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1. Introduction 

There is now widespread recognition that it is possible to extract previously unknown 
knowledge from datasets using machine learning techniques. Learning Classifier 
Systems (LCS) [Holland, 1976] are a machine learning technique which combines 
evolutionary computing, reinforcement learning, supervised learning or unsupervised 
learning, and heuristics to produce adaptive systems. They are rule-based systems, 
where the rules are usually in the traditional production system form of “ IF state 
THEN action” . An evolutionary algorithm and heuristics are used to search the space 
of possible rules, whilst a credit assignment algorithm is used to assign utility to 
existing rules, thereby guiding the search for better rules. The LCS formalism was 
introduced by John Holland [1976] and based around his more well-known invention 
– the Genetic Algorithm (GA)[Holland, 1975]. A few years later, in collaboration 
with Judith Reitman, he presented the first implementation of an LCS [Holland & 
Reitman, 1978]. Holland then revised the framework to define what would become 
the standard system [Holland, 1980; 1986]. However, Holland’s full system was 
somewhat complex and practical experience found it difficult to realize the envisaged 
behaviour/performance [e.g., Wilson & Goldberg, 1989] and interest waned. Some 
years later, Wilson presented the “zeroth-level”  classifier system, ZCS [Wilson, 1994] 
which “keeps much of Holland’s original framework but simplifies it to increase 
understandability and performance”  [ibid.]. Wilson then introduced a form of LCS 
which altered the way in which rule fitness is calculated – XCS [Wilson, 1995]. The 
following decade has seen resurgence in the use of LCS as XCS in particular has been 
found able to solve a number of well-known problems optimally. Perhaps more 
importantly, XCS has also begun to be applied to a number of hard real-world 



problems such as data mining, simulation modeling, robotics, and adaptive control 
(see [Bull, 2004] for an overview) and where excellent performance has often been 
achieved. Further, given their rule-based nature, users are often able to learn about 
their problem domain through inspection of the produced solutions, this being 
particularly useful in data mining. Formal understanding of how such systems work 
has also increased in recent years (see [Bull & Kovacs, 2005] for an overview). The 
purpose of this volume is to bring together current work on the use of LCS for data 
mining since this is the area in which they have experienced the most growth in recent 
years with excellent performance in comparison to other techniques [e.g., Bernadó et 
al., 2002].  

The rest of this contribution is arranged as follows: Firstly, the main forms of 
LCS are described in some detail. A number of historical uses of LCS in data mining 
are then reviewed before an overview of the rest of the volume is presented. 

2. Holland’s LCS 

Holland's Learning Classifier System [Holland, 1986] receives a binary encoded input 
from its environment, placed on an internal working memory space - the blackboard-
like message list (Figure 1). The system determines an appropriate response based on 
this input and performs the indicated action, usually altering the state of the 
environment. Desired behaviour is rewarded by providing a scalar reinforcement. 
Internally the system cycles through a sequence of performance, reinforcement and 
discovery on each discrete time-step.   

The rule-base consists of a population of N condition-action rules or "classifiers". 
The rule condition and action are strings of characters from the ternary alphabet 
{ 0,1,#} . The # acts as a wildcard allowing generalisation such that the rule condition 
1#1 matches both the input 111 and the input 101. The symbol also allows feature 
pass-through in the action such that, in responding to the input 101, the rule IF 1#1 
THEN 0#0 would produce the action 000. Both components are initialised randomly. 
Also associated with each classifier is a fitness scalar to indicate the "usefulness" of a 
rule in receiving external reward. This differs from Holland's original implementation 
[Holland & Reitman, 1978], where rule fitness was essentially based on the accuracy 
of its ability to predict external reward (after [Samuel, 1959]).  

On receipt of an input message, the rule-base is scanned and any rule whose 
condition matches the external message, or any others on the message list, at each 
position becomes a member of the current "match set" [M]. A rule is selected from 
those rules comprising [M], through a bidding mechanism, to become the system's 
external action. The message list is cleared and the action string is posted to it ready 
for the next cycle. A number of other rules can then be selected through bidding to fill 
any remaining spaces on the internal message list. This selection is performed by a 
simple stochastic roulette wheel scheme. Rules' bids consist of two components, their 
fitness and their specificity, that is the proportion of non-# bits they contain. Further, a 
constant (here termed β) of "considerably" less than one is factored in, i.e., for a rule 
C in [M] at time t: 

),( fitness)(y  specificit ),( Bid tCCtC ⋅⋅= β  



Reinforcement consists of redistributing bids made between subsequently chosen 
rules. The bid of each winner at each time-step is placed in a "bucket". A record is 
kept of the winners on the previous time step and they each receive an equal share of 
the contents of the current bucket; fitness is shared amongst activated rules. If a 
reward is received from the environment then this is paid to the winning rule which 
produced the last output. Holland draws an economic analogy for his "bucket-
brigade" algorithm (BBA), suggesting each rule is much like the middleman in a 
commercial chain; fitness is seen as capital. The reader is referred to [Sutton & Barto, 
1998] for an introduction to reinforcement learning. 
 
 

 
 

Fig. 1: Schematic of Holland’s Learning Classifier System. 
 
 

The LCS employs a steady-state Genetic Algorithm operating over the whole rule-set 
at each instance. After some number of time-steps the GA uses roulette wheel 
selection to determine two parent rules based on their fitness relative to the total 
fitness of the population: 
 

Probabilty_Selection( C,t ) = fitness( C,t ) / Σ fitnesses( t ) 
 
The effect of this scheme is to bias reproduction towards those rules which appear to 
lead to higher reward from the environment. Copies are made of the chosen rules 
which are then subjected to two genetic operators: mutation and crossover. Mutation 
is applied probabilistically at a per-locus rate (e.g., 1/100) along the length of the rule 
and upon satisfaction the value at that locus is altered – typically, a locus becomes 
one of the other two possible values with equal probability. For example, if the above 
mentioned rule 1#1:0#0 experiences a mutation event on its last locus it could become 
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1#1:0#1 or 1#1:0##. Crossover begins by randomly choosing a position within the 
rules and then swaps them from that point to their end. For example, the two rules 
000:000 and 111:111 which experience crossover at position two would become 
001:111 and 110:000 respectively. The purpose of the genetic operators is to 
introduce new rules into the population based on known good rules with the aim of 
discovering better rules.  The new rules then replace two existing rules, often chosen 
using roulette wheel selection based on the reciprocal of fitness. The reader is referred 
to [Eiben & Smith, 2004] for a recent introduction to evolutionary computing. 

It is important to note that the role of the GA in LCS is to create a cooperative set 
of rules which together solve the task. That is, unlike a traditional optimisation 
scenario, the search is not for a single fittest rule but a number of different types of 
rule which together give appropriate behaviour. The rule-base of an LCS has been 
described as an evolving ecology of rules - “each individual rule evolves in the 
context of the external environment and the other rules in the classifier system.”  
[Forrest & Miller, 1991]. A number of other mechanisms were proposed by Holland 
but for the sake of clarity they are not described here (see [Holland et al., 1986] for an 
overview). 

3. Wilson’s ZCS 

As noted above, Wilson introduced the simple ZCS to increase understandability and 
performance. In particular, Wilson removed the message list and rule bidding (Figure 
2) and did not allow wildcards in actions. He introduced the use of action sets rather 
than individual rules, such that rules with the same action are treated together for both 
action selection and reinforcement. That is, once [M] has been formed a rule is picked 
as the output based purely on its fitness. All members of [M] that propose the same 
action as the selected rule then form an action set [A]. An "implicit" bucket brigade 
[Goldberg, 1989] then redistributes payoff in the subsequent action set.  

A fixed fraction - equivalent to Holland's bid constant - of the fitness of each 
member of [A] at each time-step is placed in a bucket. A record is kept of the 
previous action set [A]-1 and if this is not empty then the members of this action set 
each receive an equal share of the contents of the current bucket, once this has been 
reduced by a pre-determined discount factor γ  (a mechanism used in temporal 
difference learning to encourage solution brevity [e.g., Sutton & Barto, 1998]). If a 
reward is received from the environment then a fixed fraction of this value is 
distributed evenly amongst the members of [A] divided by their number. Finally, a tax 
is imposed on the members of [M] that do not belong to [A] on each time-step in 
order to encourage exploitation of the fitter classifiers. That is, all matching rules not 
in [A] have their fitnesses reduced by factor τ thereby reducing their chance of being 
selected on future cycles. Wilson considered this technique provisional and suggested 
there were better approaches to controlling exploration. The effective update of action 
sets is thus: 

 
fitness ( [A] ) �  fitness ([A])  + β  [ Reward + γ fitness( [A]+1 ) – fitness( [A] ) ] 

 



where 10 ≤≤ β  is a learning rate constant. Wilson noted that this is a change to 

Holland's formalism since specificity is not considered explicitly through bidding and 
pay-back is discounted by 1-γ on each step. ZCS employs two discovery mechanisms, 
a steady state GA and a covering operator. On each time-step there is a probability p 
of GA invocation. When called, the GA uses roulette wheel selection to determine 
two parent rules based on fitness. Two offspring are produced via mutation and 
crossover. The parents donate half their fitness to their offspring who replace existing 
members of the population. The deleted rules are chosen using roulette wheel 
selection based on the reciprocal of fitness. The cover heuristic is used to produce a 
new rule with an appropriate condition to the current state and a random action when 
a match-set appears to contain low quality rules, or when no rules match an input. 
 
 

 
 

Fig. 2: Schematic of ZCS. 
 
When ZCS was first presented, results from its use indicated it was capable of good, 
but not optimal, performance [Wilson, 1994][Cliff & Ross, 1995]. More recently, it 
has been shown that ZCS is capable of optimal performance, at least in a number of 
well-known test problems, but appears to be particularly sensitive to some of its 
parameters [Bull & Hurst, 2002]. 

4. Wilson’s XCS 

The most significant difference between XCS (Figure 3) and most other LCS (e.g., 
ZCS) is that rule fitness for the GA is not based on payoff received (P) by rules but on 
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the accuracy of predictions (p) of payoff. Hence, XCS has been termed an accuracy-
based LCS, in contrast to earlier systems which were for the most part strength-based 
(also called payoff-based systems). The intention in XCS is to form a complete and 
accurate mapping of the problem space (rather than simply focusing on the higher 
payoff niches in the environment) through efficient generalizations. In RL terms, XCS 
learns a value function over the complete state/action space. In this way, XCS makes 
the connection between LCS and reinforcement learning clear and represents a way of 
using traditional RL on complex problems where the number of possible state-action 
combinations is very large (other approaches have been suggested, such a neural 
networks – see [Sutton & Barto, 1998] for an overview). 
     XCS shares many features with ZCS, and inherited its niche GA, deletion scheme 
and an interest in accuracy from Booker’s GOFER-1 [Booker, 1982]. 
 
 

 
 

Fig. 3: Schematic of XCS. 
 
 
On each time step a match set is created. A system prediction is then formed for each 
action in [M] according to a fitness-weighted average of the predictions of rules in 
each [A]. The system action is then selected either deterministically or randomly 
(usually 0.5 probability per trial). If [M] is empty covering is used. 

Fitness reinforcement in XCS consists of updating three parameters, ε, p and F for 
each rule in the current [A]; the fitness is updated according to the relative accuracy 
of the rule within the set in five steps: 
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i) Each rule’s error is updated: εj = εj + β( | P - pj | - εj)  where as in ZCS 
10 ≤≤ β  is a learning rate constant. 

ii) Rule predictions are then updated: pj = pj + β(P-pj) 
iii) Each rule’s accuracy κj is determined:                                                                     

κj = α(ε0/ε)ν or κ j =1 where ε < ε0
                                         

where  ν, α and ε0 are constants controlling the shape of the accuracy 
function. 

iv) A relative accuracy κj’  is determined for each rule by dividing its 
accuracy by the total of the accuracies in the action set. 

v) The relative accuracy is then used to adjust the classifier’s fitness Fj using 
the moyenne adaptive modifee (MAM) procedure: If the fitness has been 
adjusted 1/β times, Fj = Fj + β(κj’  - Fj). Otherwise Fj is set to the average 
of the values of κ j ’  seen so far. 

 
In short, in XCS fitness is an inverse function of the error in reward prediction, with 
errors below ε0 not reducing fitness. The maximum P(ai) of the system’s prediction 
array is discounted by a factor γ and used to update rules from the previous time step. 
Thus XCS exploits a form of Q-learning [Watkins, 1989] in its reinforcement 
procedure, whereas Holland’s 1986 system and ZCS both use a form of TD(0) (as 
noted in [Sutton & Barto, 1998]). 

The GA acts in action sets [A], i.e., niches. Two rules are selected based on fitness 
from within the chosen [A]. Rule replacement is global and based on the estimated 
size of each action set a rule participates in with the aim of balancing resources across 
niches. The GA is triggered within a given action set based on the average time since 
the members of the niche last participated in a GA (after [Booker, 1989]). 

XCS is more complex than ZCS but results from its use in a number of areas have 
been impressive. Wilson originally demonstrated results on the Boolean multiplexer 
function and a maze problem [Wilson, 1995]. Early on Kovacs emphasised its ability 
to learn complete, accurate, and minimal representations of Boolean functions 
[Kovacs, 1997]. XCS has since been widely adopted in the LCS community; the 
majority of contributions to a recent volume on applications of LCS [Bull, 2004] used 
XCS. An algorithmic description of XCS can be found in [Butz & Wilson, 2001], 
while further details of XCS can be found in [Butz, 2005].  

5. Pittsburgh-style LCS 

The previously described forms of LCS operate under the principle of the GA 
population as whole forming a cooperative set of rules for the given task. Another 
approach is to create a more standard GA population in which each individual 
represents a complete set of rules. This approach is known as the Pittsburgh-style LCS 
after its development by Stephen Smith [1980] at the University of Pittsburgh, USA. 

Typically, rules are again of the form “IF state THEN action”  but there are no 
associated rule specific parameters. Rather utility is assigned to the complete set of 
rules once they have attempted the given task, this representing the fitness metric 



under a standard GA. Recombination and mutation act over the set of concatenated 
rules, i.e., the rules in the set form one linear string of symbols.  

Action selection is typically numerosity-based wherein, for a given input, an [M] is 
formed and the number of rules within each [A] used to determine the output, e.g., 
under roulette wheel selection.   

A brief overview of selected works on LCS in data mining now follows. We 
concentrate on pre-ZCS and XCS systems in order to complement the remaining 
chapters of this text. 

6. Previous Research on LCS in Data Mining 

Data Mining is an overarching term under which various procedures to elicit 
information from data may be found, including: 

 

• Data Extraction – the collation of data from one or more sources. 
• Data Cleansing – the identification and treatment of erroneous or missing 

datum. 
• Data Reduction – the removal of features which are insufficiently correlated to 

the given task. 
• Data Modelling – the discovery of patterns in the data. 
• Model Interpretation – identification of the discovered patterns. 
• Model Application – use of the identified patterns, e.g., for future predictions. 
 
 
Machine Learning techniques have shown themselves to be extremely useful in 

data reduction and modelling, with some utility in the other data mining procedures 
such as model interpretation (although this can be a somewhat subjective process as 
different users may find different patterns more interesting than others, e.g., outliers 
vs. majority). 

Goldberg [1983] was the first to apply Holland’s LCS to a real-world problem – 
gas pipeline control. Here the system received hourly readings from various sensors 
around a network, such as flow rates and pressures, and was required to deduce 
whether a leak was occurring and to set appropriate control of the pipeline inflow. 
Using a relatively small rule-base of 60 rules and a message list of size 5, Goldberg 
was able to train the LCS to become an effective controller after around 1000 days of 
simulated use. Other early applications of Holland’s system include space vessel 
power management [Goodloe & Graves, 1988] and modelling economic markets 
[Marimon et al., 1990].  

Following Wilson’s [1987] early demonstration that a version of Holland’s LCS – 
termed BOOLE - could learn Boolean functions effectively their use for classification 
has become the most common application of LCS in data mining. Bonelli and Parodi 
[1991] altered the reinforcement update of BOOLE in their system “Newboole”  to 
penalize incorrect responses as well as reward correct ones. They showed roughly 
equal performance to the rule inducer CN2 [Clark & Niblett, 1989] and a traditional 



neural network on three well-known data sets. They also considered the issue of rule 
compaction for knowledge discovery in LCS. 

Riolo [1991], without the use of a GA, showed human-like behaviour on a two-
class discrimination task using Holland’s LCS. More recently, Hartley [1999] has 
reported similar behaviour for XCS, showing a closer agreement to humans in certain 
classes of problem than Newboole. 

Sen [1993] showed how incorporating rule accuracy, in the form of percentage 
correct over total number of matches, into the action selection scheme of Newboole 
improves performance. Using versions of the well-known MONKS problem and 
another data set he showed better classification accuracy than a number of popular 
rule induction techniques of the time, such as ID3[Quinlan, 1986], CN2, and mFOIL 
[Lavarac & Dzeroski, 1994]. Saxon and Barry [2000] have used XCS on the MONKS 
problem. 

Frey and Slate [1991] used the percentage correct metric noted above as the 
fitness measure in a version of Holland’s LCS. That is, they used a specific form of 
accuracy for reproduction, in a similar vein to XCS, and reported good performance 
on a standard letter recognition task with the modification.  

Greene and Smith (e.g., [1994]) developed a version of Holland’s algorithm  - 
COGIN - wherein the search is constrained to cover all training set data. The GA is 
modified to have random selection and competition for replacement based on the 
number of training examples correctly matched and the current occupation of the 
niches, i.e., training examples, other rules currently cover. This approach is shown to 
be competitive with C4. 5. 

DeJong, Spears and Gordon (e.g., [DeJong, et al., 1993]) presented early 
demonstrations of the ability of the Pittsburgh-style systems for data mining with their 
system GABIL. Using a breast cancer data set they reported favourable performance 
against C4.5, another ID3 derivative, and two other techniques which form modified 
DNF hypotheses. In particular, they showed how biased mutation operators which 
alter the logical relationship between chosen features can greatly improve 
performance.  

Giordana and Neri (e.g., [1995]) developed a hybrid Pittsburgh-Holland approach 
to evolve Horn clauses through use of a spatially distributed GA. Here each node 
represents a conjunction and the niching effect of the distribution enables the 
maintenance of multiple rule types which together solve a problem. Their system, 
named REGAL, was shown to be comparable to ID3 and C4.5 on a number of well-
known test datasets.  

Robertson and Riolo [1988] presented a version of Holland’s system for a number 
of letter sequence prediction tasks. Using the traditional windowing approach they 
report optimality for some tasks and near optimality on alphabet prediction. 
Extensions to consider using the internal memory list mechanism only was also 
shown possible, although a number of extra heuristics were added. 

Federman and Dorchak[1997] used a version of Goldberg’s Simple Classifier 
System [Goldberg, 1989] which is much like Wilson’s BOOLE, to predict the next 
note in a simple children’s songs. They describe a correlation between prediction 
accuracy of the LCS and an information theory metric; perhaps unsurprisingly, the 
more information contained in a melody, the easier it is for the LCS to predict the 
sequence. This was shown to be true for the three rule representation schemes tried. 



As discussed thus far, the rule representation of LCS means that the action is not a 
direct function of the input. Valenzuela-Rendon [1991] introduced a fuzzy set rule 
representation scheme for LCS which has been used both for classification tasks [e.g., 
Pena-Reyes & Sipper, 1999] and, in the Pittsburgh-style, for numerical prediction 
[e.g., Cordon et al., 1999]. In the latter work, Cordon et al. [ibid.] report superior 
performance to a number of non-linear regression methods and an artificial neural 
network approach. Ahluwalia and Bull [1999] presented a scheme wherein each 
action is represented by an evolving arithmetic LISP S-expression, i.e., of the form 
used in Genetic Programming (GP) [Koza, 1992]. Although they applied it to feature 
extraction in conjunction with the k-nearest-neighbours algorithm, it could equally be 
applied to regression problems. More recently, Wilson [2001] introduced a prediction 
estimation mechanism into XCS – termed XCSF. Weight vectors are added to each 
rule to enable piecewise-linear approximation based on the input. Bull and O’Hara 
[2002] show how a neural network representation scheme can be used within XCS 
and demonstrate its use on both discrete action and prediction tasks. More recently, 
they have included the use of established gradient descent techniques for learning 
connection weights in conjunction with the GA search to improve accuracy [O’Hara 
& Bull, 2005]. The general scheme for using local search heuristics in conjunction 
with the GA in XCS was introduced by Wyatt and Bull [2004] in their work on using 
XCS to classify continuous-valued problem spaces.  

7. Learning Classifier  Systems in Data Mining: An Overview 

The rest of this book describes recent research on the use of LCS in the main areas of 
machine learning data mining: classification, clustering, time-series and numerical 
prediction, feature selection, ensembles, and knowledge discovery. 
 
Jaume Bacardit et al. – Data Mining in Proteomics with Learning Classifier Systems. 
Protein structure prediction is a well-known and notoriously difficult problem whose 
solution offers very real benefits. This contribution describes the use of a Pittsburgh-
style system to the problem and highlights the benefits from the human-readability of 
LCS solutions. 

 
William Browne – Improving Evolutionary Computation based Data Mining for the 
Process Industry: The Importance of Abstraction. This contribution begins by 
describing the application of a Holland-style system to data gathered from a steel hot 
strip mill. The author then suggests that mechanisms for higher levels of abstraction 
are needed for the real benefits of such machine learning to be seen in many domains. 
 
Hai Dam et al. – Distributed Learning Classifier Systems. For some time now it has 
been recognized that using multiple classifiers, so-called ensemble machines [e.g., Ho 
et al., 1994], can prove highly effective. No one technique will outperform all others 
on all problems, hence the principle of ensemble machines is to combine the output of 
several methods to find an overall solution that utilises the strength of the constituents 
and compensates for their individual weaknesses. This contribution presents the use 



of LCS in ensembles in a truly distributed framework together with mechanisms to 
exploit their population-based search characteristics. 
 
Faten Kharbat et al. – Knowledge Discovery from Medical Data: An Empirical Study 
with XCS. As noted above, XCS has proven to be a particularly effective data miner. 
This contribution describes the use of XCS to mine breast cancer data obtained from a 
UK health trust and its improved performance, both in terms of accuracy and the 
interestingness of its learned rules, compared to C4.5. 
 
Albert Orriols-Puig & Ester Bernadó-Mansilla – Mining Imbalanced Data with 
Learning Classifier Systems. The class imbalance problem can be defined as a 
problem encountered by any inductive learning system in domains for which one 
class is under-represented and which assume a balanced class distribution in the 
training data. For a two-class problem, the class defined by the smaller set of 
examples is referred to as the minority class while the other class is referred to as the 
majority class. This contribution considers how XCS can be modified to consider this 
problem automatically, i.e., such that no extra forms of data manipulation, as typically 
used, can be avoided. 
 
Robert Smith et al. – XCS for Fusing Multi-Spectral Data in Automatic Target 
Recognition. This contribution describes the use of XCS for both classification and as 
a pre-processor for classification. That is, XCS as a feature selection approach is 
demonstrated on an image processing task. 
 
Christopher Stone & Larry Bull – Foreign Exchange Trading using a Learning 
Classifier System. The fact that LCS learn incrementally means they are particularly 
suited to on-line applications such as time-series prediction. This contribution 
describes a version of ZCS applied to an on-line trading task and is shown to be 
competitive with an approach which learns off-line in the traditional batch training 
mode. 
 
Kreangsak Tamee et al. – Towards Clustering with Learning Classifier Systems. The 
LCS paradigm is also applicable to unsupervised learning tasks. This contribution 
describes modifications made to XCS to enable the identification of clusters within 
data sets without the prior definition of how many clusters are expected. 
 
Albert Orriols-Puig et al. - Comparison of Several Genetic-Based Supervised 
Learning Systems. As noted above, it is possible to use a number of representation 
schemes within LCS. This contribution compares both Pittsburgh and Michigan 
systems using fuzzy logic representations to a number of well-known techniques.  

8. Summary 

Just over thirty years after Holland first presented the outline for Learning Classifier 
System paradigm, the ability of LCS to solve complex real-world problems is 



becoming clear. In particular, their capability for rule induction in data mining has 
sparked renewed interest in LCS. This article has given a brief introduction to LCS 
and previous studies of their use for data mining. The rest of the book brings together 
work by a number of individuals who are demonstrating their good performance in a 
variety of domains. 
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