Skip to main content

Model Based Optimization of Mobile Geosensor Networks

  • Chapter

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

An approach for monitoring network optimization is presented which estimates the characteristics of a spatial phenomenon based on the measured values in order to perform the optimization. Based on a phenomenon model it is determined where additional information is needed. During this optimization process also the limitations and constraints of the geosensor network are taken into account. After deriving the model based approach from theoretical considerations, the presented approach is evaluated by means of a table top experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Box G. E. P., Jenkins G. M. and Reinsel G. (1994) Time Series Analysis - forecasting and control. Upper Saddle River

    Google Scholar 

  • Brooks R. R. (2004) Need for Self-Configuration. In: Iyengar S. S. and Brooks R. R. (eds) Distributed Sensor Networks. Boca Raton, pp 847-854

    Google Scholar 

  • Cressie N. A. C. (1990) The Origins of Kriging. Mathematical Geology 22:239-252

    Article  Google Scholar 

  • Cressie N. A. C. (1993) Statistics for spatial data. New York

    Google Scholar 

  • Gandin L. S. (1963) Objective Analysis of Meteorological Fields. Leningrad (Translated by Israel Program for Scientific Translations, Jerusalem, 1965)

    Google Scholar 

  • Goldin D., Song M., Kutlu A., Gao H. and Dave H. (2005) Georouting and Delta-Gathering: Efficent Data Propagation Techniques for GeoSensor Networks. In: Stefanidis A. and Nittle S. (eds) GeoSensor Networks. Boca Raton, pp 73-95

    Google Scholar 

  • Hägerstrand T. (1970) What About People in Regional Science? Papers of the regional science association 24:6-21

    Google Scholar 

  • Heinrich U. (1992) Zur Methodik der räumlichen Interpolation mit geostatistischen Verfahren - Untersuchungen zur Validität flächenhafter Schätzungen diskreter Messungen kontinuierlicher raumzeitlicher Prozesse. Wiesbaden

    Google Scholar 

  • Howard A., Mataric M. J. and Sukhatme G. S. (2002) Mobile Sensor Network Deployment using Potential Fields: a Distributed, Scalable Solution to the Area Coverage Problem. Proceedings of: 6th International Symposium on Distributed Autonomous Robotics Systems, June 25-27, 2002. Fukuoka.

    Google Scholar 

  • Huijbregts C. J. (1975) Regionalized Variables and Quantitative Analysis of Spatial Data. In: Davis J. C. and McCullagh M. J. (eds) Display and Analysis of Spatial Data. London, pp 28-53

    Google Scholar 

  • Isaaks E. H. and Srivastava R. M. (1989) An Introduction to Applied Geostatistics. Oxford

    Google Scholar 

  • Iyengar S. S., Tandon A. and Brooks R. R. (2004) An Overview. In: Iyengar S. S. and Brooks R. R. (eds) Computer and Information Science Series. Boca Raton, pp 3-10

    Google Scholar 

  • Journel A. G. (1986) Geostatistic: Models and Tools for the Earth Sciences. Mathematical Geology 18:119-140

    Article  Google Scholar 

  • Journel A. G. and Huijbregts C. J. (1997) Mining Geostatistics. London

    Google Scholar 

  • Lenntrop B. (1976) Paths in space-time environments - a time-geographic study of movement possibilities of individuals. Lund

    Google Scholar 

  • LUA-NRW (2001) Luftqualitöt in Nordrhein-Westfalen. LUQS-Jahresbericht 1999. City

    Google Scholar 

  • Matheron G. (1963) Principles of Geostatistics. Economic Geology 58:1246-1266

    Article  Google Scholar 

  • Matheron G. (1971) The Theory of regionalized variables and its applications. Fontainebleau

    Google Scholar 

  • Meguerdichian S., Koushanfar F., Potkonjak M. and Srivastava M. B. (2001) Coverage Problems in Wireless Ad-hoc Sensor Networks. Proceedings of: InfoCom 2001. 20th Annual Joint Conference of the IEEE Computer and Communications Societies, April 22-26, 2001. Anchorage.

    Google Scholar 

  • Nipper J. and Streit U. (1982) A comparative study of some stochastic methods and autoprojective models for spatial processes. Environment and Planning A 14:1211-1231

    Article  Google Scholar 

  • Nittel S., Duckham M. and Kulik L. (2004) Information Dissemination in Mobile Ad-Hoc Geosensor Networks. In: Egenhofer J. M., Freksa C. and Miller H. J. (eds) Geographic Information Science - Third International Conference, GIScience 2004 Adelphi, MD, USA, October 2004 Proceedings. Berlin and Heidelberg, pp 206-222

    Google Scholar 

  • Nittel S. and Stefanidis A. (2005) GeoSensor Networks and Virtual GeoReality. In: Stefanidis A. and Nittle S. (eds) GeoSensor Networks. Boca Raton, pp 1-9

    Google Scholar 

  • Pardo-Igùzquiza E. and Dowd P. A. (2005) Multiple indicator cokriging with application to optimal sampling for environmental monitoring. Computers & Geosciences 31:1-13

    Article  Google Scholar 

  • Shepard D. (1968) A two-dimensional interpolation function for irregularly-spaced data In: Blue R. B. and Rosenberg A. M. (eds) Proceedings of the 23rd ACM national conference New York, pp 517-524

    Google Scholar 

  • Shepherd D. and Kumar S. (2004) Microssensor Applications. In: Iyengar S. S. and Brooks R. R. (eds) Distributed Sensor Networks. Boca Raton, pp 11-27

    Google Scholar 

  • Sliwinski A. and Simonis I. (2005) An Experiment on Geosensor Mobility Strategies in the Planar Space. Proceedings of: 8th AGILE Conference on GIScience, May 26-28 2005. Estoril, Portugal.

    Google Scholar 

  • Szewczyk R., Osterweil E., Polastre J., Hamilton M., Mainwaring A. and Estrin D. (2004) Habitat Monitoring with Sensor Networks. Communications of the ACM 47:34-40

    Article  Google Scholar 

  • Thiessen A. H. (1911) Precipitation average for large area. Monthly weather review 39:1082-1084

    Google Scholar 

  • Wang K.-C. and Ramanathan P. (2004) Location-Centric Networking in Distributed Sensor Networks. In: Iyengar S. S. and Brooks R. R. (eds) Distributed Sensor Networks. Boca Raton, pp 555-571

    Google Scholar 

  • Webster R. and Oliver M. A. (2001) Geostatistics for Environmental Scientists. Chichester

    Google Scholar 

  • Zou Y. and Chakrabarty K. (2003) Sensor Deployment and Target Localization Based on Virtual Forces. Proceedings of: InfoCom 2003, Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies. March 30-April 3, 2003. San Francisco.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walkowski, A.C. (2008). Model Based Optimization of Mobile Geosensor Networks. In: Bernard, L., Friis-Christensen, A., Pundt, H. (eds) The European Information Society. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78946-8_3

Download citation

Publish with us

Policies and ethics