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Abstract. In previous work we demonstrated that reachability algo-
rithms using level set methods and based on the Hamilton-Jacobi PDE
can be adapted to systems whose dynamics are described by differential
algebraic equations. Here we extend those results to hybrid systems. The
only significant addition required is a mechanism for handling the state
reset that occurs during discrete jumps between modes. We demonstrate
the technique on a nonlinear power system voltage safety problem.

1 Introduction

The reachable set or tube is an effective tool for verification, but it can rarely be
determined exactly for hybrid or continuous systems. Many approximate reach-
ability algorithms have been proposed, and we refer to [1] and the citations
within for further discussion of such algorithms. A central assumption of vir-
tually all algorithms has been that the continuous dynamics of the system are
modeled by ordinary differential equations (ODEs). The differential algebraic
equation (DAE) is a generalization of the ODE, and in previous work [2] we
described how to adapt reachability algorithms based on level set methods and
the Hamilton-Jacobi (HJ) partial differential equation (PDE) to approximate
the backwards reachable tube for continuous systems modeled by DAEs. Here
we demonstrate how to extend the algorithm to hybrid systems in which DAEs
drive the continuous dynamics through a hybrid version of the nonlinear power
system voltage safety scenario. We do not have room in this brief paper to pro-
vide all of the details, but code containing those details and recreating the results
below can be found at [3].

Given a system state space S and a set of known unsafe states T ⊂ S, we
seek to approximate the backwards reachable tube

B(T, [0, t]) , {x0 ∈ S | ∃x̂ ∈ T,∃s ∈ [0, t], x(s) = x̂},



where x(·) is a trajectory of the system starting at x(0) = x0. For systems
whose continuous trajectories are specified by ODEs, we described in [4] how
the reachable tube for some fixed t can be implicitly defined as B(T, [0, t]) =
{x ∈ S | φ(x) ≤ 0}, where φ : S → R is the viscosity solution of an HJ PDE (if
t may vary, φ will depend on t). The method is extended to continuous systems
specified by index one DAEs in [2].

We will not address here the theoretical questions that arise when substi-
tuting DAEs for ODEs in a hybrid automata (HA) model, and therefore avoid
a formal HA definition. The primary computational challenge of extending the
procedure from [2] to a hybrid setting is the implicitly defined jump that oc-
curs in the continuous state when a discrete mode switch causes a change in the
governing DAE. We describe below how to convert this implicit jump into an
explicit reset map, and then how to map the implicit surface representation of
the reach tube φ through this reset.

2 Mapping the Reachable Tube across Mode Jumps

In a DAE model the standard ODE ẋ(s) = f(x(s)) is replaced by a coupled set
of differential and algebraic equations. We focus on index one DAEs which can
be written in semi-explicit form as

ẏ(s) = fD(y(s), z(s); p) (1)
0 = g(y(s), z(s); p) (2)

where the state x = (y, z) is divided into differential variables y and algebraic
variables z, and p are some known parameters. In a hybrid system with modes
denoted by variable q, the parameters will depend on the mode p = p(q). Under
appropriate conditions, such DAEs can be understood as the ODE (1) evolving
on the constraint manifold C(p) = {(y, z) | g(y, z; p) = 0}. We described two
procedures for approximating the reachable tube of a continuous system modeled
by (1)–(2) in [2]. In the hybrid system extension, either procedure may be used
for the continuous evolution of the reachable tube.

Consider now the effect of a discrete jump in the HA from a mode q− with
parameters p− = p(q−) to a mode q+ with parameters p+ = p(q+). As we are
working with backwards reachability, we assume that an implicit representation
of the backwards reachable tube is available for mode q+ in the form φ+(x),
and we wish to find a representation for mode q− in the form φ−(x) (after
which continuous evolution in mode q− will begin). We seek a reset mapping
x+ = ρ(x−, p−, p+) so that we can construct φ−(x) = φ+(ρ(x, p−, p+)).

In a standard HA this reset mapping ρ is given explicitly [4], but in the DAE
model it is implicit. To determine ρ we assume that the constraint (2) arises in the
limit ε → 0 from some “fast” dynamics given by the ODE εż = g(y, z; p). When a
discrete mode switch causes a change in parameters such that g(y−, z−; p+) 6= 0,
we fix y+ = y− (since y governed by (1) cannot react fast enough) and solve the
ODE ż = g(y+, z; p+) with initial condition z(0) = z− in auxiliary “fast” time
to a fixpoint limt→∞ z(t) = z+.



Fig. 1. Hybrid automaton for the example.

3 Single Machine-Load Bus Example

We now demonstrate our reset mapping procedure on a concrete example. For the
continuous dynamics, we use a three dimensional DAE model of a single machine-
load bus from [5]. For lack of space we are forced to omit all of the details of the
continuous model; the discussion that follows may not make much sense without
first reading those details in [2]. All three state variables (E′, Ef , E) are voltages.
The state variables E′ and Ef appear in the differential component of the DAE
(they correspond to differential variable y), while the algebraic constraint relates
E and E′ (so E corresponds to algebraic variable z) in a manner dependent on
a parameter p = X1. Note that the prime is not a derivative—E′ is a separate
variable from E. The discrete component of the HA for the system is shown in
figure 1; it and the safety analysis problem are adapted from [6], where interested
readers can also find further discussion of related work on power system models.

In words, the HA in figure 1 describes a scenario in which the system starts
in its nominal operating mode q1 with two transmission routes and parameter
X1 = 0.1. An uncontrollable event may cause one route to fail at any time, and
the system jumps into a single route mode q2 with X1 = 0.2. The failure is
detected after a brief period (12 cycles at 60 Hertz is 0.2 seconds) and relays
switch in a backup route to restore the system to its nominal parameter X1 = 0.1
in mode q3. The unsafe behaviour of the system is that the load bus voltage E
may drop below a defined minimum value Ec = 0.7. The failure may occur due
to continuous oscillations in the voltages and/or due to discrete voltage jumps
when the number of transmission routes change.

Figure 2(a) shows samples of the reset mapping ρ for the q1 to q2 switch, as
well as the constraint surfaces for the two values of X1. The plot is in the E
vs E′ plane because the constraint does not depend on Ef . When working with
level set methods, φ is stored on a discrete grid. Consequently, we only need to
determine ρ(x, p−, p+) where x is a node of the grid—a finite number of samples.
We then use interpolation on φ+ to construct a value for φ−, since ρ(x, p−, p+)
will not generally be a node in the grid even if x is.

In [2] we approximated the set of states leading to continuous failure in the
nominal operating mode q1 without any switches (although we used a different
value of parameter Q0 in those calculations). Two algorithms were proposed: one
that works on the constraint manifold and one that works in the full dimensional
state space. We show only the former here, although the reset mapping procedure
is easily extended to the latter. For our coordinate system on the constraint
manifold we choose E and Ef , so the reachable tubes shown are essentially
projections of the full dimensional reachable tubes onto these two variables.
Figure 2(b) shows the results of the reachability analysis on the manifold.



(a) The constraint surfaces C(X1) and
samples of the reset mapping ρ. The re-
set mapping goes from states labeled by
circles to states labeled by triangles.

(b) The reachability results for the exam-
ple with parameter Q0 = 0.25Pm (if Q0 =
0.5Pm from [2] were used, there would be
no safe states).

Fig. 2. Results for the example. Note that the vertical axes are different variables in
the two plots. The sets labeled in the right subplot are: known unsafe target set T ,
states unsafe in the nominal mode with no discrete switching Ua, states that become
unsafe during discrete switches Ud, states which become unsafe due to a combination
of discrete and continuous evolution Uc ∪ Si, and safe states Sn for mode q1 of the
HA from figure 1. If there was no 12 cycle delay in detecting the route failure, the
safe states would be Sn ∪Si. If there was never a route failure (the situation examined
in [2]), the safe states would be Sn ∪ Si ∪ Uc ∪ Ud.

References

1. I. M. Mitchell, “Comparing forward and backward reachability as tools for safety
analysis,” in Hybrid Systems: Computation and Control, ser. Lecture Notes in Com-
puter Science, A. Bemporad, A. Bicchi, and G. Buttazzo, Eds. Springer Verlag,
2007, no. 4416, pp. 428–443.

2. E. A. Cross and I. M. Mitchell, “Level set methods for computing reachable
sets of systems with differential algebraic equation dynamics,” submitted
September 2007 to American Control Conference, 7 pages. [Online]. Available:
http://www.cs.ubc.ca/∼mitchell/Papers/submittedReachDAE.pdf

3. [Online]. Available: http://www.cs.ubc.ca/∼mitchell/ToolboxLS
4. C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi, “Computational techniques for the

verification of hybrid systems,” Proceedings of the IEEE, vol. 91, no. 7, pp. 986–1001,
July 2003.

5. V. Venkatasubramanian, H. Schättler, and J. Zaborszky, “Voltage dynamics: Study
of a generator with voltage control, transmission, and matched MW load,” IEEE
Transactions on Automatic Control, vol. 37, no. 11, pp. 1717–1733, November 1992.

6. Y. Susuki and T. Hikihara, “Predicting voltage instability of power system via
hybrid system reachability analysis,” in Proceedings of the American Control Con-
ference, New York, NY, 2007, pp. 4166–4171.


