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Abstract. This paper presents an analysis method to determine offline
at what intervals have to be taken the samples for various types of event-
driven control systems.

1 Introduction

For certain type of event-driven controllers and for time-driven controllers this
paper shows that the distance covered by the system trajectory is proportional
to the norm of the state. This property permits to determine the variations in the
sampling times generated by discrete-events as a function of the state direction.
For second order systems a geometric approach is proposed.

2 Event-driven control systems model

We consider the control system

&= Ax + Bu
y=Cx (1)
with £ € R?*1, A € R™*", B € R™*™ y € RY™™ and C € R, Let

Uk = LCCk (2)

be the control updates given by a linear feedback controller designed in the
continuous-time domain but using only samples of the state at discrete instants
to,t1, ..., bk, - . .. Between control updates, u(t) = uy in t € [tg, tpt1]-

3 Analysis of various event conditions

In event-driven control systems, event conditions are the controller execution
rules. We analyze event conditions where samples are taken when some function
of the system state exceeds a threshold, as in e.g. [1] or [2]. Let

e(t) = x(t) — (3)



be the error evolution between consecutive samples with ¢ € [tg,tg+1[. In the
approach presented in [1] the event condition is defined as

Y le()] = nlz(t)] (4)
where 0 < 7 < 1. And in the scheme of [2], the event condition can be stated as
Yt et Mey = nxf My, (5)

where 0 < n <1 and M € R"*",
In general, for some event-driven schemes, event conditions can be defined as

Vi = g(e(t), zk,m) =0 (6)

where g(-) € R, and 7 is a set of given parameters. We study whether time-driven
control systems can be similarly specified. Let

Tht1 = @(t)l’k + F(t)uk
yr = Cg,

(7)
be the discrete-time system obtained by sampling (1) with period ¢ = h, where

t
O(t) =e and I'(t) :/ e*dsB.
0

From (3), (7), and (2) we observe that the event condition
Vi i€k = (Qp(h) + F(h)L — I) T (8)

triggers control updates at equidistant points in time, given by h.
For notation convenience, a vector v will be denoted as

| cosBy
Uk = Tk [sin 9;} ©)

where 7} and 0} are the modulus and angle of vy.

Proposition 1. For two-dimensional systems described by (1)-(2), if control
updates are triggered by event conditions (4), (5) or (8), it holds that

lerll = allze | £ (6%, ) (10)
with o € R, f:[0,27[— R, and ey given by (3).
Proof. Event condition (4) can be rewritten as

efer, = n*xl P(t)xy (11)
where P(t) = ((t) + I'(t)L)T (@(t) + '(t)L). Eq. (11) in terms of (9) is

€
cos 0

e\2 [ e
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z o oz cos 0%
} =n?(ry)? [cos 07 sin6y | P(t) [sin 0%} (12)



which simplifies to

e = o o w cos 6%,
re = nrk\/[cos@C sin 6 | P(t) {Siﬂ@% ]
From (8) with ¢ = h, it follows that

erex = 23 Q(t)xn (14)

where Q(t) = (@(t)+ I'(t)L — )T (®(t) + I'(t)L — I). Then Eq. (14) simplifies to

cos 0F ]

sin 67 (15)

rE = r,ﬁ\/[cos% sin 0f | Q(t) {

Similarly, condition (5) can be written as

- e
cos 0

e\2 e o e
(ry) [cos o5 s1n9k] M [sin e

z o oz cos 6%
] =n(r{)? [cos0f sin 67 | M [sin 0%} (16)

which reduces to
. cos 0F
[cos 0% sin 9,95} M

-
sin k:| = V(05 t) (17)

T = VI

€
cos 07

[cos 0}, sin 92] M [sin o

The last equality, considering R(t) = (®(t) + I'(t)L), holds because

" cos 6%,
ye Tk [OI]R(t) [SIHGI;]
. = arctan <—) = arctan 0’“ (18)
x° N cos 6%
v [10] R(t) [Sm%]
O

Remark 1. Equations (13), (15), and (17) specify invariant boundaries for |ej]
when for example a spheric parametrization of the unitary vector of the system
state is used. These boundaries provide information about all possible covered
distances by the system trajectory after the occurrence of an event.

4 Geometric approach

Since the derived boundaries scale on the norm of the system state, we can
compare systems by geometrically mapping boundaries. Note that boundary (15)
has constant period h. Therefore, solving (13) and (15) for ¢, or (17) and (15), we
can determine the variations in sampling times generated by event conditions (4),
(5), or any event-driven scheme whose event condition fulfills proposition 1. The



Fig. 1. Mapping of (17) (left) and (13) (right) on top of a time grid generated by (15)

mapping consists in plotting a time grid composed by boundaries generated by
(15) with different periods. And on top of them, we plot the boundary generated
by (13) or (17). Then by inspecting the superposition, we can directly assert the
character of time between sampling instants that (4) or (5) generates.

As an example, consider that the double integrator system is controlled by
(2) with L = [1.0001 1.7322], which can be obtained from eq. (1)-(6) of [2]. Tt is
easy to verify that L stabilizes the system when applied with event conditions
(4), (5), or (8) (n = 0.5). In Figure 1 we plot the mapping for (17) (left) and
(13) (right). The time grid has been generated using (15) for periods h = 0.1 to
0.4. For example, by looking to the left sub-figure, we deduce that the maximum
and minimum sampling interval are approximately 0.38s and 0.15s, respectively.

5 Conclusions and future work

This paper has presented an analysis method that permits to study timing prop-
erties for various types of event-driven schemes. Future work will focus on find-
ing the analytical solutions for the graphical method and it extension to an
n-dimensional space. In additional, for schedulability of event-driven controllers
and regulation of CPU load, it will be of interest to apply non-lineal techniques
to study the nature of periods’ dynamics.
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