
Almost-Everywhere Secure Computation

Juan A. Garay1,� and Rafail Ostrovsky2,��

1 Bell Labs, Alcatel-Lucent, 600 Mountain Ave., Murray Hill, NJ 07974
garay@research.bell-labs.com

2 Departments of Computer Science and Mathematics, UCLA, Los Angeles, CA 90095-1596
rafail@cs.ucla.edu

Abstract. Secure multi-party computation (MPC) is a central problem in cryp-
tography. Unfortunately, it is well known that MPC is possible if and only if the
underlying communication network has very large connectivity — in fact, Ω(t),
where t is the number of potential corruptions in the network. This impossibil-
ity result renders existing MPC results far less applicable in practice, since many
deployed networks have in fact a very small degree.

In this paper, we show how to circumvent this impossibility result and achieve
meaningful security guarantees for graphs with small degree (such as expander
graphs and several other topologies). In fact, the notion we introduce, which we
call almost-everywhere MPC, building on the notion of almost-everywhere agree-
ment due to Dwork, Peleg, Pippenger and Upfal, allows the degree of the network
to be much smaller than the total number of allowed corruptions. In essence, our
definition allows the adversary to implicitly wiretap some of the good nodes by
corrupting sufficiently many nodes in the “neighborhood” of those nodes. We
show protocols that satisfy our new definition, retaining both correctness and
privacy for most nodes despite small connectivity, no matter how the adversary
chooses his corruptions.

Instrumental in our constructions is a new model and protocol for the secure
message transmission (SMT) problem, which we call SMT by public discussion,
and which we use for the establishment of pairwise secure channels in limited
connectivity networks.

Keywords: Secure multi-party computation, secure message transmission,
almost-everywhere agreement, expander graphs, bounded-degree networks.

1 Introduction

Secure multi-party computation (MPC) [33,21,2,6] is one of the most fundamental prob-
lems in cryptography.Simply put, in MPC n players jointly compute and obtain the value
of an arbitrary n-ary polynomial-time computable function on their inputs, in such way
that even if some fraction of the players are corrupted by a malicious adversary, the cor-
rect outputs as well as the privacy of the inputs of the uncorrupted (honest) players are

� A portion of this work was done while the authors were visiting the Institute for Pure and
Applied Mathematics (IPAM), UCLA.

�� Supported in part by an IBM Faculty Award, a Xerox Innovation Group Award, NSF grants
no. 0430254, 0716835 and 0716389, and a MICRO grant from the University of California.

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 307–323, 2008.
c© International Association for Cryptologic Research 2008

308 J.A. Garay and R. Ostrovsky

guaranteed. After its formulation, MPC has been studied extensively, and many flavors
with regards to, for example, the type of corruptions allowed by the adversary, its com-
putational power, and definitions of security, have been considered in the literature.

In this paper our focus is on unconditional, or information-theoretic, secure multi-
party computation, as considered in [2,6], where no restrictions are placed on the
computational power of the adversary. In this setting, assuming that players can commu-
nicate with every other player over not only dedicated but also private communication
channels, MPC is achievable as long as more than 2

3 of the players remain uncorrupted.
Moreover, this bound on the number of players is tight.

The above scenario, however, assumes point-to-point private communication chan-
nel between every pair of players. In fact, with a few noted exceptions (more on this
below), this is not only true for unconditional MPC, but for most of the work on other
models as well. Since reliable, let alone private communication is costly to achieve,
fully connected networks sound like a prohibitive proposition. Indeed, this question
was posed by Dolev [9], and later by Dolev, Dwork, Waarts and Yung [10], whose com-
bined results show that in fact if there are t corrupted players, then (2t+1)-connectivity
is both necessary and sufficient for unconditional MPC. On the other hand, typically in
practical networks most nodes have a very small connectivity, which is independent of
the size of the network.

In this paper, we show that meaningful statements about unconditional MPC can
be made even if every node has small, even constant, connectivity. Clearly, in such a
setting, we must give up on some of the honest nodes, for example, in the case of such
nodes being totally “surrounded” in the network by corrupted nodes; still, we would
like to be able to guarantee the security of a large fraction of uncorrupted nodes.

Our notion of ”giving up” nodes originates from the notion of almost-everywhere
agreement proposed by Dwork, Peleg, Pippenger and Upfal [11], who study how to
achieve Byzantine agreement [26,25] in a limited connectivity setting. We build on the
notions developed in [11], and in some sense, our central result can be viewed as a
generalization of theirs. In essence, given a broadcast channel (implied by Byzantine
agreement) and a constant number of uncorrupted paths among a large subset of nodes
in the network, we show how to implement secure (i.e., reliable and private) channels
among them, and thus achieve almost-everywhere MPC. “In essence” because apart
from the construction, as opposed to just achieving the correctness property for a par-
ticular MPC instance (Byzantine agreement), substantial additional efforts are required
in order to capture the privacy requirement of general MPC, particularly in the case of
adaptive corruptions, and proving it correct.

One of the tools that we use to achieve the above transformation, which we call
secure message transmission by public discussion, might be of independent of interest.
As mentioned above, Dolev et al. [10] show a tight (2t + 1)-connectivity bound for
the (perfectly) secure message transmission (SMT) problem, of one node sending a
message perfectly privately and correctly to another node over a network. That many
channels, in fact, are needed to establish a public channel (no privacy concerns, only
reliability). In our model, a public channel for large subsets of nodes can be constructed
in a different way, and thus we are able to let the adversary corrupt all but one of the
channels connecting those nodes, at the expense of a small error.

Almost-Everywhere Secure Computation 309

We stress that while in almost-everywhere MPC we give up the privacy and correct-
ness of some of the nodes, we consider this a realistic assumption. Indeed, the require-
ments on a corrupted node are also given up in the classical model of MPC, and what we
define here is a model where the adversary by corrupting some t nodes, can potentially
corrupt another set of t′ nodes, which depends on t and the particular network. How-
ever, as long as the entire set is sufficiently small, i.e., t + t′ < n

3 , it is guaranteed that
the rest of the nodes can achieve the requirements of secure multi-party computation,
even on networks with bounded degree.

Related work. As already mentioned, our new notion is closely related to the concept
of almost-everywhere agreement introduced in [11], and further explored in [30,5]. We
review the results in [30] in Section 4.3, where we describe especial networks where
almost-everywhere MPC can be achieved.

We also already mentioned the relation of our tool for secure channels to the prob-
lem of perfectly secure message transmission [10], which has been further studied in,
e.g., [28,8,29,1,12,24]. In [15], Franklin and Wright take a different approach and study
the necessary and sufficient conditions for secure message transmissions over multicast
lines.

Our model for secure message transmission by public discussion is also related to the
one used in privacy amplification and secret key agreement ([4,3] and extensive number
of follow-ups), where there also is an authentic public channel, and a private channel
which the adversary is allowed to eavesdrop and/or tamper, depending on the various
sub-models. Our problem can be viewed as a special instance of secret key agreement
in the presence of severe tampering and transmission errors, but for a very specialized
tampering function, if we view all the channels as a combined channel.

“Hybrid” failure models have been considered in the literature, where the adversary
is allowed to maliciously corrupt some fraction of the players and in addition to cause
some more benign form of failure to some other players [19,14]. In [14] in particular,
Fitzi, Hirt and Maurer allow the adversary to eavesdrop on the additional players. In
our model, the potential additional eavesdropping (as well as violation of correctness)
is defined structurally, given the graph topology and the location of the truly corrupted
nodes.

Finally, the problem statement of almost-everywhere secure computation, as well
as the overall approach are joint work with Shailesh Vaya [31,17,18]. (See Acknowl-
edgements for a more detailed account on this collaboration.) The work reported in [32]
follows this approach as well: adding privacy to networks that admit almost-everywhere
agreement, using a protocol cast there as achieving secret key agreement by public dis-
cussion (see above). Besides several other issues, a salient difference (shortcoming)
in [32] is the approach to a simulation-based security definition [22], where the ideal-
world adversary (the simulator), besides having access to the inputs of the corrupted
players, is also given access to the inputs of the honest players that are given up; such
a strong assumption gives the simulator an additional unfair advantage compared to the
real-world adversary. In contrast, in this paper we propose an indistinguishability-based
security definition, known to be weaker than simulation-based, but meaningful. Further
remarks on definitional issues are included in Sections 2.2 and 5.

310 J.A. Garay and R. Ostrovsky

Organization of the rest of the paper and our contributions. The rest of the paper
is organized as follows. In Section 2 we present the model for and our definition of
almost-everywhere MPC, together with other building blocks that will be used in our
construction. In Section 3 we present the new model and protocol for SMT by pub-
lic discussion, which we then use to obtain secure channels. Section 4 is dedicated to
almost-everywhere MPC. First (Section 4.1), we define a class of graphs with special
properties, which we call almost-everywhere admissible graphs. The literature on
almost-everywhere agreement describes several such graphs; however, not all of them
are suited to satisfy the privacy requirements of our application. We show an efficient
transformation of graphs Gn with degree d that allow almost-everywhere agreement
into a graph G2nof degree O(d) that is almost-everywhere admissible. We then show
(Section 4.2) how to construct protocols for almost-everywhere MPC on such graphs
satisfying our definition, followed by concrete results for some specific networks (Sec-
tion 4.3). We conclude in Section 5 with a summary and directions for future work.

2 Model, Definitions and Tools

In this paper we consider networks (graphs) G = (V, E) that are not fully connected, as
in [11,30,5]. We let |V | = n. We will also refer to the nodes in V as “players,” and to the
edges in E as (communication) links or channels. The networks are synchronous, and
the computation can be divided into rounds; in each round, a player may send a (possi-
bly different) message on each of its incident links, and messages sent in one round are
delivered before the next round. Up to t of the players can be actively corrupted by an
adversary A; we will use T ⊂ V , |T | = t to denote the set of corrupted players, and
sometimes we will refer to A as a t-adversary. We assume that A has unlimited compu-
tational power, and, furthermore, that A is rushing, meaning he can learn the messages
sent by the uncorrupted players in each round before deciding on the messages of cor-
rupted players for this round, and adaptive, meaning that information obtained from a
set of corrupted players at a particular round can affect the choice of the next player(s)
to be corrupted.

2.1 Building Blocks

Our protocols for almost-everywhere MPC will be using several building blocks, in-
cluding almost-everywhere agreement [11], verifiable secret sharing (VSS) [7], and a
new primitive introduced in this paper that we call secure message transmission by
public discussion (Section 3).

Byzantine agreement and almost-everywhere agreement. We start with the standard
definition of Byzantine agreement [25,26]. Here the network model is that of a fully
connected network of pairwise authenticated channels.

Definition 1. A protocol for parties {P1, . . . , Pn}, each holding an initial value vi, is
a Byzantine agreement protocol if the following conditions hold for any t-adversary:

– AGREEMENT: All honest parties output the same value.
– VALIDITY: If for all honest parties vi = v, then all honest parties output v. �

Almost-Everywhere Secure Computation 311

It is known that n > 3t is necessary and sufficient for Byzantine agreement [25,26],
and there exist efficient (polynomial-time and round-optimal) deterministic protocols
achieving it [16]. We will in fact rely on the related task called broadcast, where there
is a distinguished player (the sender) P ∗ holding an initial value v. The agreement con-
dition remains the same as above; validity requires that if the sender is honest, then all
honest players output v. Broadcast easily reduces to Byzantine agreement, preserving
the above bound on the number of players (in the information-theoretic setting).

In [11], Dwork, Peleg, Pippenger and Upfal relax the full (more specifically, Ω(t))
connectivity requirement of the original Byzantine agreement formulation, proposing
almost-everywhere agreement — “almost everywhere” because with partial connectiv-
ity agreement involving all the honest players is not possible and one must settle for
agreement with exceptions, where some of the honest players are left out. Thus, in this
context, the number of exceptions constitutes another relevant parameter for agreement
and broadcast protocols. Dwork et al. consider several classes of networks depending
on their degree; the general approach, however, is to show how to simulate the sending
of a message from one player to another in the fully connected setting by a transmis-
sion scheme working over multiple paths on the partially connected network in such a
way that if none of the players belongs to a set, call it T +, which includes the set of
corrupted players (T) plus the left-out honest players, then the simulation is faithful.
In turn, this makes it possible to simulate any Byzantine agreement protocol for fully
connected networks which does not rely on the privacy of the links by treating players
from T + as corrupted. We further review and apply some of the results in [11], as well
as those in follow-up work [30], in Section 4.3.

As before in the full connectivity case, an almost-everywhere broadcast protocol can
be derived by having the sender first (attempt to) send his value to all other players
using the transmission simulation scheme, and then having all players run the almost-
everywhere agreement protocol; for an honest sender in T + the validity condition is
not guaranteed, but agreement guarantees that all the players in V − T+ will output the
same value.

Verifiable secret sharing. Here the network model is that of a fully connected network
of pairwise secure channels. One of the players is given a special role of being the dealer
D. A VSS protocol consists of two phases: in the first phase, the dealer D distributes a
secret s, while in the second, taking place possibly at a later time, the players cooperate
in order to retrieve it. A more detailed specification is as follows:

Sharing phase: The dealer initially holds secret s ∈ K where K is a finite field
of sufficient size; at the end of the phase each player Pi holds some private
information vi.

Reconstruction phase: Each player Pi reveals his private information vi. Then, on the
revealed information v′i (a corrupted player may reveal v′i �= vi), a reconstruction
function is applied in order to compute the secret, i.e., s = Rec(v′1, . . . , v

′
n).

The guarantees that are required from a VSS protocol are as follows.

Definition 2. An n-player protocol is called a (perfect) (n, t)-VSS protocol if, for any
t-adversary, the following condition holds:

312 J.A. Garay and R. Ostrovsky

– PRIVACY: If D is honest, then the adversary’s view during the sharing phase re-
veals no information about s. More formally, the adversary’s view is identically
distributed under all different values of s.

– CORRECTNESS: If D is honest, then the reconstructed value is equal to the
secret s.

– COMMITMENT: After the sharing phase, a unique value s∗ is determined which will
be reconstructed in the reconstruction phase; i.e., s∗ = Rec(v′1, · · · , v′n) regardless
of the information provided by the corrupted players. �

It is known that n > 3t is necessary and sufficient for VSS [2], and there exist efficient
protocols achieving it [20,13]1. If an (negligible) error is allowed, and additionally a
broadcast channel is given, then n > 2t suffices [27].

The last tool that we will be using, secure message transmission by public discussion,
we treat separately in Section 3.

2.2 Almost-Everywhere MPC

We now turn to the formulation of almost-everywhere secure multi-party computation.
It follows from results in [9,10] that in the type of networks that we are considering,
it is not possible to establish secure channels between every pair of nodes, a known
requirement for MPC. Indeed, depending on connectivity patterns, some nodes in V
may have a majority (or even all) of the links coming from nodes controlled by A.
Thus, and as in [11,30,5] in the context of almost-everywhere agreement, our approach
to secure multi-party computation on such networks is also to “give up” on those nodes.

More formally, let V denote the power set of V , V(≤t) the set of all subsets of V of
size at most t, and let X : V(≤t) → V be a function with the following properties:

1. X is monotically increasing, i.e., T1 ⊂ T2, implies X (T1) ⊂ X (T2); and
2. T ⊂ X (T).

We say a protocol Π achieves X secure multi-party computation (X-MPC for short),
where X

def= maxT⊂V,|T |=t{|X (T)|}, if for every subset T of nodes controlled by the
t-adversary by the end of the protocol, there exists a set W ⊂ V of uncorrupted players,
|W | ≥ n − X , such that all the players in W are able to perform secure multi-party
computation. In the case of a fully connected network, X (T) = T . Sometimes we will
refer to the players in W as privileged, and to the players in X (T) − T as doomed.

Recall that the two main requirements in MPC are correctness of the output of the
function being computed and privacy of the honest players’ inputs. Prior work men-
tioned above for the limited connectivity setting was only concerned with the correct-
ness of a function; given the additional privacy requirement of MPC, specifying what
“to able to perform secure multi-party computation” means becomes more challenging.
This gets further complicated by the fact that we are considering adaptive adversaries,
which implies that the sets defined above might change (in particular, the set of given-
up players will grow) during the execution of the protocol, and we would like, for any
protocol, to state security guarantees for the honest players as these sets change.

1 In fact, these protocols additionally assume the availability of a broadcast channel, which can
be implemented on the fully connected point-to-point network, since n > 3t.

Almost-Everywhere Secure Computation 313

The “commit-and-compute” paradigm. Typically, MPC protocols to compute a func-
tion on the inputs of the players f(x1, x2, · · · , xn) (assuming for simplicity that all the
players get the same result) tolerating active adversaries would start with the players ex-
ecuting a commitment phase, where the players’ inputs are shared among the rest of the
players, followed by a computation phase, followed by an output phase. For X-MPC,
we make the commitment phase explicit and part of the definition, as this will allow us
to precisely state the conditions on nodes in an unfavorable connectivity situation.

Definition 3. Let Gn = (V, E), |V | = n be a network, and T , X (T), X and W as
defined above. An n-player two-phase protocol is an X secure multi-party computation
protocol if for any probabilistic polynomial-time computable function f , the following
two conditions are satisfied at the end of the respective phases:

Commitment phase: During this phase, all players in V commit to their inputs.
– BINDING: For all Pi ∈ V , there is a uniquely defined value x∗

i ; if Pi ∈ W ,
then x∗

i = xi.
– PRIVACY: For all players Pi ∈ W , x∗

i is information-theoretically hidden.
Computation phase:

– CORRECTNESS: For all players Pi ∈ W , f(x∗
1, x

∗
2, · · · , x∗

n) is the value output
by Pi.

– PRIVACY: Consider two runs of the protocol such that X (T1) = X (T2) (and

thus W1 = W2 = W) and let
−→
x∗

S denote the vector of committed inputs corre-

sponding to players in a given set S. If for all
−→
x∗

W ,
−−−−→
z∗X (T1),

−→
y∗

W ,
−−−−→
z∗X (T2) it holds

that f(
−→
x∗

W ,
−−−−→
z∗X (T1)) = f(

−→
y∗

W ,
−−−−→
z∗X (T2)), then the adversary’s views in the two

runs are statistically indistinguishable. �

We now make some remarks regarding our X-MPC definition.

Remark 1. In the adaptive-adversary setting, the sets T , X (T) and W might change
dynamically during the execution of a protocol. Thus, we stress that in the definition
above these sets are always defined with respect to the completion of a phase.

Remark 2. It is well known that an information-theoretic definition of privacy in terms
of indistinguishability is weaker than a simulation-based counterpart. For example, con-
sider a secure — according to our definition — multi-party protocol to compute f(x) for
a one-way permutation f , where x should remain hidden from all players. Information
theoretically, the computation of f(x) and the computation that would reveal x reveals
the same amount of information to an infinitely powerful adversary; however, in the
latter case, clearly x does not remain hidden. This example, due to Canetti, illustrates
that one should not “mix” information-theoretic notions and computational notions, and
that only suitable properties, such as those guaranteed by information-theoretically se-
cure MPC protocols ([2,6] and follow-ups), will remain secure according to our defini-
tion. See Section 5 for further remarks on simulation-based definitions for the X-MPC
setting.

Before turning to protocols for X-MPC, in the next section we introduce the last tool
that our protocols will be using, which will allow for the establishment of secure chan-
nels in the limited connectivity setting.

314 J.A. Garay and R. Ostrovsky

3 Secure Message Transmission by Public Discussion

Let us first specify the (new) communication model that we are considering in this
section; we will then relate this model to the X-MPC context. Here we consider just
two players, S and R, connected by a set of channels C = {C1, ..., CN}, the contents
of all but one of which can be eavesdropped and modified (in an arbitrary manner) by
an adaptive, computationally unbounded adversary A. Additionally, S and R have at
their disposal an authentic and reliable public channel Pub.

The goal is to realize, using this communication model, a means for S to securely
send messages to R, a functionality known as secure message transmission (SMT) [10].
We will later be using this version of SMT in Section 4, to realize secure channels
between nodes that are not directly connected, but with a connectivity pattern that can
be abstracted out as the one considered in this section. First, we recall the properties of
SMT.

Definition 4. A protocol between S and R achieves secure message transmission if it
transmits a message from S to R such that the following two conditions are satisfied:

– CORRECTNESS: R learns the message except with probability ε.
– PRIVACY: A does not get any information about the message being transmitted. �

We now describe such protocol. Let M denote the space of (without loss of general-
ity) q-bit messages. Let � be such that:

1. � ≥ q, and

2. � > c log N
ε , for suitable c (specified later).

We also assume the availability of an error-correcting code tolerating a constant fraction
of errors and constant blow-up; for concreteness, say up to 1

4 of errors can be corrected,
and that a q-bit message maps to a 12q-bit codeword. Let Enc and Dec be the code’s
associated functions. The protocol, called PUB-SMT, is shown in Figure 1.

Theorem 1. Protocol PUB-SMT, running on the network described above, is a four-
round SMT protocol according to Definition 4, transmitting O(max(q, log N

ε)) bits on
each of the N channels and N · O(max(q, log N

ε)) bits over the public channel.

Proof

CORRECTNESS: Correctness would not hold if adversary A is able to corrupt Round
1 messages over any of the N channels and remain undetected. For each channel
Ci, this would happen if A is able to corrupt more than 3� bits. The probability of
detecting one of these changes when one bit is revealed in Round 2 is at least 1

5 ;
thus, the probability that A remains undetected when 3� bits are revealed is less
than (4

5)3�. That’s for each individual channel. The probability that A succeeds on

any channel is N(4
5)3�. Setting N(4

5)3� < ε yields � >
log N

ε

3 log 5
4

= O(log N
ε).

PRIVACY: Since according to the formulation of the problem, at least one channel (say,
channel Cj) remains hidden from the adversary, this channel will always remain in

Almost-Everywhere Secure Computation 315

Protocol PUB-SMT , ,

1. Over each channel C , sends to uniformly chosen random bit
string , . Let , , be the string received by on channel
C . rejects all channels where .

2. Let denote with randomly chosen positions (for each chan-
nel) replaced with “ .” For each C , sends to over Pub.

3. For all channels C , if and differ in any of the “opened” bits,
declares channel C as “faulty.” I.e., sends to over Pub an -bit string

which identifi es the faulty channels (say, as).
Let C C C , , denote the set of remaining, non-faulty chan-
nels, and , , , denote the corresponding string of unopened
bits; let be the corresponding string in ’s possession.

4. Let (if , pad accordingly). For ,
chooses such that , and sends Enc ,

, over Pub.
For , fi rst computes Dec , and then

to retrieve the message.

Fig. 1. Protocol for secure message transmission by public discussion

the set of non-faulty channels C, and thus any message will be masked by this
channel’s bits. Hence, for all messages M1, M2 ∈ M and for all adversaries A,
the distribution of A’s view when M1 is transmitted is identical to the distribution
when M2 is transmitted.

The communication complexity is easily established by inspection. ��

The availability of the public channel makes it possible to tolerate a powerful adversary,
who is allowed to eavesdrop and/or change the contents of all but one of the N channels.
As mentioned at the beginning of the section, our application of SMT by public discus-
sion to almost-everywhere MPC will be to provide secure channels between nodes that
are not directly connected in the underlying network, and this section’s channels will be
instantiated by disjoint paths. Thus, in order to guarantee privacy not only with respect
to the adversary, but also with respect to the other honest players, we will be requiring
that at least two, instead of just one, of the channels (paths) remain untouched (i.e., the
corresponding nodes remain uncorrupted) by the adversary. We show how to achieve
this in the next section.

4 Almost-Everywhere Secure Multi-party Computation

In this section we first consider graphs with some special properties, which we call
almost-everywhere admissible graphs, and which will constitute our candidate networks
for almost-everywhere MPC. The literature on almost-everywhere agreement [11,30,5]

316 J.A. Garay and R. Ostrovsky

describes several classes of such graphs; however, not all of them are suited to satisfy the
privacy requirement of almost-everywhere MPC mentioned above. First, given graphs
with degree d = d(n) that allow almost-everywhere agreement — more specifically,
almost-everywhere broadcast, we show an explicit transformation to a new graph with
degree O(d) satisfying the requirement. We then show a protocol for almost-everywhere
MPC on this type of graphs, followed by instantiations of our results on concrete
networks.

4.1 Almost-Everywhere Admissible Graphs

First, a more general definition, to succintly express graphs whose sets of privileged
nodes have a minimum of uncorrupted paths connectivity as well as a broadcast channel.

Definition 5. Let Gn = (V, E), |V | = n be a graph, T ⊂ V , |T | ≤ t, X : V(t) → V
a monotically increasing function and W = V − X (T). We say that Gn is almost-
everywhere (i, t)-admissible ((i, t)-admissible for short) if the following two conditions
are satisfied:

1. Nodes in W can successfully run almost-everywhere broadcast protocols with poly-
nomial message complexity2 ; and

2. there exists a computable map SELECT-PATH(Gn, u, v) outputting a set PATHS
(u, v) such that
(a) for all u, v ∈ V , |PATHS(u, v)| ∈ O(poly(n));
(b) for all u, v ∈ W , PATHS(u, v) contains at least i disjoint paths fully contained

in W . �

Further, if both procedures in conditions 1 and 2 — the almost-everywhere broadcast
protocol and map SELECT-PATH, respectively — are efficiently computable, we call
Gn an efficient (i, t)-admissible graph.

(2, t)-admissible graphs are required by our application as, as mentioned before, two
disjoint paths are needed in order to guarantee privacy with respect to intermediate
nodes in the paths between nodes, even if those nodes are not corrupted. On the other
hand, (1, t)-admissible graphs are of particular interest, as there exist constructions for
graphs of bounded degree that yield large sets W , while tolerating sets T with the
largest sizes, i.e., |T | = O(n) ([30]; see Corollary 4 in Section 4.3). Given that, we
now show a transformation to turn (1, t)-admissible graphs into (2, t)-admissible, while
(asymptotically) maintaining the original graphs’ desired properties. Recall that we let
X = maxT⊂V,|T |=t{|X (T)|}.

Lemma 1. Let Gn = (V, E) and G′
2n = (V ′, E′) both be (1, t)-admissible graphs

according to Definition 5. Then, one can construct a (2, t)-admissible graph G′′
2n =

(V ′′, E′′) with subset W ′′ such that |W ′′| ≥ 2n − O(X ′′), where X ′′ = X + X ′.

Proof. Graph G′′
2n is constructed as follows. First, take two copies of Gn, call them

G1 and G2. Define V ′′ = V1
⋃

V2 and add additional edges between the isomorphic

2 By “successfully” we mean that for privileged senders (i.e., senders in W) the validity condi-
tion is satisfied (see Section 2).

Almost-Everywhere Secure Computation 317

vertices of G1 and G2. Note that the resulting graph so far has 2n vertices, and 2|E| +
|V | edges.

Next, order the V ′′ vertex set in an arbitrary order and add to it all the edges from
graph G′

2n; the resulting edge set is E′′, with |E′′| = 2|E|+|V |+|E′|. For convenience,
call G3 the instance of G′

2n applied to G′′
2n.

We note that we allow any (but up to) t nodes to be corrupted in G′′
2n. We account

for every node corrupted in G′′
2n as two corruptions: one in either (vertex set of) G1 or

G2, and simultaneously as a corruption in G3, since G3 “reuses” the vertex sets of G1
and G2.

Now, for a subset of nodes S1 ⊂ V1, let I(S1) be the set of nodes in V2 isomorphic
to the nodes in S1; define set I(S2) similarly. Let T ′′ = T1

⋃
T2

⋃
T3, and let W1

(respectively, W2 and W3) be the subset of nodes in G1 (respectively, G2, G3) satisfying
the premises of the lemma — Gn and G′

2n being (1, t)-admissible graphs.
Finally, let W ′′ = (W1 − I(T2)

⋃
W2 − I(T1))

⋂
W3. We now show that nodes

in W ′′ can successfully run an almost-everywhere broadcast protocol, and that for all
u, v ∈ W ′′, two disjoint paths fully contained in W ′′ exist connecting them. We have
the following cases:

1. u, v ∈ V1
⋂

W ′′ : Almost-everywhere broadcast is obtained from G3, specifically
by running the protocol solely on G3’s edges.3 One path of uncorrupted nodes
between nodes u and v is given to us by the premises of the lemma with respect to
G1. The second path is as follows: 1) u → u′, where u′ = I(u), 2) u′ → v′, where
v′ ∈ I(v), and 3) v′ → v.

2. u, v ∈ V2
⋂

W ′′ : Similar to case 1.
3. u ∈ (V1

⋂
W ′′) and v ∈ (V2

⋂
W ′′): Again, almost-everywhere broadcast is given

to us by G3. Let u′ = I(u) and v′ = I(v). The two paths containing nodes in W ′′

are as follows:
(a) u → u′; u′ � v: a path in W ′′ assumed by the lemma for G2;
(b) u� v′, a path in W ′′ assumed by the lemma for G1; v′ → v.

4. u ∈ (V2
⋂

W ′′) and v ∈ (V1
⋂

W ′′): Similar to case 3.

Let us now estimate the size of the subset W ′′:

|W ′′| ≥ |V ′′| − |X (T1)| − |I(T2)| − |X (T2)| − |I(T1)| − |X ′(T3)|
≥ |V ′′| − 4X − X ′ (since |I(Ti) ≤ |X (Ti)| ≤ X , i = 1, 2)

= 2n − O(X ′′),

where X ′′ = X + X ′. ��

In the next section we show how to construct X-MPC protocols on (2, t)-admissible
graphs.

4.2 Almost-Everywhere MPC Protocols

We will be using several building blocks, including protocol PUB-SMT from Section 3,
as well as protocols for unconditional VSS (see Section 2.1) and MPC [2], the last two
defined on a fully connected network.

3 This is important, as this property is not preserved under edge addition.

318 J.A. Garay and R. Ostrovsky

However, first we would like to modify the specification of information-theoretically
secure MPC (on a fully connected network and tolerating active adversaries) some-
what, so that it suits our purposes. Typically, the definition postulates an ideal model
(equipped with a trusted third party) and compares it to the real model, demanding that
in real life the adversary does not gain any advantage compared to what happens in
the ideal model [22]. In order to achieve this goal, all known implementations of MPC
follow a “commit-and-compute” paradigm. It is convenient for us to recast those results
in that paradigm.

Recall that there are n players P1, ..., Pn, each Pi holding a private value xi, and
wishing to jointly compute some function f(x1, · · · , xn). We call the modified protocol
C&C-MPC, consisting of two phases:

Commit phase: Players commit to their inputs by acting as dealers in the sharing phase
of a (n, n

3)-VSS protocol — i.e., an unconditional, optimally resilient VSS protocol
(e.g., [20,13]). (n executions of the protocol are run in parallel.) At the end of this
phase, each player Pi holds a vector of n secret values (shares) x∗

i = (v1
i , ...vn

i),
one for each VSS invocation.

Computation phase: Players execute the original MPC protocol to compute an “aug-
mented” function f∗ defined as the composition of f and n invocations of Rec, the
reconstruction function of the VSS protocol:

f∗(x∗
1, x

∗
2, ..., x

∗
n) =f(Rec(v1

1 , v
1
2 , ..., v

1
n), Rec(v2

1 , v
2
2 , ..., v

2
n), ...,

Rec(vn
1 , vn

2 , ..., vn
n)),

where Rec is the reconstruction function of the (n, n
3)-VSS protocol.

We stress that the Rec protocol is not executed “in the open” as one typically would
in an execution of a VSS protocol, but as part of the MPC protocol. Thus, the results
of each Rec invocation remain hidden within the MPC computation. Assuming the
security of the VSS protocol, it is easy to see that C&C-MPC satisfies the same re-
quirements as the original MPC protocol (correctness, privacy, and independence of
inputs).

Having specified this version of MPC, our general approach to almost-everywhere
MPC will be to have the players simulate C&C-MPC on the partially connected, admis-
sible network, chosen with a suitable set of parameters, with the following replacement
of actions:

1. The sending (and receiving) of messages on the secure channels substituted by
invocations to protocol PUB-SMT, and

2. invocations to the public channel (in PUB-SMT) and broadcast (VSS protocol)
substituted by invocations to the almost-everywhere broadcast protocol.

We give a more detailed description of the protocol and argue its security below.

Theorem 2. Let Gn = (V, E) be a (2, t)-admissible graph, with T , X and W as in
Definition 5. Let X = maxT⊂V,|T |=t{|X (T)|} and such that X < n

3 . Then there exists
a protocol that achieves X secure multi-party computation against an adaptive, rushing
t-adversary.

Almost-Everywhere Secure Computation 319

Proof sketch. First, we specify the communication structure of the protocol simulation.
Each round of protocol C&C-MPC for complete networks is thought of as a “super-
round.” Each super-round has the same structure, with players taking turns4 (in, say,
lexicographic order) to perform the simulation of sends and receives required in the
original round. More specifically, at the onset, each player Pi locally invokes procedure
SELECT-PATH(Gn, Pi, Pj), the computable map given by Gn, to obtain set PATHS(Pi,
Pj), for every Pj . Whenever Pi is required to send message m to Pj , Pi and Pj run
PUB-SMT(Pi, Pj , m, PATHS(Pi, Pj)); invocations to the public channel by Pi (resp.,
Pj) in PUB-SMT are substituted by invocations to the almost-everywhere broadcast
protocol, also given by Gn, with Pi (resp., Pj) acting as the sender. Similarly, invoca-
tions by Pi to broadcast in the (n, n

3)-VSS protocol are replaced by an invocation to the
almost-everywhere broadcast protocol with Pi as the sender.

Let f(x1, x2, · · · , xn) be the function to be computed, where xi is Pi’s private in-
put. Players now simulate the execution of the C&C-MPC protocol: first the commit
phase — let x∗

1, x
∗
2, ..., x

∗
n be the values held by the players at the end of this phase,

followed by the computation of the “augmented” function f∗.
First, note that the communication structure of the protocol simulation within the

super-round (serialized, one player at a time, in turn one edge at a time) does not intro-
duce any security vulnerabilities, as the original simulated protocols are robust against
rushing adversaries, who are allowed to learn the messages sent by the honest players
in a round before deciding on the messages for the same round.

We now argue that the conditions of Definition 3, our definition of X secure multi-
party computation, are satisfied.

Commitment phase. The premise of the theorem guarantees that |W | > 2n
3 . Thus, it

follows from the (simulation of the) sharing phase of the (n, n
3)-VSS protocol and the

properties of almost-everywhere broadcast that for every player Pi ∈ V , there is a
value x∗

i uniquely defined by its shares vj
i , 1 ≤ j ≤ n; for players in W in particular,

x∗
i = xi, since those players are able to run almost-everywhere broadcast successfully

(see Definition 5). We stress that players in X (T), not only the corrupted ones but also
the doomed ones, might provide modified values or not be able to provide any input
at all; regardless, they will be unique and well defined per the properties above. This
gives the binding property of the commitment phase. The privacy of the input values
for players in W follows from the privacy condition of PUB-SMT, which again these
players are able to execute successfully, and which guarantees that the views of the
adversary — as well as of other honest players, since the graph is (2, t)-admissible —
under the transmission of any two messages are identical.

Computation phase. Regarding correctness, again since |W | > 2n
3 and players in W

can send each other private messages and simulate broadcast faithfully, they can carry
on the reconstruction and the computation on the uniquely defined shared values in
the commitment phase, following the protocol for fully connected MPC. Privacy of
the computation phase follows from a hybrid argument and reduction to the privacy
of the message transmission scheme. In a fully connected network, the condition of

4 This for simplicity, and to avoid a more detailed analysis of possible interference. Techniques
from [5] could in principle be applied in order to reduce the total number of rounds.

320 J.A. Garay and R. Ostrovsky

indistinguishable views for the adversary for all
−−−→
x∗

V −T ,
−−−→
y∗

V −T ,
−→
z∗T such that the out-

put of the function is the same, i.e., f(
−−−→
x∗

V −T ,
−→
z∗T) = f(

−−−→
y∗

V −T ,
−→
z∗T), is known to hold

for an information-theoretically secure MPC protocol as long as the sets of corrupted
players are the same [2]. Thus, if the adversary would be able to distinguish the two
views with non-negligible advantage in the simulated execution, then there would be a
particular super-round — in turn, player turn; in turn, message transmission — where
the adversary can distinguish the two runs on Gn, but does not distinguish them in the
fully connected network. This would contradict the security of the message transmis-
sion protocol between two privileged players. ��

4.3 Almost-Everywhere MPC on Classes of Networks

In this section we enumerate several classes of networks where almost-everywhere
MPC is possible, as a corollary of admissible graphs given in the almost-everywhere
agreement literature. The first three corollaries follow from results in [11], and the last
one from [30].

Corollary 1. For all r ≥ 5, almost all r-regular graphs (i.e., all but a vanishingly small
fraction of such graphs) admit O(t)-MPC, where |T | = t ≤ n1−c, for some constant
c = c(r), where c(r) → 0 as r → n.

The next corollaries apply to explicit graphs for which the number of doomed players
is small.

Corollary 2. For every ε > 0 there exists a network Gn = (V, E) of degree O(nε) and
t = O(n) on which O(t)-MPC is possible.

The corollary follows from a recursive construction of networks of unbounded degree
in [11] that yields (2, O(n))-admissible graphs with X = O(t).

Corollary 3. There exists a constant-degree network with t = O(n
log n) on which O(t)-

MPC is possible.

This network is constructed by taking a butterfly network, which constitutes a (2, O
(n
log n))-admissible graph, with X = O(t log t), and superimposing a 5-regular graph;

this yields a regular graph of degree 9, on which a compression procedure can be run to
“sharpen” the X term to O(t) [11].

Finally, Upfal [30] shows how to explicitly construct constant-degree expander
graphs that yield (1, O(n))-admissible graphs — i.e., tolerating large (linear) number
of corruptions (compare to the other constant-degree networks above) — while avoid-
ing the blow-up in the number of doomed players. Applying the construction given in
Lemma 1, we obtain:

Corollary 4. There exist constant-degree networks with t = O(n) on which O(t)-MPC
is possible.

The protocol achieving it, however, is not efficient (i.e., polynomial-time), as the re-
sulting admissible graph is not efficient; specifically, the almost-everywhere broadcast
component has polynomial message complexity but requires exponential computation.

Almost-Everywhere Secure Computation 321

5 Summary and Future Work

In this paper we introduced the notion of almost-everywhere secure multi-party compu-
tation for partially connected networks, and showed how to achieve meaningful security
guarantees whenever possible. We proposed a definition for X-MPC, and a protocol sat-
isfying it. We also gave concrete examples for specific networks, building on work from
almost-everywhere agreement.

Regarding our definitional approach, which follows the one in [23], it is well known
that simulation-based definitions of security are stronger than and preferable to indistin
guishability-based ones. However, in the setting of almost-everywhere secure compu-
tation, the simulation-based approach encounters the following problem: it seems chal-
lenging how to define, in a meaningful and network-independent way, the simulation
and the adversarial view of the state of the doomed players, or indeed how to even deal
with this dynamically growing set; even though these nodes are not part of the nodes
for which we guarantee privacy and a correct output, it is not clear what view of these
nodes the adversary gets. Indeed, for some of the doomed nodes the adversary could
learn all the information and be able to change their inputs, while for others the adver-
sary would only get partial control. We leave the refinement of and alternatives to our
almost-everywhere MPC definition as a subject for future research. We stress though
that in many situations, the security guarantees given by our approach are sufficient,
especially if running information-theoretically secure protocols, such as the one in [2].

Regarding our new model for SMT by public discussion, it would be interesting to
reduce the communication, in particular on the public channel (say, to sublinear in N),
and provide some measure of optimality.

Finally, providing a polynomial-time protocol for almost-everywhere agreement —
and thus for almost-everywhere MPC — on networks of bounded degree tolerating a
linear number of corruptions remains an interesting open problem.

Acknowledgments

We thank the anonymous reviewers for Eurocrypt 2008 for their useful comments.
The problem statement of almost-everywhere secure computation, as well as the

overall approach are joint work with Shailesh Vaya, as reflected in [31,17,18]5. How-
ever, the simulation-based approach to security that was originally considered in the
three-author draft, and further developed in [32], we (the current authors) eventually
found unsatisfactory (see Sections 1, paragraph on related work, and 5 for a more tech-
nical discussion). Hence, we withdrew our names from that manuscript, and proceeded
to work out a different model and corresponding proof of security, as well as to com-
pletely change and overhaul the protocols — this is the work presented here. As a
courtesy, Vaya was offered co-authorship on the current paper, provided however that
the problematic approach be abandoned and not published as a separate work; he chose
not to accept our offer.

5 In [31], Shailesh Vaya’s thesis acknowledgement reads: “Here, let me also thank Juan Garay
who along with Rafail was an equal participant in developing the central ideas in this thesis.”

322 J.A. Garay and R. Ostrovsky

References

1. Agarwal, S., Cramer, R., de Haan, R.: Asymptotically optimal two-round perfectly secure
message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, Springer, Hei-
delberg (2006)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: Proc. 20th Annual ACM Symposium of the Theory
of Computation, pp. 1–10 (May 1988)

3. Bennett, C.H., Brassard, G., Crèpeau, C., Maurer, U.: Generalized privacy amplification.
IEEE Transactions on Information Theory 41(6), 1015–1923 (1995)

4. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. Siam
Journal of Computing 17(2) (April 1988)

5. Berman, P., Garay, J.: Fast consensus in networks of bounded degree. WDAG 1990 2(7),
62–73 (1993); Preliminary version in WDAG 1990

6. Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Pro-
ceedings 20th Annual Symposium on Theory of Computing, STOC, Association for Com-
puting Machinery (May 1988)

7. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and simultane-
ous broadcast. In: Proc. 26th Annual IEEE Symposium on Foundations of Computer Science,
pp. 383–395 (1985)

8. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R.
(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002)

9. Dolev, D.: The byzantine generals strike again. Journal of Algorithms 1(3), 14–30 (1982)
10. Dolev, D., Dwork, C., Waarts, O., Young, M.: Perfectly secure message transmission. Journal

of ACM 1(40), 17–47 (1993)
11. Dwork, C., Peleg, D., Pippinger, N., Upfal, E.: Fault tolerance in networks of bounded degree.

In: Proc. 18th Annual Symposium on the Theory of Computing, pp. 370–379 (1986)
12. Fitzi, M., Franklin, M., Garay, J., Vardhan, S.H.: Towards optimal and efficient perfectly

secure message transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, Springer,
Heidelberg (2007)

13. Fitzi, M., Garay, J., Gollakota, S., Rangan, C.P., Srinathan, K.: Round-optimal and efficient
verifiable secret sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
329–342. Springer, Heidelberg (2006)

14. Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional mpc. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, Springer, Heidelberg (1998)

15. Franklin, M.K., Wright, R.N.: Secure communications in minimal connectivity models. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 346–360. Springer, Heidelberg
(1998)

16. Garay, J., Moses, Y.: Fully polynomial Byzantine agreement for n > 3t processors in t + 1
rounds. SIAM J. Comput. 27(1), 247–290 (1998); Preliminary version in STOC 1992

17. Garay, J., Ostrovsky, R., Vaya, S.: Almost-eveywhere secure computation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, Springer, Heidelberg (2007)

18. Garay, J., Ostrovsky, R., Vaya, S.: Almost-eveywhere secure computation. In: Presentation at
the 2007 Workshop on Cryptographic Protocols WCP 2007, Bertinoro, Italy (March 2007)

19. Garay, J., Perry, K.: A continuum of failure models for distributed computing. In: Segall, A.,
Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 153–165. Springer, Heidelberg (1992)

20. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty computation.
In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, Springer, Heidelberg (2002)

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness
theorem for orotocols with honest majority. In: Proc. 19th Annual ACM Symposium on
Theory of Computation, pp. 218–229 (May 1987)

Almost-Everywhere Secure Computation 323

22. Goldreich, O.: Secure multi-party computation, final (incomplete) draft, version 1.4 (2002)
23. Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness in private

computations. SIAM Journal on Computing 29 (1999)
24. Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmission

scheme. These proceedings
25. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Transactions on

Programming Languages and Systems, 382–401 (July 1982)
26. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal

of the ACM, JACM 27(2) (April 1980)
27. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest major-

ity. In: Proc. 21st ACM Symposium on the Theory of Computing, pp. 73–85 (1989)
28. Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in synchronous

networks. Information and Computation 1(126), 53–61 (1996)
29. Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal perfectly secure message trans-

mission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer,
Heidelberg (2004)

30. Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In: Proc. 11th
ACM Symposiyum on Principles of Distributed Computing, pp. 83–89 (1992)

31. Vaya, S.: Almost-everywhere secure computation. Ph.D. Thesis, University of California at
Los Angeles, California (December 2006)

32. Vaya, S.: Secure computation on incomplete networks. In: Cryptology ePrint archive, Report
2007/346 (September 2007)

33. Yao, A.: Protocols for secure computation. In: Proc. 23rd Annual IEEE Symposium on Foun-
dations of Computer Science (1982)

	Almost-Everywhere Secure Computation
	Introduction
	Model, Definitions and Tools
	Building Blocks
	Almost-Everywhere MPC

	Secure Message Transmission by Public Discussion
	Almost-Everywhere Secure Multi-party Computation
	Almost-Everywhere Admissible Graphs
	Almost-Everywhere MPC Protocols
	Almost-Everywhere MPC on Classes of Networks

	Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

