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Abstract. We construct obfuscators of point functions with multibit output and
other related functions. A point function with multibit output returns a fixed string
on a single input point and zero everywhere else. Obfuscation of such functions
has a useful application as a strong form of symmetric encryption which guar-
antees security even when the key has very low entropy: Essentially, learning
information about the plaintext is paramount to finding the key via exhaustive
search on the key space.

Although the constructions appear to be simple and modular, their analysis
turns out to be quite intricate. In particular, we uncover some weaknesses in the
current definitions of obfuscation. One weakness is that current definitions do
not guarantee security even under very weak forms of composition. We thus de-
fine a notion of obfuscation that is preserved under an appropriate composition
operation. The constructions can use any obfuscator of point functions under the
proposed definition. Alternatively, they can use perfect one way (POW) functions
with statistical indistinguishability, or with computational indistinguishability at
the price of somewhat weaker security.

Keywords: obfuscation, composable obfuscation, multibit point function obfus-
cation, digital locker, point function obfuscation.

1 Introduction

Program Obfuscation is one of the most intriguing open problems in cryptography. In-
formally, a program obfuscator (or, simply, an obfuscator) is a compiler that converts
a program into another one, called the obfuscated program or code, that has a similar
functionality but satisfies certain secrecy requirements. Informally, the secrecy require-
ment stipulates that whatever “useful” information the obfuscated code reveals is learn-
able from the program’s input/output behavior. In other words, an obfuscated program
should not reveal anything useful beyond what’s learned by inspecting the program’s
outputs on inputs of choice. This requirement is formalized by Barak et al. [2] through a
simulation-based definition called the virtual-blackbox property. The virtual-blackbox
property says that every adversary has a corresponding simulator that emulates the out-
put of the adversary given only oracle (i.e., blackbox) access to the same functionality
being obfuscated.
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In the same work, Barak et al. provide impossibility results regarding general obfus-
cation, even when the output of the adversary is restricted to predicates. In other words,
it is shown that there are certain functionalities and corresponding predicates where
these predicates are learnable from any program implementing the functionalities but
not so given blackbox access to them. In light of this general negative result, we are
forced to study obfuscation of restricted classes of functions if we wish to adopt the def-
inition of [2]. Here, we follow this line of work. In particular, we build on the previous
work on point function obfuscation [4,5,13,11] towards obfuscating slightly more com-
plex functions, namely point functions with multibit output. Moreover, we show that
obfuscation of point functions are not necessarily secure even under self-composition,
a property needed in our analysis. We next go into a more detailed exposition of our
work.

Obfuscation of point functions with multibit output. A point function returns 1 on a
single input and 0 everywhere else. Formally, Fx(y) = 1 if y = x and 0 otherwise. A
point function with multibit output generalizes point functions in that it outputs, on a
single input, a long string instead of 1. Formally, Fx,y(z) = y if z = x, and 0 otherwise.

The connection to symmetric encryption. Obfuscators for point functions with multibit
output have a useful application as what we call a digital locker. A digital locker is a
strong form of symmetric encryption which provides meaningful security even the key
is taken from a distribution with very low entropy. More specifically, the guarantee is
that the complexity of learning anything about the plaintext corresponds to that of find-
ing the key via exhaustive search over the key space. We formalize this privacy notion
using the simulation paradigm in a way similar to obfuscation. Namely, we require that
the behavior of the adversary on an encryption of message m with key k be simulatable
given blackbox access to the multibit point function, Fk,m. Consequently, obfuscation
of point functions with multibit output can be used to realize digital lockers as follows:
to encrypt a message m using a key k, simply output an obfuscation of Fk,m.

Real life applications of digital lockers include password-based encryption where
the human-generated password is far from uniform. For instance, Firefox has a pass-
word manager that acts as a digital locker [1]. The password manager locks website
credentials using a master password chosen by the user. Then, the user has to provide
this password in order to unlock the content. It is stressed that the goal here is not to
prevent exhaustive search over the keys, but rather to guarantee that this is essentially
the only possible attack.

The construction. Even though obfuscation of point functions with multibit output is
known in the Random Oracle Model [11], it is not known in the standard model ex-
cept when the function is drawn from a uniform distribution (specifically, when x in
Fx,y is uniform) [7] or when the output length of the function is short (specifically,
when |y| = O(log|x|)) [13]. Here, we provide a transformation from point function
obfuscators to obfuscators of point functions with multibit output. The idea is simple.
The obfuscation of multibit point functions consists of some number of copies of ob-
fuscated point functions. These copies have the property that the first and the ith copy
correspond to an obfuscation of the same point function if and only if the ith bit in
the multibit output is 1. In more detail, let Fa,b be the multibit point function to be
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obfuscated, t = |b|, and O(Fa, r) be the obfuscation of the point function, Fa, us-
ing randomness r. Then, the obfuscation of Fa,b consists of O(Fa, r0), O(x1, r1), ...,
O(xt, rt), where xi is Fa if bi = 1 and xi is a uniformly chosen point function other-
wise. To recover b from the correct a and this obfuscation, first verify that O(Fa, r0)
(a) = 1, then b = O(x1, r1)(a), ..., O(xt, rt)(a).

On composing obfuscation. The construction described above is very simple and mod-
ular, and one expects that its proof be likewise. However, it turns out that this is not the
case. To prove the security of the above transformation, we face an issue. Observe that
our construction is composed of a concatenation of t + 1 obfuscated point functions.
Thus, in order for our construction to be secure, the original obfuscation has to remain
secure under composition. However, we show that the current definition of obfusca-
tion does not guarantee composition. This is also the case even for composing multiple
obfuscated copies of the same function. Interestingly, the statement still holds even if
we consider obfuscation secure in the presence of auxiliary information. We emphasize
that this is a fundamental point about the definition of obfuscation that is of independent
interest.

In more detail, we show that there exists an obfuscation of point functions that reveals
the input when it is self-composed. Specifically, we show an obfuscator, O, such that for
any x, it is possible to recover x from O(Fx, r1), ..., O(Fx, rnlog(n)), where n = |x|.

Moreover, similar results holds for POW functions and POW functions secure with
auxiliary information [4,5]. At a high level, a POW function can be thought of as an
obfuscation of point function. See Appendix A for more details on POW functions and
their relation to point function obfuscation.

In light of these negative results, we analyze the above construction using, as the
underlying primitive, three different forms of composable obfuscation of point func-
tions. First, if the underlying primitive is a composable obfuscation of point functions
(as in simply-composable obfuscation of [11]), then this construction is a composable
obfuscation of multibit point functions. This is actually a characterization: composable
obfuscation of point functions exists if and only if that of point functions with multibit
output exists. Second, we show that our construction is an obfuscation of multibit point
functions if the underlying primitive is a statistically indistinguishable POW function.1

Third, if the primitive is a computationally indistinguishable POW function, then the
construction is an obfuscation provided that y in Fx,y , is “independent” of x.

Finally, we show how to generalize this construction to obfuscate set-membership
predicates and functions for polynomial-sized sets. A set-membership predicate out-
puts 1 if the input belongs to the set and 0 otherwise, while a set-membership function
outputs a string, yi, if the input matches a set member, xi, and 0 otherwise.

A tighter definition of obfuscation. The standard definition of obfuscation incorporates
an unspecified “polynomial slack”, in the sense that it allows the simulator to query its
oracle an unspecified polynomial number of times, regardless of the complexity of the
adversary. This translates to allowing obfuscation schemes that leak secret information

1 To be accurate, the second construction satisfies approximate functionality only computation-
ally, i.e., it is hard to efficiently find an input point on which the obfuscated function differs
from the original one.
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on some unspecified polynomial number of functions in a given family. In the context
of digital lockers, this allows encryption schemes that, say, reveal the plaintext on a
polynomial number of keys. We propose ways to fix this weakness in the definition and
constructions of obfuscators and digital lockers; however our solution here is far from
being completely satisfactory.

1.1 Related Work

Obfuscating Point Functions in the Random Oracle Model. Lynn et al. [11], inspired
by the password-hiding scheme in Unix that stores a hash of the password instead of the
password itself, propose a similar obfuscation of point functions in the random oracle
model. In this model, an obfuscator, O, has oracle access to a truly random function,
R. In order to construct an obfuscation of a point function, Fx, O queries R on x to
get z = R(x) and then stores z in the obfuscated code, O(Fx). O(Fx) also contains
preprocessing code which on input y returns 1 if and only if R(y) = z.

It is easy to see that O(Fx) and Fx have approximate functionality (they have the
same functionality almost always). Intuitively, O(Fx) is an obfuscation of Fx because
R’s answers on queries are completely independent and random. So, storing R(x) does
not reveal any information about x, but it allows verification of a guess, which is also
achievable via oracle access to Fx.

Also, Lynn et al. [11] generalize this construction to obfuscate multibit output point
functions and set-membership predicates and functions in the random oracle model. To
obfuscate a multibit point function, Fx,y , choose a random r, and output r, R1(x, r),
R2(x, r)⊕ y, where R1 and R2 denote the first and second half of the bits of R(.). This
construction is secure under composition (as in Definition 2 or the simply-composable
definition of [11]). In Section 3.2, we instantiate this scheme. The resulting construction
is more efficient than our first one but uses a stronger assumption.

Obfuscating Point Functions in the standard model. Perfectly one-way (POW) func-
tions [4] can be used to obfuscate a point function Fx by replacing the random oracle
in [11] with a POW function, H . Here, instead of storing R(x), we store H(x) in the
obfuscated code and use the verifier for H to determine if H(x) is a valid hash of the
input.

Canetti [4] constructs a POW hash function based on a strong version of the Diffie-
Hellman assumption. In particular, it assumes that the Diffie-Hellman assumption holds
not only against uniform distributions but also with respect to any well-spread distribu-
tion. Moreover, Wee [13] shows how to obfuscate point functions and point functions
with logarithmic output based on a strong one-way permutation assumption. Specifi-
cally, the assumption is that any polynomial-time machine can invert the permutation
on at most a polynomial number of points. The two constructions mentioned so far
(and our construction as well) use a weaker notion of obfuscation than the one in [2].
Specifically, the simulator in [4,13] depends on the simulation-error gap between the
adversary and the simulator. (see Definition 1 for more detail).

Canetti et al. [5] provide two constructions of POW functions based on standard
computational assumptions (in particular, based on either claw-free permutations or
one-way permutations). The simulator for these constructions does not depend on the
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gap. However, the input distribution is assumed to have high min-entropy (nε). More-
over, Futoransky et al. [7] show how to obfuscate point functions and point functions
with multibit output based on standard assumption. However, the input distribution
is assumed to be uniform. Finally, Hofheinz et al. [10] obfuscate point functions de-
terministically. However, the secrecy requirement does not guarantee no information
leakage, rather that it is hard to recover the input in its entirety. This obfuscation is
self-composable because the obfuscator is deterministic. However, it is not composable
according to our notion. In particular, different obfuscated point functions can not be
securely composed.

Encryption with imperfect randomness. The question of encryption with “imperfect
randomness” is studied also in [12,6,3], yielding some strong impossibility results.
However, these results do not apply to our case since they assume that the parties have
no source of perfect randomness, whereas we allow the parties to use perfect random-
ness other than the key. In our setting, symmetric encryption with imperfect keys can be
constructed using randomness extractors in standard ways, as long as the distribution of
the key has sufficient min-entropy. Here however we are concerned with the case where
there is no a priori guarantee on the min-entropy of the key.

1.2 Organization

In Section 2, we recall common notations and definitions including that of obfuscation,
leaving definitions of POW functions to Appendix A. We present our construction and
analyze it in Section 3. (We also present a more efficient construction under a stronger
assumption in Section 3.2.) In Section 4, we study the issue of composable obfuscation.
Finally, we discuss the connection to encryption schemes in Section 5.

2 Preliminaries

Let Xn denote a probability distribution on {0, 1}n and Un the uniform distribution
on {0, 1}n. Then, X = {Xn}n∈N is called a distribution ensemble (distribution for
short). A distribution is called well-spread if it has superlogarithmic min-entropy, i.e.,
maxkPr[Xn = k] is a negligible function in n. Moreover, a ← Dn means that a
is chosen from {0, 1}n according to distribution Dn. Also, denote by ∆(Xn, Yn) the
statistical difference between the two distributions Xn and Yn over {0, 1}n. Formally,
∆(Xn, Yn) = 1

2Σa∈{0,1}n |Pr[Xn = a] − Pr[Yn = a]|.
A probabilistic function family is a set of efficient probabilistic functions having

common input and output domains. Formally, Hn = {Hk}k∈Kn is a function family
with key space Kn and randomness domain Rn if, for all k ∈ Kn, Hk : In × Rn →
On. A probabilistic function family has public randomness if for all k, Hk(x, r) =
r, H ′

k(x, r) for some deterministic function H ′
k. A family ensemble is a collection of

function families, i.e., H = {Hn}n∈N.
Let PPT denote any probabilistic polynomial-time Turing machine, and nonuniform

PPT any probabilistic polynomial-sized circuit family. A PPT (respectively nonuniform
PPT) A with oracle access to O is denoted by AO .
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A function, µ, is called negligible if it decreases faster than any inverse polynomial.
Formally, it is negligible if, for any polynomial p, there exists an Np such that, for all
n ≥ Np: µ(n) < 1

p(n) . In this work, we reserve µ to denote negligible functions. An
uninvertible function, f , with respect to a well-spread distribution, X, is an efficiently
computable function that is hard to invert on X. Formally, for any PPT, A, Pr[x ←
Xn, A(f(x)) = x] < µ(n).

A set-membership predicate, FS={x1,...,xt} : {0, 1}n → {0, 1}, outputs 1 if and
only if its input is in S. Here, S is assumed to have at most polynomially many elements.
A set-membership function, F(x1,y1),...,(xt,yt) : {0, 1}n → {y1, ..., yt, 0} outputs yi if
and only if the input matches xi.

2.1 Obfuscation

We adopt the definition of obfuscation used in [4,13] because obfuscation of point func-
tions is known for this notion only (if the distribution on this class of functions is not
restricted). This definition is weaker than the one in [2] because the size of the simulator
is allowed to depend on the quality of the simulation. Formally,

Definition 1 (Obfuscation). Let F be any family of functions. A PPT, O, is called an
obfuscator of F, if:

1. Approximate Functionality For any F ∈ F: Pr[∃x, O(F )(x) �= F (x)] is negligi-
ble. Here, the probability is taken over the coin tosses of O.

2. Polynomial Slowdown There is a polynomial p such that, for any F ∈ F, O(F )
runs in time at most p(TF ), where TF is the worst-case running time of F .

3. Weak Virtual Black-box Property For any nonuniform PPT A and any polynomial
p, there exists a nonuniform PPT S such that for any F ∈ F and sufficiently large
n:

|Pr[b ← A(O(F )) : b = 1] − Pr[b ← SF (1|F |) : b = 1]| ≤ 1
p(n)

.

3 Obfuscating Point Functions with Multibit Output

We show how to obfuscate point functions with multibit output as well as set-membership
predicates and functions for polynomial-sized sets. Because the constructions and proofs
for obfuscating set-membership predicates and functions are similar to that for multibit
point function, we focus on the latter. We comment on the former in Section 3.1. We
also present a more efficient obfuscation of multibit point functions using a stronger
assumption in Section 3.2.

We use obfuscated point functions as building blocks in obfuscating point functions
with multibit output. The idea is simple. To obfuscate Fx,y , we encode y bit-by-bit using
an obfuscator for Fx. Specifically, if the ith bit of y is 1, it is encoded as an obfuscation
of Fx, otherwise, it is encoded as an obfuscation of an independent and uniform point
function. In more detail, let H be a randomized obfuscator for point functions. Then the
obfuscation contains H(Fx, r), H(Fx1 , r1), ...,H(Fxt , rt), where t = |y| and xi = x
if the ith bit of y is 1, otherwise, xi is uniform. The first obfuscated point functions
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always corresponds to x, and is used to check whether the input is actually x. Now, y
can be recovered given z = x. First, check that H(Fx, r)(z) = 1. If so, for every i,
yi = H(Fxi , ri)(z).

Formally, we present an obfuscator, O, for the class of multibit output point func-
tions, F. O, on input Fx,y , where y has length t, selects r1, ..., rt+1 from Rn, the ran-
domness domain of the point function obfuscator, H . It then computes H(Fx, r1). It
also computes H(Fx, ri+1) if the yi = 1 and H(zi+1, ri+1) otherwise, where zi+1 is
uniform. Let ux = u1, ..., ut+1 be the sequence of obfuscated functions just computed.
Then O outputs the following obfuscation, O(Fx,y), with ux stored in it.

input: a

if u1(a) = 0 then1

return 0;2

else3

for i ← 2 to t + 1 do4

if ui(a) = 1 then5

yi−1 ← 1;6

else7

yi−1 ← 0;8

return y = y1, ..., yt;9

end10

Algorithm 1. O(Fx,y)

Analysis. This construction is simple and modular. It is possible to replace H by any
relative of point function obfuscation such as POW functions (see Appendix A) and an-
alyze the security of the construction based on the security of the underlying primitive.
We would like to prove that our construction is secure based on the simple assumption
that the underlying primitive is an obfuscation of point functions. However, as we show
in Section 4, this is not possible. This is so because the definition of obfuscation does
not guarantee even self-composition. Thus, there exist point function obfuscators and
POW functions for which this construction is provably insecure.

We investigate the secrecy of this construction based on three underlying primitives
with different composition properties. In the first case, we consider the notion of com-
posable obfuscation (as in Definition 2, also known as simply-composable obfuscation
in [11]). We show a characterization that composable point function obfuscation ex-
ists if and only if composable multibit point function obfuscation exists. In the second
case, we show that if H is a statistically indistinguishable POW function, then our con-
struction is secure. Finally, if H is a computationally indistinguishable POW then this
construction satisfies a weaker form of obfuscation where y, in Fx,y, has to be indepen-
dent of x.

Analysis based on composable obfuscation. In this work, composable obfuscation
refers to the fact that concatenating any sequence of obfuscated functions, where the
functions are taken from the same class, constitutes an obfuscation for that sequence
of functions. This form of composition, also known as simply-composable obfuscation
in [11], should not be confused with self-composition which means that concatenating
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a sequence of independent obfuscation of the same function does not compromise se-
crecy. Formally,

Definition 2 (t-Composable Obfuscation, [11]). Let F be any family of functions. A
PPT, O, is called a t-composable obfuscator for F, if:

1. Approximate functionality and polynomial slowdown are as before.
2. Virtual Black-box property For any nonuniform PPT, A, and any polynomial, p,

there is a nonuniform PPT, S, such that for any functions F1, ..., Ft(n) ∈ F (n is a
security parameters, e.g., n = |F1| = ... = |Ft(n)|) and sufficiently large n:

|Pr[b ← A(O(F1), ...O(Ft(n)) : b = 1] − Pr[b ← SF1,...,Ft(n)(1n) : b = 1]| ≤ 1
p(n)

If O is a t-composable obfuscator for F for any polynomial t, then it is called a com-
posable obfuscator.

If H satisfies (t + 1)-composable obfuscation for some t, then our construction can be
shown to be an obfuscation of multibit point function with output length t. Approx-
imate functionality and polynomial slowdown follow from the corresponding prop-
erties on H . By the virtual black-box property on H , the output of A(O(Fx,y) =
O(Fx), O(Fx1 ), ..., O(Fxt(n))) can be simulated by S

Fx,Fx1 ,...,Fxt(n) (1n), where xi =
Fx if yi = 1 and xi is uniform otherwise. Moreover, oracle access to Fx, Fx1 , ..., Fxt(n)

can be simulated with oracle access to Fx,y: If S queries any of its oracle on a point
z such that Fx,y(z) = 0, then answer 0 (this may incur a negligible simulation error
only), otherwise, z = x so y can be fully recovered. Thus, this construction satisfies the
virtual black-box property.

Observe that our construction is a composable obfuscation of multibit point functions
with the appropriate parameters. Specifically, if the output length of the multibit point
function is restricted to at most t, then this construction is a t′-composable obfuscation
if H is (t + 1)t′-composable. In addition, it is easy to see that the existence of a t-
composable obfuscation of multibit point functions implies a t-composable obfuscation
of point functions. Formally, we have the following characterization with a proof that
follows the above discussion.

Theorem 1. Composable obfuscators of point functions with multibit output exist if
and only if composable obfuscators of point functions exist.

Specifically, if a point function obfuscator, H , is (t + 1)t′-composable (as in Defi-
nition 2) then the above construction is a t′-composable obfuscation of multibit point
functions with output length t. On the other hand, a t-composable obfuscation of multi-
bit point functions implies a t-composable obfuscation of point functions.

Analysis based on statistical indistinguishability. Suppose G is a statistically indistin-
guishable POW family ensemble (see Appendix A for the formal definition). We can
replace H by G in the above construction. Specifically, the obfuscator, O, samples a
key, k, for G and replaces H(x, .)(a) with V (a, Gk(x, .)), where V is the verification
algorithm for G. This results in an obfuscation of point function with multibit output ex-
cept with computational approximate functionality [13], i.e, no adversary can efficiently
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find a point on which the original function differs from the obfuscated one. This relax-
ation to approximate functionality is necessary when using statistical POW functions
because they can not be statistically collision resistant. On the other hand, we argue that
the result satisfies the virtual-blackbox property. Informally, from the fact that G is a
statistical POW function we can conclude that an obfuscation of Fx,y , where x is taken
from a well-spread distribution and y is arbitrary, is statistically close to a sequence of
hashes of random inputs. It follows that for all but polynomially many x, an obfusca-
tion of Fx,y is indistinguishable from random hashes. Consequently, we get a simulator
that runs the adversary on random hashes unless x is taken from that polynomial set,
in which case the simulator can recover y and run the adversary on an obfuscation of
Fx,y . Formally,

Theorem 2. Let G be a statistically (t + 1)-indistinguishable POW function (as in
Definition 8). Then, the above construction is an obfuscation of point functions with
multibit output length t (as in Definition 1), where approximate functionality is only
computational.

Proof (Sketch). Polynomial slowdown follows immediately from the fact that G has a
polynomial output length. Also, by public verification and collision resistance of POW
functions (definition 6), it follows that O satisfies computational approximate function-
ality.

Virtual black-box property. Recall, the definition of statistical indistinguishability says
that for any well-spread distribution, X:

∆(Gk(Xn, R1
n), ..., Gk(Xn, R(t+1)(n)

n ), Gk(U1
n, R1

n), ..., Gk(U t(n)
n , R(t+1)(n)

n )

is negligible, where each distribution Ri
n (respectively, U i

n) is the same as Rn (respec-
tively, Un).

Using the fact that for any function, λ, ∆(λ(X), λ(Y )) ≤ ∆(X, Y ), we have for any
distribution,XY on (x, y), where the corresponding distribution on x is well-spread:

∆(O(FXn ,Yn), Gk(U1
n, R1

n), ..., Gk(U t(n)
n , R(t+1)(n)

n ) (1)

is negligible. (We assume without loss of generality that O(Fx,y) consists only of the
t + 1 G-hashes.)

Using the same technique from the proof of Theorem 4 in [4], it can be shown that
O(Fx,y) is indistinguishable from G-hashes of uniform strings on all but a polynomial
number of x. That is, for any nonuniform PPT, A, and any polynomial, p, there exists a
polynomial size family of sets, {Ln}, such that for sufficiently large n, and x /∈ Ln and
any y:

|Pr[b ← A(O(Fx,y)) : b = 1] − Pr[u1, ..., ut+1 ← Un, ..., Un,

r1, ..., rt+1 ← Rn, ..., Rn, b ← A(Gk(u1, r1), ..., Gk(ut+1, rt+1)) : b = 1]| ≤ 1
p(n)

.

(2)
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Intuitively, this is true because otherwise there is a super-polynomial number of values
for x (with a corresponding value for y), on which A can distinguish O(Fx,y) from
hashes of random strings. By defining a well-spread distribution, e.g., a uniform distri-
bution, on this superpolynomial number of values for x, A violates (1).

Now, for any nonuniform PPT, A, and a polynomial, p, we construct a nonuniform
PPT, S that simulates A. S receives the polynomial-size set, Ln, as an advice string. It
checks if the oracle, Fx,y, responds with the nonzero value, y, to any element in the set,
Ln. If so, then S can compute O(Fx,y) and simulate A on it. Otherwise, x is not in Ln,
so S runs A on hashes of random inputs. By (2), this is close to a true simulation. For
more detail, we refer the reader to the proof of Theorem 4 in [4]. 	


Analysis based on computational indistinguishability. We would like to weaken the as-
sumption in Theorem 2 to computational indistinguishability. However, it is not clear
how to use computational indistinguishability, i.e., Gk(x, r1), ..., Gk(x, rt+1) is com-
putationally indistinguishable from hashes of uniform, to conclude that O(Fx,y) is in-
distinguishable from hashes of random inputs. It seems that the problem lies in the
potential dependence of y on x, e.g., y may be equal to x. This is not a problem in the
statistical case because we can use the fact that statistical difference does not increase
by applying the same function on both distributions. In the computational setting, if we
use the traditional blackbox reduction, we need to construct O(Fx,y) from hashes of
x and then run A on it. However, it is not clear how to do so if y = x. On the other
hand, suppose y is independent of x, e.g., y is taken independently from a uniform
distribution. Then, for some y, it is possible to compute O(Fx,y) given hashes of x,
Gk(x, r1), ..., Gk(x, rt+1), by replacing Gk(x, ri) with a hash of a random string if the
ith bit of y is 0. Thus, we know that computational indistinguishability gives us a weaker
notion of obfuscation where the simulator depends on the distribution on y. Whether
computational indistinguishability gives us the standard virtual-blackbox property re-
mains unknown. Nevertheless, this weak obfuscation can be used as a digital locker as
described in the introduction. The caveat is that the message being encrypted should
be independent of the encryption key. This is the case if, for instance, the message is
chosen without knowledge of the key.

Formally, the virtual black-box property becomes: for any nonuniform PPT A, any
polynomial p, and any (efficiently samplable) distribution Y, there exists a nonuniform
PPT S such that for any x and sufficiently large n:

|Pr[y ← Yn, b ← A(O(Fx,y)) : b = 1] − Pr[y ← Yn, b ← SFx,y(1|Fx,y|) : b = 1]|

≤ 1
p(n)

. (3)

Also, we remark that this construction has either approximate or computational approx-
imate functionality depending on whether the POW function satisfies statistical or com-
putational collision resistance. Formally, we have the following theorem whose proof
follows that of Theorem 2 and the above discussion, and is not recreated here.

Theorem 3. If G is a computationally (t + 1)-indistinguishable POW function, then
the above construction is an obfuscation of point function with output length t, where
the virtual-blackbox property is as in (3).
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3.1 Obfuscating Set-Membership Predicates and Functions

To obfuscate a set-membership predicate, simply obfuscate the point functions on ev-
ery element in the set (this is feasible because the set has a polynomial size), and then
store all the obfuscated functions in a randomly permuted order. To determine whether
a particular input is in the set, we only need to check whether any of the obfuscated
functions outputs 1 on this input. It can be shown that this construction is an obfusca-
tion of set-membership predicate based on composable obfuscation of point functions.
Moreover, to obfuscate a set-membership function, F(x1,y1),...,(xt,yt), we only need to
run the obfuscator for the multibit output point function on each Fxi,yi , and then store
these obfuscated functions in a randomly permuted order. It can be shown that com-
posable obfuscation of point functions is a necessary and sufficient condition for the
security of this construction.

3.2 A More Efficient Obfuscation of Point Functions with Multibit Output

We note that the obfuscation of point function with multibit output in the RO model [11]
can be instantiated by using a stronger assumption on the underlying primitive. The end
result is a more efficient construction than the one described previously. Specifically,
let G be a POW function with public randomness. To obfuscate Fx,y, select r1 and
r2 uniformly from the randomness domain of G and output Gk(x, r1), r2, z, where
Gk(x, r2) = (r2, v) and z = y ⊕ v.2 To recover y from (a, b, c) and x′, first check that
V (x′, a) = 1, if so, then return y = c ⊕ v, where Gk(x′, b) = (b, v). Even though this
construction is more efficient than the first one, it suffers from two problems. First, in
order to completely hide y, it is not sufficient that G be indistinguishable as in Definition
9 rather its output has to be indistinguishable from uniform. If, for example, the first bit
of the hash is always 0, then the first bit of y is revealed. Second, for the proof to
go through, we need to assume that G is statistically indistinguishable from uniform
because y may depend on x. Contrast this assumption with the one used in Theorem 2,
where G is statistically indistinguishable from hashes of uniform strings.

4 On Composable Obfuscation of Point Functions

In Section 3, we provided a transformation from an obfuscation of a point function to
an obfuscation of a point function with multibit output. This transformation requires an
essential property on the given obfuscation, specifically, composition. In other words,
our construction assumes that we have an obfuscation of a point function such that se-
curity is not compromised when multiple obfuscated functions are given. Notably, The-
orems 1, 2, and 3 all assume that H satisfies some form of composable security. Since
the obfuscator is probabilistic, composable security is nontrivial. In this section, we
address this question. Specifically, does the basic definition of obfuscation imply com-
position? From a different angle, Canetti et al. [5] ask if semantic perfect one-wayness
implies indistinguishable perfect one-wayness or if t-indistinguishable POW functions

2 Without loss of generality, we assume that y and v have the same length. Otherwise, the input
should be of a longer input, say x0t.
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are t + 1-indistinguishable. We answer these questions negatively: such primitives are
not necessarily secure even under self-composition. 3 In more detail, we show that weak
c-indistinguishable POW functions (where the probability is taken over the choices of
the seed as well, [5]) are not necessarily c + 1-indistinguishable for any constant c.
We also show that POW functions, POW functions with auxiliary input, and obfus-
cation of point functions do not imply composition. Specifically, 1-indistinguishable
POW functions and obfuscation of point functions are not necessarily secure for a poly-
nomial number of copies. Moreover, even though 1-indistinguishable POW functions
with auxiliary input is also c-indistinguishable for any constant c, it is not necessarily
t-indistinguishable with auxiliary input for a polylogarithmic t.

In Section 4.1, we show a tight impossibility result for weak POW functions. Specif-
ically, we show that for any constant c, weak c-indistinguishable POW functions are
not weakly c + 1-indistinguishable. We also show that if t is polynomial, then weak
t-indistinguishable POW functions are not weakly n(t + 1)2-indistinguishable. In Sec-
tion 4.2, we prove that sematic POW functions, 1-indistinguishable POW functions, and
point function obfuscation are not secure if composed roughly nlog(n) times. More-
over, if we consider the same functions with respect to auxiliary information, then we
have a tighter result where they are not secure with respect to auxiliary information if
composed superlogarithmically-many times.

4.1 Weak POW Functions Are Not Self-composable in General

A weak POW function deviates from Definition 9 in that the probability is taken over
the choices of the function key as well. Here, we show that a weak c-indistinguishable
POW function with respect to the uniform distribution may not be c+1 indistinguishable
for any constant c. The idea is simple: we take any weak 3c-indistinguishable POW
function and convert it into a new function that is c-indistinguishable but the output
contains shares of the input such that it is easy to compute the input from c + 1 hashes.
Informally, we add c uniform strings to the original seed and make sure that a hash of
the input using any one of those c strings appears in the output with probability 1

c+1 .
Also, with the same probability the exclusive-or of the input and all the aforementioned
hashes appears in the output. Therefore, if the output of the function contains all c
hashes and the exclusive-or of these hashes with the input, then it is easy to recover the
input.

Formally, let H be any (possibly weak) 3c-indistinguishable POW function with key
space, Kn, and public randomness. We also assume that H is also 3c-indistinguishable
from uniform. Define a new family ensemble, G, with a key space (Kn, Rn, ..., Rn︸ ︷︷ ︸

c

), an

input domain ({0, 1}n, {0, 1}n), and randomness domain (Rn, {0, 1}logc), as follows:

Gk,u1,...,uc((x1, x2), (r1, r2)) ={
r2, Hk(x1, r1), Hk(x2, r1), Hk(x1, ur2) if r2 �= 0
r2, Hk(x1, r1), Hk(x1, u1) ⊕ Hk(x1, u2)... ⊕ Hk(x1, uc) ⊕ x2 if r2 = 0

3 Recall, self-composition refers to concatenation of multiple outputs of a randomized function
on the same input.
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Now, observe that it is easy to recover x2 from Gk,u1,...,uc((x1, x2), (r0
1 , 0)), ...,

Gk,u1,...,uc((x1, x2), (rc
1, c)). Thus, G is not (c + 1)-indistinguishable because c + 1

randomly-chosen hashes of (x1, x2) have distinct r2 (i.e., match the aforementioned
hashes) with probability (c+1)!

(c+1)c+1 . On the other hand, we argue that G is a weak c-
indistinguishable POW function with respect to the uniform distribution . First, com-
pleteness and collision resistance follow from that on H. Second,

Gk,u1,...,uc((x1, x2), (r1
1 , r

1
2)), ..., Gk,u1,...,uc((x1, x2), (rc

1, r
c
2))

is indistinguishable from

Gk,u1,...,uc((v1, x2), (r1
1 , r1

2)), ..., Gk,u1,...,uc((vc, x2), (rc
1, r

c
2))

by the 3c-indistinguishability property on H, where v1, ..., vc are uniform and indepen-
dent. Moreover, by the 3c-indistinguishability from uniform, we have

Gk,u1,...,uc((v1, x2), (r1
1 , r1

2)), ..., Gk,u1,...,uc((vc, x2), (rc
1, r

c
2))

is indistinguishable from

Gk,u1,...,uc((v1, w1), (r1
1 , r

1
2)), ..., Gk,u1,...,uc((vc, wc), (rc

1, r
c
2)),

where w1, ..., wc are uniform and independent.
Moreover, this result can be generalized to any polynomial t. If H is 3t-

indistinguishable from uniform, then G is a weak t-indistinguishable POW function
with respect to the uniform distribution. On the other hand, G is not n(t + 1)2-
indistinguishable with respect to the uniform distribution. This is so because all the
(t + 1) “shares” appear in n(t + 1)2 hashes with overwhelming probability. This result
is stated formally in the following theorem.

Theorem 4. Let H be any weak POW function that is 3t-indistinguishable from uni-
form and has public randomness. Then for any constant c ≤ t, there exist weak POW
functions that are c-indistinguishable (respectively, t-indistinguishable) with respect
to the uniform distribution but not c + 1-indistinguishable (respectively, n(t + 1)2-
indistinguishable) with respect to the uniform distribution.

4.2 Point Function Obfuscation and POW Functions Are Not Self-composable
in General

We show that POW functions, POW functions with auxiliary input, obfuscation of point
functions, and obfuscation of point functions with auxiliary input are not generally self-
composable. Also, we note that the obfuscation of point functions in [13] is not self-
composable as well. The idea is simple, we start with a POW function and append to
its output a hardcore bit, specifically the inner product between the input and a random
string. This hardcore bit does not compromise security of a single hash. However, the
function becomes completely insecure for polynomially many hashes as the input can
be recovered with high probability by solving a linear system of equations.
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Here, we present the proof for the case of POW functions with auxiliary input only.
Let H be a POW function that is 1-indistinguishable with auxiliary input. Define a new
family ensemble, G:

Gk(x, (r1, r2)) = r2, Hk(x, r1), 〈x, r2〉,

where 〈x, r2〉 is the inner product of x and r2 mod 2. We argue that G is 1-
indistinguishable with auxiliary input. First, completeness and collision resistance fol-
low from that on H. Moreover, for any uninvertible function F , F (x), H(x, r1), r2
is one-way in x because H is 1-indistinguishable with auxiliary input. There-
fore, by Goldreich-Levin theorem [8], we have that F (x), r2, H(x, r1), 〈x, r2〉 is
indistinguishable from F (x), r2, H(x, r1), b, where b is uniform. Moreover, by 1-
indistinguishability with auxiliary input on H, F (x), r2, H(x, r1), b, is indistinguish-
able from F (x), r2, H(Un, r1), b.

On the other hand, G is not polylogarithmically indistinguishable with auxiliary in-
put. To see that, let F be a function that outputs the last n−ω(1)log(n) bits of its input.
Then, F is uninvertible with respect to the uniform distribution. However, we argue that
given F (x) and a polylogarithmic number of hashes, x can be recovered completely by
solving a system of linear equations. Formally,

Lemma 1. For any two constants c and ε, there exists a t, which is polylogarithmic in
n (specifically, t = ω(1)log(n)log ω(1)log(n)

−ln( 1
nc +ε) ) and a PPT, A, such that for any k ∈ Kn:

Pr[x ← Un, r1, ..., rt ← RG
n , ..., RG

n , A(F (x), Gk(x, r1), ..., Gk(x, rt))] ≥ 1
nc

.

Proof. Let A be a PPT that ignores all H hashes (Hk(x, .)) but plugs-in the values of the
last n−ω(1)log(n) bits of x in the system of linear equations: r2

1 , 〈x, r2
1〉, ..., r2

t , 〈x, r2
t 〉.

We show that by solving this system we can recover x with probability 1
nc . Given the

last n−ω(1)log(n) bits of x revealed by F , we can recover x from ω(1)log(n) linearly
independent equations on the first ω(1)log(n) bits. Thus, we need to show that we
have this many linearly independent equations in t uniformly chosen equations with
probability 1

nc . First, observe that a uniform and independent r is linearly independent
from ω(1)log(n) − 1 or less equations with probability at least 1

2 . Consequently, the
probability that t equations contain ω(1)log(n) linearly independent equations is at
least:

(1 − 1

2
log ω(1)log(n)

−ln( 1
nc +ε)

)ω(1)log(n) ≥ eln( 1
nc +ε) − ε =

1
nc

.

	


Using the same construction, G, it is possible to show that 1-indistinguishable
POW functions (respectively obfuscation of point functions) are not necessar-
ily t-indistinguishable (respectively, secure under t-self-composition), where t =
nlog n

−ln( 1
nc +ε) . As a concrete example, the same analysis can be used to show that

the obfuscation of point function in [13] is not secure when composing t obfuscated
copies of the same point function. These results can be stated formally as follows.
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Theorem 5. If there exists a 1-indistinguishable POW function (respectively, a point
function obfuscation) with auxiliary input then there exists another 1-indistinguishable
POW function (respectively, another point function obfuscation) with auxiliary input
such that for any constants c and ε, the latter is not t-indistinguishable (respectively, is
not a t-self-composable point function obfuscation) with auxiliary input with respect to
the uniform distribution , where t = ω(1)log(n)log ω(1)log(n)

−ln( 1
nc +ε) .

Moreover, if there exists a 1-indistinguishable POW function (respectively, a point
function obfuscation) then there exists another 1-indistinguishable POW function (re-
spectively, another point function obfuscation) such that for any constants c and ε, the
latter is not t-indistinguishable (respectively, is not a t-self-composable point function
obfuscation) with respect to the uniform distribution, where t = nlog n

−ln( 1
nc +ε) .

5 On the Relationship between Obfuscation of Point Functions
with Multibit Output and Symmetric Encryption

It is interesting to note that obfuscation of point functions with multibit output and
symmetric encryption are similar. At the conceptual level, they capture the same idea
except with a subtle difference. First, both of them satisfy the same correctness prop-
erty. In particular, an encryption scheme (respectively, obfuscation of point function
with multibit output) allows the recovery of the message (respectively, y) given the key
(respectively, x). Second, they share similar privacy requirements. An obfuscation hides
the special output, y, of the function, Fx,y unless x is given. Likewise, a symmetric en-
cryption should ensure the privacy of the message unless the adversary possesses the
key. However, the former primitive differs from the latter in that its behavior is defined
over all possible input x, while the decryption scheme leaves the behavior undefined on
wrong keys. In other words, one may, at least conceptually, think of an obfuscation of
point functions with multibit output as a special form of encryption, where wrong keys
are promptly detected by the decryption algorithm.

At a more technical level, another difference arises, regarding the assumption on the
key distribution. Recall that symmetric encryption requires uniform keys. On the other
hand, an obfuscation of point functions with multibit output does not assume anything
about the distribution on x. Specifically, it provides a definition of privacy for any x.
Thus, casting the former primitive as an encryption scheme ,i.e., as O(Fkey,message),
gives us an encryption scheme with the same privacy as defined for obfuscation. In
other words, any predicate computed from the ciphertext can also be computed by ex-
haustively searching for the right key to recover the message. Formally,

Definition 3 (Single-message encryption for any key). A symmetric encryption
scheme, (E, D), satisfies privacy for any key if for any nonuniform PPT A, and any
polynomial p, there exists a nonuniform PPT S such that for any key, k, any message,
m, and sufficiently large n:

|Pr[b ← A(E(k, m)) : b = 1] − Pr[b ← SFk,m(1n) : b = 1]| ≤ 1
p(n)

.

Observe that in the special case where the key is uniform or even sampled from a well-
spread distribution, Definition 3 implies that whatever predicate computed from the
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ciphertext can be computed without it (and without oracle access to Fk,m). Formally, an
encryption scheme satisfying Definition 3 also satisfies the following privacy property.

Definition 4 (Single-message encryption with well-spread keys). A symmetric en-
cryption scheme, (E, D), satisfies privacy for well-spread keys if for any nonuniform
PPT A, and any polynomial p, there exists a nonuniform PPT S such that for any well-
spread distribution, K = {Kn}n∈N, any message m, and sufficiently large n:

|Pr[k ← Kn, b ← A(E(k, m)) : b = 1] − Pr[b ← S(1n) : b = 1]| ≤ 1
p(n)

.

Although Definitions 3 and 4 consider single-message encryption, encryption of mul-
tiple messages can be readily achieved using appropriately composable obfuscation of
point functions with multibit output.

5.1 Weakness of Definition 3

It may seem that Definition 3 captures our intuition that the only way of breaking the
encryption scheme is through exhaustively searching for the correct key. However, it
turns out that this definition is not strong enough. Specifically, there are encryption
schemes that satisfy this definition but reveal the plaintext when the key is taken from a
polynomial-size set. For instance, modify any encryption scheme that satisfies Defini-
tion 3 so that it reveals the plaintext when the key is one of the first n lexicographically-
ordered keys. The new scheme still satisfies this definition because the simulator can
query the oracle on those n keys to recover the message. However, this scheme does
not match our intuitive requirement. This is so because an adversary can, in constant
time, output the first bit of the plaintext on the first n keys but the simulator needs O(n)
time to do the same. We stress that this weakness is already inherent in the notion of
obfuscation, not just in the application to encryption.

Coming up with a realizable definition that captures our intuition about encryption
with low-entropy keys is interesting, given the potential applications in password-based
encryption. Here, we take a step in this direction. We strengthen Definition 3 by restrict-
ing the number of queries of the simulator to some fixed polynomial in the running time
of the adversary and the simulation error. In more detail, for any key, k, the number of
queries the simulator makes in the worst case is bounded by a fixed polynomial in the
worst-case running-time of the adversary, and the simulation error.

Definition 5 (t-secure encryption). A symmetric encryption scheme, (E, D), is t-
secure if for any nonuniform PPT A, and any polynomial p, there exists a nonuniform
PPT S such that for any key, k, any message, m, and sufficiently large n:

|Pr[b ← A(E(k, m)) : b = 1] − Pr[b ← SFk,m(1n) : b = 1]| ≤ 1
p(n)

,

where S makes at most t(RA,k,m, n, p) queries and RA,k,m is the worst-case running
time of A on E(k, m), taken over the coin tosses of A and E.
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The definition of obfuscation can also be strengthened in a similar way. Obviously,
the smaller t is, the stronger the security guarantee. For instance, if an encryption
scheme (respectively, obfuscation) is t-secure then it (respectively, the obfuscator) can
not do certain “stupid” things such as outputting the plaintext (respectively, the origi-
nal function) in the clear on more than nt(|E(.,.)|,n,n)

n−1 keys (respectively, nt(|O(.)|,n,n)
n−1

functions). We note that the construction in Section 3 satisfies this definition for some
specific t. However, the question remains as to how small t can be made.
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A Perfectly One-Way Probabilistic Hash Functions

A perfectly one-way hash function, POW for short, is a probabilistic function that sat-
isfies collision resistance and hides all information about its input. Due to its proba-
bilistic nature, such a function is coupled with an efficient verification algorithm that
determines, given (x, y), whether y is a valid hash of x. Usually, collision resistance of
deterministic hash functions requires that it is hard to find two input strings mapped to
the same hash. However, because these functions are probabilistic by nature, we need
to modify collision resistance to take the verification process into account. In particular,
collision resistance says that it is hard to find two input and one output strings such that
the verification scheme accepts the output as a valid hash of both input points. Formally,

Definition 6 (Public Verification, [4]). A family ensemble, H = {Hn}n∈N, satisfies
public verification if there exists a deterministic polynomial-time algorithm V such
that:

1. Completeness: ∀k ∈ Kn, x ∈ {0, 1}n, r ∈ Rn, V (x, Hk(x, r)) = 1.
2. Collision Resistance: For any nonuniform PPT, A:

Pr[k ← Kn, (x1, x2, y) ← A(k) : x1 �= x2∧V (x1, y) = V (x2, y) = 1] < µ(n).

There are several ways to formulate information hiding, some of which are not equiva-
lent. We start with the most basic definition, namely semantic perfect one-wayness, and
later present two more definitions, namely, statistical and computational indistinguisha-
bility. Semantic perfect one-wayness has its roots in semantic security of probabilistic
encryption [9] which requires that every function that can be computed given the ci-
phertext can also be computed without it. However, the notion of secrecy in this setting
is slightly weaker than semantic security because a hash can be used to verify whether
a guess is correct or not. This notion is captured by a simulation-based definition which
requires that every predicate computable given a hash can also be computed by a simu-
lator with oracle access to the corresponding point function. Formally,

Definition 7 (Semantic Perfect One-wayness, [4]). A family ensemble H =
{Hn}n∈N, is called semantically perfectly one-way if it satisfies public verification
(Definition 6) and, for any nonuniform PPT, A, and polynomial, p, there exists a nonuni-
form PPT S such that for sufficiently large n, any k, and any x:

|Pr[r ← Rn, b ← A(k, Hk(x, r)) : b = 1] −

Pr[r ← Rn, b ← SFx(k) : b = 1]| ≤ 1
p(n)

.

Recall Fx is the point function on x.

Remark 1. Note that semantic perfect one-wayness corresponds in a straightforward
way to the virtual blackbox property required for obfuscating point functions in Defini-
tion 1. Thus, a function satisfying definition 7 is an obfuscation of a point function (with
computational approximate functionality). However, the converse may not be true.
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In more detail, let H be a semantic POW function. To obfuscate Fx, sample a seed,
k, and random string, r, for H and output the obfuscation, O(Fx) = k, Hk(x, r). The
new function, O(Fx), simply computes the predicate V (., Hk(x, r)). It can be shown
that O is an obfuscator for the class of point functions. Completeness and collision
resistance on H imply computational approximate functionality while semantic perfect
one-wayness implies the virtual-blackbox property. On the other hand, an obfuscation
of point functions may not be a POW function because approximate functionality does
not rule out collisions chosen in an adversarial way.

As mentioned in the introduction, neither Definition 1 nor Definition 7 is sufficient for
the security of our construction in Section 3 because they do not guarantee composi-
tion. Thus, we analyze our construction based on primitives with different composable
properties. Two of these primitives are statistical and computational POW functions,
which are defined in the rest of this appendix.

Statistical Perfect One-wayness. Statistical information hiding is captured by requiring
statistical closeness between hashes of the same input and those of different inputs.

Definition 8 (Statistical t-Indistinguishability). A family ensemble H = {Hn}n∈N,
where Hk : {0, 1}n × Rn → {0, 1}l(n) for some polynomial l, is called statistically t-
indistinguishable if it satisfies public verification (Definition 6) and for any well-spread
distribution X = {Xn}n∈N and any k ∈ Kn,

∆(Hk(Xn, R1
n), ..., Hk(Xn, Rt(n)

n )︸ ︷︷ ︸
t(n)

, Hk(U1
n, R1

n), ..., Hk(U t(n)
n , Rt(n)

n )︸ ︷︷ ︸
t(n)

) ≤ µ(n),

where each distribution Ri
n (respectively, U i

n) is the same as Rn (respectively, Un).
Moreover, if H is statistically t-indistinguishable for any polynomial, t, then it is

called statistically indistinguishable.

We note that the first construction in [5] is slightly weaker than Definition 8 in that the
input distribution has nε min-entropy instead of superlogarithmic min-entropy. Con-
structing functions with the latter property remains an open problem.

Computational Perfect One-wayness. Computational perfect one-wayness differs from
statistical perfect one-wayness in two main ways. The first and obvious difference is that
indistinguishability holds for polynomially-bounded adversaries only. Second, com-
putational perfect one-wayness differs depending on whether we take the presence of
auxiliary information into account. In this context, we restrict the notion of auxiliary
information to uninvertible functions about the input.

Instead of explicitly writing two definitions, one with auxiliary information and an-
other without it, we present here one definition only. To take both cases into account,
we use the convention that auxiliary information is surrounded by boxes. So, by remov-
ing the words in boxes from Definition 9, we get the first definition while keeping the
boxes gives us the second one. Formally,

Definition 9 (t-Indistinguishability)
Let X = {Xn}n∈N be any well-spread distribution. Let F be any (possibly prob-
abilistic) uninvertible function. A family ensemble H = {Hn}n∈N, where Hk :
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{0, 1}n × Rn → {0, 1}l(n) for some polynomial l, is called t-indistinguishable with

respect to X, with auxiliary input F , if it satisfies public verification (Definition 6) and
for any k ∈ Kn and any PPT A:

|Pr[x ← Xn, z ← F (x) , (r1, ..., rt) ← (Rn, ..., Rn) :

A(k, z , Hk(x, r1), ..., Hk(x, rt)) = 1] −

Pr[x ← Xn, (u1, ..., ut) ← (Un, ..., Un), z ← F (x) , (r1, ..., rt) ← (Rn, ..., Rn) :

A(k, z , Hk(u1, r1), ..., Hk(ut, rt)) = 1]| ≤ µ(n).

If H is t-indistinguishable with any auxiliary input F with respect to any well-

spread distribution X, then it is called t-indistinguishable with auxiliary input . More-

over, if it is t-indistinguishable with auxiliary input for any polynomial t, then it is

called indistinguishable with auxiliary input .
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