
Modular Development of Hybrid Systems for

Verification in Coq

Milad Niqui⋆ and Olga Tveretina⋆⋆

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

{M.Niqui,O.Tveretina}@cs.ru.nl

Abstract. In this paper we present a formalization of the theory of hy-
brid automata and algorithms for building trajectory trees using module
types and functors in the Coq proof assistant.

1 Preliminaries

Hybrid systems are systems in which there is a significant interaction between
the continuous and discrete parts. Many of the applications of hybrid systems
are safety critical and require the guarantee of a safe operation. The problem
of safety verification seeks an answer to the reachability problem: is there a
potentially unsafe state reachable from an initial state?

The notion of a hybrid automaton was introduced in order to extend verifi-
cation methods towards the systems with continuous and discrete dynamics [1].
A Hybrid automaton can be defined as a tuple H = (DS, n,S0, I, φ,G,R) with
the following components: DS is a finite set of discrete locations; n ≥ 0 is
the dimension of H. The state space of H is S := DS × R

n. Each state has
thus the form (l, x), where l ∈ DS and x ∈ R

n. S0 ⊆ S is a set of initial
states. I : DS → P(Rn) assigns to each location l an invariant set I(l) ⊆ R

n.
φ : (DS × R × R≥0)

n → R
n defines the flow of a system in a discrete lo-

cation with an initial condition φ(l, x0, 0) = x0. φ is a vector of n functions
fi : DS × R × R≥0 → R≥0 such that for each i exists gi : DS × R × R → R≥0

such that for all d ∈ DS, x, y ∈ R, t ∈ R≥0 if fi(d, x, t) = y then gi(d, x, y) = t.
G : DS × DS → R

n describes a guard condition. R : DS × DS × R
n → R

n is a
reset function. The semantics of a hybrid automaton is given by the transition
system [2].

Our method is based on decomposing the continuous state space according
to an n-dimensional rectangular grid. We denote by χ an abstract state, by Sa

the set of all abstract states, and by Sa
0

the set of initial abstract states.

Definition 1 (Strict Abstract Transition System – SATS). A hybrid

automaton H = (DS, n,S0, I, φ,G,R) and an abstract state space Sa generate

the strict abstract transition system T sats = {Sa,;c,;d, S
a
0
} with

⋆ Research supported by the Netherlands Organisation for Scientific Research (NWO).
⋆⋆ Research supported by the BRICKS/FOCUS project 642.000.501.

– the set of initial abstract states Sa
0
: an abstract state (l, χ) ∈ Sa

0
if there is

(l, x) ∈ S0 such that x ∈ χ ;
– (l, χ) ;c (l, χ′) ⇔ ∃t ≥ 0, x ∈ χ, x′ ∈ χ′, l′ ∈ DS, fi(l, xi, t) = x′

i
∧

(fi(l, x1, t), . . . , fi(l, xn, t)) ∈ G(l, l′) ∧
(∀t̄ ∈ [0, t] , (fi(l, x1, t̄), . . . , fi(l, xn, t̄)) ∈ I(l)) ,

where x = (x1, . . . , xn), x′ = (x′
1
, . . . , x′

n
) ;

(l, χ) ;d (l′, χ′) ⇔ ∃x ∈ χ, x′ ∈ χ′, (l, x) ∈ G(l, l′) ∧ x′ = R(l, l′, x) .

2 Formalization of Hybrid Automaton in Coq

Coq [3] is an interactive theorem prover based on constructive type theory.
Among the many ingredients of Coq , what is of interest in the present work
is the ability to axiomatize theories as modules. In short we have module types,
that we will use for formalizing the general theory of hybrid automata; and
the module implementations that are basically concrete hybrid automata. Im-
plementing a module then means that we should provide parameters and prove

that they satisfy the axioms.
Another characteristic aspect of Coq that is relevant for our work is the

presence of dependent types. Central in our work is the dependent type of vectors
to model the n-dimensional space of continuous states.

In our formalization of H we need some basic data-types that are used in
this project. Most of these (eg. natural and real numbers, booleans) are defined
in the standard library of Coq [3] in a straightforward way. Some use inductive
types — a generalization of more familiar algebraic types— which are the main
building blocks of Coq and its logic Calculus of Inductive Constructions. We use
the inductive type of List of polymorphic finite lists and Vector of representing
the n-dimensional vectors of elements of a set A, (i.e. elements of An).

Inductive Vector (A:Set): N → Type :=

| ∅̌ : Vector A 0

| :̌: : ∀ (a:A) (n:N), Vector A n → Vector A n+1.

Thus, a 0-dimensional vector is ∅̌ (the empty vector), and an n-dimensional
vector a :̌: v is obtained by “pairing” an element a ∈ A with an n−1-dimensional
vector v. One can consider vectors as lists of length n where n is coded in their
type. The type of a vector is dependent on its dimension.

The theory of hybrid automata in Coq will be an abstract data-type defined
as the following module type.

Module Type H.

Parameter DS: FiniteSetOfNaturals.

Parameter dim : N.

Definition R
dim:= Vector R dim.

Definition S := DS×R
dim.

Parameter S0 : S → Prop.

Parameter I: DS → R
dim → Prop.

Parameter φ: Vector (DS → R → R≥0 → R) dim.

Parameter G: DS → DS → R
dim → Prop.

Parameter R: DS → DS → R
dim → R

dim.

Axiom φ_invertible:is_true_∀_coord _ _ φ

(λf∃g, ∀d x r t, f d x t = r → g d x r = t).

End H.

The Parameters in this definition correspond to those of hybrid automaton,
while the sole axiom corresponds to the property that the flow (which is the
vector of solutions to differential equations) should contain only invertible func-
tions. In above FiniteSetOfNaturals, a type for finite subsets of N, is defined
using a combination of module types and dependent types. The type Prop, the
universe of propositions, is used to formalize subsets as predicates on a set.

The function is true ∀ coord in this axiom is the function that given a
vector of elements of some set A (in this case φ) and a property P of elements
of A checks whether P holds for all coordinates of the vector (underscore ()
denotes the automatically inferable arguments of functions). In our case P is a
property of the functions DS→R→R≥0→R and states that

P (f) iff ∃g∀dxrt, ((f(d))(x))(t) = r =⇒ ((g(d))(x))(r) = t .

The above code lays the basis of the theory of hybrid automata and it can
be extended to provide the abstract data types for various transition systems.
An SATS is definable as a module type with four parameters that extends the
above module:

Declare Module H: H.

Parameter Grid: Vector Partition H.dim.

Parameter Grid_initial : List Label.

Parameter ;c : Abstract_State → Abstract_State → bool.

Parameter ;d : Abstract_State → Abstract_State → bool.

Here Partition is a list of elements of R that denote the grid in each di-
mension. Moreover, H.dim means that the dimension dim should be inherited
from the parent theory H which is declared as H. For Label we first define what
a hyperinterval is. This is formalized as a record containing a hypercube (vector
of intervals) and a property that checks whether the edges of this hypercube
correspond to consecutive intervals in the Partition. A Label is then a pair of
a discrete state and a List of hyperintervals. Finally Abstract State is a pair
containing a discrete state and a hyperinterval in that discrete state.

After defining the module type extension for SATS we can develop a theory
by defining functions and proving the lemmas that hold for every instance of
SATS. In particular we can formalize an algorithm BuildTreeOATPS that
builds the tree of trajectories in each SATS:

Definition BuildTreeOATPS (d0:Label): MTree Label :=

gist_BuildHistoryTreeOATPS

(BuildHistoryTreeOATPS

(Build_Label_ext (fst d0) (snd d0)

(λd:H.DS, if d=(fst d0) then snd d0

else ∅)

false MAX)

).

Next we can instantiate the theory with the thermostat in [2].

Module Thermostat_as_H <: H.

Definition DS:= { 1, 2, 3}.
Definition Heat:=1.

Definition Cool:=2.

Definition Check:=3.

Definition dim :=2.

Definition clock (v:R
dim) : R := Vhead _ 1 v.

Definition temperature (v:R
dim) : R := Vhead _ 0 (Vtail _ 1 v).

Definition coordinates (v:R
dim) :=(clock v,temperature v).

Definition S0 (s:S) : Prop :=

let (d,v):=s in d = Heat ∧ clock v=0 ∧ 5≤temperature v≤10.

Definition I (d:DS) (v:R
dim):Prop:=

d=Heat∧ (clock v ≤ 3) ∧ (temperature v ≤ 10)
W

d=Cool∧ (5 ≤ temperature v)
W

d=Check ∧ (clock v ≤ 1).
...

Lemma φ_invertible:is_true_∀_coord _ _ φ

(λf∃g, ∀d x r t, f d x t = r → g d x r = t).

End Thermostat_as_H.

Note that this time instead of an axiom we have to prove a lemma. The proof
in this case is easy and boils down to proving simple properties of exp and ln

functions.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

2. R. Alur, T. Dang, and F. Ivančić. Predicate abstraction for reachability analysis
of hybrid systems. ACM transactions on embedded computing systems (TECS),
5(1):152–199, 2006.

3. The Coq Development Team. The Coq Proof Assistant Reference Manual, Version
8.1. LogiCal Project, Dec. 2007. http://coq.inria.fr/V8.1pl3/refman/index.

html, [cited 8 Jan. 2008].

