1{S<ζ}]; S stopping time}. The
right hand side of the above equality is related with the so-called optimal stop-
ping problem (OSP) associated with a Markov process. For different classes of
1 The transience hypothesis guarantees that the cone EM is rich enough to be used.
2 We use the convention 0 · (+∞) = (+∞) · 0 = 0.
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stochastic processes3, the fact that the optimal value function coincides with the
smaller excessive majorant of the exercise payoff is a well known result. This
result has been extended for right processes in [4].

Proposition 1. If A ∈ B(X) then the reachability function wA : X → [0, 1]
associated to A, defined as wA(x) := Px[Reach∞(A)], coincides with the value
function of the reward process yt = 1A(xt), i.e. wA(x) = sup{Px(xτ ∈ A)|τ
stopping time}, ∀x ∈ X.

4 From Optimal Stopping to Stochastic Reachability

The realizations of SHS are (Borel) right processes, and therefore the general
theory of optimal stopping developed for right processes [1] can be applied.
For the OSP associated to (Borel) right processes, we propose a method based
on representations of excessive functions. This method consists in establishing
first an integral representation for excessive (super-harmonic) functions and then
deriving information about final behaviour of paths. We show that finding the
solution of such a problem is equivalent to finding the representation of the value
function of the OSP in terms of the Green kernel. The support of the measure
that appears in this representation is the stopping region for the problem.

Dealing with Optimal Stopping. For the a Markov process M and the optimal
stopping problem, one can introduce: continuation set C = {x ∈ X |v(x) >
g(x)}; and the stopping set D = {x ∈ X |v(x) = g(x)}.

Using the operator semigroup P , one can define the kernel operator U by
Uf(x) =

∫ ∞
0

Ptf(x)dt, f ∈ B(X). Uf is the solution of the equation −Lφ = f .
If in expression of U , f ranges over the indicator functions of measurable sets,
we can write U as a stochastic kernel U(x, A) =

∫ ∞
0 Px(xt ∈ A)dt. For the scope

of this section, we suppose that the assumptions from [6] are in force. The main
assumption is related to the absolute continuity of the kernel operator U w.r.t.
a σ-finite excessive measure m on (X,B), called reference measure.

Assumption 1. There exists a B × B measurable function u ≥ 0 such that
U(x, dy) = u(x, y)m(dy), x ∈ X; and x �−→ u(x, y) is excessive, y ∈ X.

The potential density u(x, y) is used to define the potential of a measure μ
by setting Uμ(x) :=

∫
X

u(x, y)μ(dy). For Borel right processes, h is harmonic
iff P−

Kch = h, m − a.e.4, for every compact K (with the complement Kc =
X\K) in an appropriate compactification of X , where P−

Kc is the hitting operator
associated to Kc5.

Theorem 1 (Riesz Decomposition). [6] Let f ∈ EM . Then there exists a
measure μ on (X,B) and an harmonic function h such that f = Uμ + h, m −
a.e.Moreover, μ is unique and h is unique m − a.e.

3 diffusions, Feller/Hunt/standard processes.
4 m − a.e. (m almost everywhere), i.e. outside of a set with m-measure zero.
5 i.e. P−

Kch = Ex[h(x
T−

Kc
)], T−

Kc = inf{t|0 < t < ζ; xt− ∈ Kc}.
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Using Ass.1 and the characterization of Uμ, in the decomposition of Th.1, if
there exists a compact set K such that the representing measure μ does not
charge Kc, then f is harmonic on Kc, i.e. μ(Kc) = 0 =⇒ f is harmonic on Kc.
Then the problem of finding the maximal payoff function is equivalent to the
problem of finding the representing measure μv of v. The continuation region C
is the biggest set not charged by the representing measure μv of v, i.e. μv(C) = 0.
So, the value function v is harmonic on C.

Proposition 2. The measure μv gives the value function v, and the support of
the representation measure gives the stopping region D, i.e. D = supp(μv).

Reach Set Probability Computation. Suppose that the target set A is an open
set of the state space X . Define F := X\A. Suppose that last exit time from
F is finite almost surely (the process is transient), i.e. SF = sup{t ≥ 0|xt ∈
F} < ∞. Then the reachability problem turns in an exit time problem, and then
computing the reach set probabilities is equivalent with the computation of a
dual probability Px[xSF ∈ F |SF > 0].

Proposition 3. [5] For all positive f ∈ B(X), we have Px[(1F f)(xSF )|SF >
0] =

∫
u(x, y)(1F f)(y)μ(dy), where μ is a measure on X.

Therefore, for f ≡ 1, the reach set probabilities are Px[xSF ∈ F |SF > 0] =∫
F u(x, y)μF (dy), where μF is the equilibrium measure of F .

5 Conclusions

In this paper, we have characterised the reachability problem of stochastic hybrid
systems as an optimal stopping problem with a discontinuous reward function.
To deal with the stochastic reachability, we consider that the method based on
representations of the value function of the equivalent optimal stopping problem
suits best in this context.
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