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Abstract Particle Swarm Optimization is an evolutionary method inspired by the

social behaviour of individuals inside swarms in nature. Solutions of the problem are

modelled as members of the swarm which fly in the solution space. The evolution is

obtained from the continuous movement of the particles that constitute the swarm

submitted to the effect of the inertia and the attraction of the members who lead the

swarm. This work focuses on a recent Discrete Particle Swarm Optimization for combi-

natorial optimization, called Jumping Particle Swarm Optimization. Its effectiveness is

illustrated on the minimum labelling Steiner tree problem: given an undirected labelled

connected graph, the aim is to find a spanning tree covering a given subset of nodes,

whose edges have the smallest number of distinct labels.
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1 Introduction

Over the years, evolutionary algorithms have been widely used as robust techniques for

solving hard combinatorial optimization (CO) problems. Their behaviour is directed by

the evolution of a population in the search for an optimum. Particle Swarm Optimiza-

tion (PSO) is an evolutionary algorithm proposed by Kennedy and Eberhart (1995).

It has been applied with success in many areas and appears to be a suitable approach

for several optimization problems (Kennedy and Eberhart 2001). Similarly to Genetic

Algorithms, PSO is a population-based technique, inspired by the social behaviour of

individuals (or particles) inside swarms in nature (for example, flocks of birds or schools

of fish). However, unlike Genetic Algorithms, it has no crossover and mutation operators

and is easy to implement, requiring few parameter settings and computational mem-

ory. Since the original PSO was applicable to optimization problems with continuous

variables, several adaptations of the method to discrete problems, known as Discrete

Particle Swarm Optimization (DPSO), have been proposed (Kennedy and Eberhart

1997). In this paper we focus on a very recent DPSO for combinatorial optimization,

illustrating its effectiveness on the minimum labelling Steiner tree (MLSteiner) prob-

lem.

1.1 Discrete Particle Swarm Optimization

The standard PSO considers a swarm S containing n particles (S = 1, 2, . . . , n) in

a d-dimensional continuous solution space (Kennedy and Eberhart 2001). Each i-th

particle of the swarm has a position xi = (xi1, xi2, . . . , xij , . . . , xid), and a velocity

vi = (vi1, vi2, . . . , vij , . . . , vid). The position xi represents a solution to the problem,

while the velocity vi gives the rate of change for the position of particle i at the next

iteration. Indeed, considering iteration k, the position of particle i is adjusted according

to xk
i = xk−1

i + vk
i .

Each particle i of the swarm communicates with a social environment or neigh-

bourhood, N(i) ⊆ S, representing the group of particles with which it communicates,

and which could change dynamically. In nature, a bird adjusts its position in order

to find a better position, according to its own experience and the experience of its

companions. In the same manner, considering iteration k of the PSO algorithm, each

particle i updates its velocity reflecting the attractiveness of its best position so far (bi)

and the best position (gi) of its social neighbourhood N(i), according to the equation:

vk
i = c1ξvk−1

i + c2ξ(bi − xk−1
i ) + c3ξ(gi − xk−1

i ). (1)

The parameters ci are positive constant weights representing the degrees of confi-

dence of particle i in the different positions that influence its dynamics, while the term

ξ refers to a random number with uniform distribution [0, 1] that is independently

generated at each iteration.

Since, in words of the inventors of PSO, it is not possible to “throw to fly” particles

in a discrete space (Kennedy and Eberhart 1995), several Discrete Particle Swarm Op-

timization (DPSO) methods have been proposed. In the DPSO proposed by Kennedy

and Eberhart (1997) for problems with binary variables, the position of each particle

is a vector xi = (xi1, xi2, . . . , xij , . . . , xid) of the d-dimensional binary solution space,

xi ∈ {0, 1}d, but the velocity is still a vector vi of the d-dimensional continuous space,

vi ∈ <d. A different way to update the velocity was considered by Yang et al. (2004).



3

A DPSO whose particles at each iteration are affected alternatively by its best

position and the best position among its neighbours was proposed by Al-kazemi and

Mohan (2002). Pampara et al. (2005) solved binary problems by combining continuous

PSO and Angle Modulation with only four parameters. Furthermore, several PSO

variants applied to problems where the solutions are permutations were considered

in (Onwubolu and Clerc 2004; Pang et al. 2004; Secrest 2001).

The multi-valued PSO (MVPSO) proposed by Pugh and Martinoli (2006) deals

with variables with multiple discrete values. The position of each particle is a mono-

dimensional array in the case of a continuous PSO, a 2-dimensional array in the case

of a DPSO, and a 3-dimensional array for a MVPSO. Indeed, the position of particle

i in the MVPSO is expressed by the term xijk, representing the probability that the

i-th particle, in the j-th iteration, takes the k-th value.

Another DPSO was proposed in (Correa et al. 2006) for feature selection prob-

lems, which are problems whose solutions are sets of items. In this PSO version, the

velocity vectors consist of positive numbers representing the relative likelihood of the

corresponding binary component of the positions of the particles. The position of each

particle is updated by randomly generating changes according to these likelihoods, and

then continuing in similar way to the standard PSO.

A new DPSO proposed in (Moreno-Pérez et al. 2007) and (Mart́ınez-Garćıa and

Moreno-Pérez 2008) does not consider any velocity since, from the lack of continuity

of the movement in a discrete space, the notion of velocity loses sense; however they

kept the attraction of the best positions. They interpret the weights of the updating

equation as probabilities that, at each iteration, each particle has a random behaviour,

or acts in a way guided by the effect of an attraction. The moves in a discrete or

combinatorial space are jumps from one solution to another. The attraction causes the

given particle to move towards this attractor if it results in an improved solution.

An inspiration from the nature for this process is found in frogs, which jump from

a lily pad to a pad in a pool. Thus, this new discrete PSO is called Jumping Parti-

cle Swarm Optimization (JPSO). In this paper we compare this method with other

algorithms for the minimum labelling Steiner tree problem.

1.2 The minimum labelling Steiner tree problem

The minimum labelling Steiner tree (MLSteiner) problem is an NP-hard graph problem

introduced by Cerulli et al. (2006) and defined as follows. Let G = (V, E, L) be a

labelled, connected, undirected graph, where V is the set of nodes, E is the set of

edges, that are labelled (not necessarily properly) on the set L of labels (or colours).

Let Q ⊆ V be a set of nodes that must be connected (basic vertices or nodes). The

MLSteiner problem searches for an acyclic connected subgraph T ⊆ G, spanning all

basic nodes Q and using the minimum number of different colours.

This problem has many applications in real-world problems. For example, in telecom-

munications networks, a node may communicate with other nodes by means of different

types of communications media. Considering a set of basic nodes that must be con-

nected, the construction cost may be reduced, in some situations, by connecting the

basic nodes with the smallest number of possible communications types (Tanenbaum

1989).

Another example is given by multimodal transportation networks (Van-Nes 2002).

The multimodal transportation network is represented by a graph where each edge is
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assigned a colour, denoting a different company managing that edge, and each node

represents a different location. It is often desirable to provide a complete service be-

tween a basic set of locations, without cycles, using the minimum number of companies,

in order to minimize the costs.

Formally, the minimum labelling Steiner tree problem can be defined as follows:

- Let G = (V, E, L) be a labelled, connected, undirected graph, where V is the

set of nodes, E is the set of edges, that are labelled on the set L of labels (or

colours).

- Let Q ⊆ V be a set of nodes that must be connected (basic nodes).

⇒ Find an arbitrary spanning tree T of the subgraph connecting all the basic

nodes Q and such that |LT | is minimized (where LT is the set of colours used

by T ).

- INSERT FIGURE 1 -

Figure 1 shows an example of an input graph, where the solid vertices represent

the basic nodes to cover. The minimum labelling Steiner tree solution of this example

is shown in Figure 2.

- INSERT FIGURE 2 -

In order to solve the MLSteiner problem, it is easier to work firstly with feasible

solutions instead of spanning trees. A feasible solution is defined as a set of colours

C ⊆ L, such that all the edges with labels in C represent a connected subgraph of G

and span all the basic nodes Q. If C is a feasible solution, then any spanning tree of

C has at most |C| labels. Thus, in order to solve the MLSteiner problem we seek a

feasible solution with the smallest number of colours (Cerulli et al. 2006).

The MLSteiner problem is an extension of the well-known Steiner tree problem, and

of the minimum labelling spanning tree problem. Given a graph with positive-weighted

edges, the Steiner tree (Steiner) problem searches a minimum-weight tree spanning a

subset of nodes, called basic nodes (or terminals) (Garey et al. 1977). Several heuristics

for the Steiner problem in graphs are reported in (Voß 2000). The minimum labelling

spanning tree (MLST) problem is used where, given a graph with coloured edges, one

seeks a spanning tree with the least number of colours (Chang and Leu 1997; Krumke

and Wirth 1998). Several heuristics have been proposed in (Cerulli et al. 2005; Xiong

et al. 2006; Consoli et al. 2008).

The MLSteiner problem was considered by Cerulli et al. (2006) where their Pilot

Method (PM) is compared with some other metaheuristics: Tabu Search, Simulated

Annealing, and Variable Neighbourhood Search. From their analysis, PM was shown

to be the best performing heuristic for this problem.

The structure of the paper is as follows. Section 2 presents the details of the meth-

ods that we consider for the MLSteiner problem: an exact approach, the Pilot Method

proposed by Cerulli et al. (2006), a basic Multi-Start (MS) metaheuristic (with and

without an embedded local search), and the Jumping Particle Swarm Optimization.

Section 3 shows the computational results of the comparison of these algorithms, fol-

lowed by some conclusions in Section 4.

2 Algorithms considered

In this section we describe the algorithms that we consider for the MLSteiner problem:

an exact method, the Pilot Method by Cerulli et al. (2006), a basic Multi-Start method
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(with and without an embedded local search), and finally the Jumping Particle Swarm

Optimization. Throughout the rest of the paper we will make use of the concept of a

Steiner component (Cerulli et al. 2006), which is a connected subgraph of the input

graph containing at least one basic node.

2.1 Exact method

This exact approach to the MLSteiner is based on a backtracking procedure. Given a

labelled, connected, undirected graph G = (V, E, L) with n vertices, m edges, ` labels,

and a subset Q ⊆ V of basic nodes, the exact method performs a branch and prune

procedure in the partial solution space based on a recursive procedure.

The recursive procedure starts from an empty set of colours and iteratively builds a

solution by adding colours one by one until all the basic nodes, Q ⊆ V , are connected.

This method is based on an enumeration of all the possible combinations of colours, so

its computational running time grows exponentially with the number of colours. Some

heuristic rules are applied to the branch-and-prune strategy in order to reduce the

running time. If either the problem size is moderate or the optimal objective function

value is small, the running time of this exact method is reasonable and it is possible

to obtain the exact solution.

2.2 Pilot Method

The Pilot Method (PM) metaheuristic was first introduced by Duin and Voß (1999)

for the Steiner tree problem. Its core idea consists of exhausting all the possible choices

with respect to a so called master solution, by means a basic heuristic. This basic

heuristic tentatively performs iterations with respect to the master solution until all

the possible local choices are evaluated. The best solution to date becomes the new

master solution, and the procedure proceeds until the user termination conditions are

reached.

Cerulli et al. (2006) performed a comparison between PM and other ad-hoc meta-

heuristics (Tabú Search, Simulated Annealing, and Variable Neighbourhood Search) for

different instances of the MLSteiner problem. From their computational analysis, PM

obtained the best results. Their Pilot Method for the MLSteiner focuses on the initial

label to add, using the null solution (an empty set of colours) as master solution. The

basic heuristic consists of inserting in the partial solution the colour which decreases

the number of Steiner components of the partial subgraph. PM tries to add each label

at the initial step, and then it performs iterations of the basic heuristic until a feasible

solution is obtained. At the final stage, a local search mechanism tries to greedily drop

colours (i.e., the associated edges) whilst retaining feasibility. After exhausting all the

iterations, the best solution to date represents the output of the method.

2.3 Multi-Start method

The Multi-Start (MS) method that we consider for the MLSteiner problem starts from

an empty set of colours, and at each iteration adds one colour at random, until a

connected subgraph is obtained. This process is repeated, continuing until the user
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termination condition (maximum allowed CPU time, maximum number of iterations,

or maximum number of iterations between two successive improvements) is reached.

The best solution to date is produced as the output of this method.

A local search phase may be embedded in this process to try to improve the intensi-

fication capability of the algorithm. This local search consists of trying to greedily drop

some labels (i.e., the associated edges) at the end of each iteration of the MS method,

whilst retaining feasibility. Further details on Multi-Start techniques to combinatorial

optimization can be found in (Mart́ı 2003).

2.4 Jumping Particle Swarm Optimization

The spirit of nature to deal with some real-life problems is often based on simple

processes. Trying to emulate this aspect of life, the discrete PSO proposed in (Moreno-

Pérez et al. 2007; Mart́ınez-Garćıa and Moreno-Pérez 2008), called Jumping Particle

Swarm Optimization (JPSO), was chosen to deal with the minimum labelling Steiner

tree problem, for its ease implementation and simplicity.

JPSO considers a swarm S containing n particles (S = 1, 2, . . . , n) whose positions

xi evolve in the solution space, jumping from one solution to another (for the MLST

problem, a swarm with n = 100 particles is considered). The position of a particle

is encoded as a feasible solution to the MLSteiner problem. At each iteration, each

particle has a random behaviour, or jumps to another solution in a manner guided by

the effect of some attractors.

JPSO considers three attractors for the movement of each particle i: its own best

position to date (bi), the best position of its social neighbourhood (gi), interpreted

as the best position obtained within the swarm in the current iteration, and the best

position to date obtained by all the particles, which is called the global best position

(g∗). A jump approaching an attractor consists of changing a feature of the current

solution by a feature of the attractor. Each particle is further allowed to have a ran-

dom behaviour by performing random jumps. A random jump consists of selecting at

random a feature of the solution and changing its value. For the MLSteiner problem

the features of a solution are the colours that are included in the solution. Thus, a

particle performs a jump with respect to the selected attractor by randomly adding

some colours to its current position from the selected attractor, or dropping from its

current position further colours that are not included in the attractor.

Further details of the DPSO that we propose for the MLSteiner problem are spec-

ified in Algorithm 1. The algorithm proceeds as follows. The initial positions of the

swarm S are generated by starting from empty sets of colours and adding at random

colours until feasible solutions emerge. At each iteration, the positions of the particles

are updated. Considering the i-th particle of the swarm (i ∈ S) and a generic iteration

k, the update procedure to obtain the new position xk
i of i from its previous position

xk−1
i is as follows. Position xk

i is obtained by performing random jumps with respect

to its current position xk−1
i with probability c1, improving jumps approaching bi with

probability c2, improving jumps approaching gi with probability c3, and improving

jumps approaching g∗ with probability c4 = (1 − c1 − c2 − c3). For the MLSteiner

problem the value of the parameters c1, c2, c3, c4, are set to 0.25, giving the same

probability value to each of the possible jumps to be selected. The number of jumps

to be performed at each iteration is selected at random in the following way. Given
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the probability ci, we iteratively choose a random number ξ with uniform distribution

[0,1]. If ξ < ci, we perform a new jump; otherwise the jumps stop.

At the end of this stage, a local search procedure is applied to the resulting particle,

in order to try to delete some colours from xk
i whilst retaining feasibility. Then all

the attractors (bi, gi, g∗) are updated, and the same procedure is repeated for all

the particles in the swarm. The entire algorithm continues until the user termination

conditions are satisfied.

Algorithm 1: Discrete Particle Swarm Optimization for the MLSteiner problem.

Input: A labelled, undirected, connected graph G = (V, E, L), with n vertices, m
edges, ` labels, and Q ⊆ V basic nodes;

Output: A spanning tree T ;
Initialization:
- Let C ← 0 be the initially empty set of used colours for each iteration;
- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C,
where E(C) = {e ∈ E : L(e) ∈ C};
- Set the size ns of the swarm S;
begin

- Generate the initial swarm S with positions at random:
X = [x0, x1, . . . , xns ] ←Generate-Swarm-At-Random(G);
- Update the vector of the best positions B = [b0, b1, . . . , bns ] ← X;
- Extract the best position among all the particles: g∗ ← Extract-The-Best(S, X);
repeat

for i = 1 to ns do
if i = 1 then

- Initialize the best position of the social neighbourhood: gi ← `;
else

- Update the best position of the social neighbourhood i: gi ← gi−1;
end
- Select at random a number between 0 and 1: ξ=Random(0, 1);
if ξ ∈ [0, 0.25[ then

- selected ← xi;
else if ξ ∈ [0.25, 0.5[ then

- selected ← bi;
else if ξ ∈ [0.5, 0.75[ then

- selected ← gi;
else if ξ ∈ [0.75, 1[ then

- selected ← g∗;
- Combine particle i and the selected particle: xi ← Combine(xi, selected);
- Local-Search(i, xi);
if |xi| < |bi| then

- Update the best position of the given particle i: bi ← xi;
end
if |xi| < |gi| then

- Update the best position of the social neighbourhood of i: gi ← xi;
end
if |xi| < |g∗| then

- Update the global best position to date: g∗ ← xi;
end

end
until termination conditions ;
- Update Hg∗ = (V, E(g∗));
⇒ Take any arbitrary spanning tree T of Hg∗ = (V, E(g∗)).

end
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3 Computational results

In this section, the metaheuristics are compared in terms of solution quality and compu-

tational running time. We identify the metaheuristics with the abbreviations: EXACT

(exact method), PM (Pilot Method), MS (Multi-Start method), MS+LS (Multi-Start

method with the local search mechanism), and JPSO (Jumping Particle Swarm Opti-

mization).

Different sets of instances of the problem have been generated considering combi-

nations of the following parameters:

- the total number of edges of the graph (m);

- the total number of nodes of the graph (n);

- the number of basic nodes of the graph (q);

- the total number of colours assigned to the edges of the graph (`).

In our experiments, we consider 48 different datasets, each one containing 10 in-

stances of the problem, with n ∈ {100, 500} nodes, ` ∈ {0.25n, 0.5n, 1.25n} colours,

and q ∈ {0.2n, 0.4n} basic nodes. The number of edges, m, is obtained indirectly from

the density d, whose values are chosen to be in {0.8, 0.5, 0.2}.
For each dataset, solution quality is evaluated as the average objective function

value for the 10 problem instances, for each combination of the parameters n, `, and d.

A maximum allowed CPU time, that we call max-CPU-time, is chosen as the stopping

condition for all the metaheuristics, determined experimentally with respect to the

dimension of the problem instance. Since the Pilot Method considers, for each instance,

every label as the initial colour to add, max-CPU-time is chosen in order to allow the

Pilot Method to finish.

- INSERT TABLE 1 -

- INSERT TABLE 2 -

- INSERT TABLE 3 -

- INSERT TABLE 4 -

Our computational results are reported in Tables 1 - 4. In each table, the first

two columns show the parameters characterising the different datasets (`, d), while the

values of n and q determine the different tables. All the heuristic methods run for max-

CPU-time and, in each case, the best solution is recorded. All the computations have

been made on a Pentium Centrino microprocessor at 2.0 GHz with 512 MB RAM. The

computational times reported in the tables are the times at which the best solutions are

obtained. Where possible, the results of the metaheuristics are compared with the exact

solution (EXACT). The solution given by the exact method is reported unless a single

instance computes for more than 3 hours of CPU time. In the case that no solution is

obtained in max-CPU-time by the metaheuristics, in 3 hours by the exact method, a

not found (NF) is reported in the tables. All the reported times have precision of ±5

msec.

- INSERT TABLE 5 -

Table 5 shows the relative performance of the algorithms considered. The entry

(i, j) in this table represents the number of instances where algorithm i had better

performance than algorithm j. The performance of an algorithm is considered better

than another one if either it obtains a smaller average objective function value, or an
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equal average objective function value but in a shorter computational time (±5 ms).

For example, PM generates 32 solutions that are better than those generated by MS,

while JPSO generates 38 solutions better than those generated by MS+LS. In the

right-most column, the row “TOTAL” gives the number of times each algorithm has

outperformed all the others. The overall ranking (from best to worst) with respect to

this evaluation is JPSO, MS+LS, PM, EXACT, and MS. Thus, from our analysis the

most effective algorithm for the MLSteiner problem is JPSO. On average, it was the

best performing with respect to solution quality and computational running time.

4 Conclusions

In this work we proposed a Discrete Particle Swarm Optimization (DPSO), called

Jumping Particle Swarm Optimization (JPSO), for the minimum labelling Steiner tree

(MLSteiner) problem. This is a NP-hard graph problem extending the well-known

Steiner tree problem, and the minimum labelling spanning tree problem to the case

where only a subset of specified nodes, the basic nodes, need to be connected. Consid-

ering a wide range of problem instances, JPSO was compared with other algorithms:

an exact approach, the Pilot Method (PM) by Cerulli et al. (2006) (the most popular

MLSteiner heuristic in the literature), and a basic Multi-Start (MS) technique (with

and without an embedded local search). Based on our computational analysis, JPSO

clearly outperformed all the other procedures, obtaining high-quality solutions in short

computational running times. This confirms the ability of nature-inspired methodolo-

gies to deal with NP-hard combinatorial problems.

Future research will consist of applying this very recent metaheuristic to other

well-known CO problems, such as the Travelling Salesman Problem and Job Shop

Scheduling, among others.
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Fig. 1 Example of a labelled connected undirected graph, input of the MLSteiner problem.
The solid vertices represent the basic nodes to cover.
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Fig. 2 Minimum labelling Steiner tree solution for the graph of Figure 1.
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Table 1 Computational results for n = 100 and q = 0.2n (max-CPU-time=5000 msec).

Parameters Average objective function values
n ` d EXACT PM MS MS+LS JPSO

0.8 1 1 1 1 1
25 0.5 1.5 1.5 1.5 1.5 1.5

0.2 2.1 2.1 2.1 2.1 2.1
0.8 1.9 1.9 1.9 1.9 1.9

50 0.5 2 2 2 2 2
100 0.2 3.2 3.2 3.2 3.2 3.2

0.8 2 2 2 2 2
100 0.5 3 3 3 3 3

0.2 4.6 4.6 5.7 4.6 4.6
0.8 2.8 2.8 2.8 2.8 2.8

125 0.5 3.3 3.3 3.6 3.3 3.3
0.2 5.2 5.4 6.5 5.4 5.2

TOTAL: 32.6 32.8 35.4 32.8 32.6

Parameters Computational times (msec)
n ` d EXACT PM MS MS+LS JPSO

0.8 14.7 14.1 10.6 10.6 1.6
25 0.5 26.3 20.3 10.5 10.5 3.2

0.2 16.2 15.6 20.9 13.2 6.1
0.8 59.4 56.1 22.6 11.6 6.4

50 0.5 66.3 67.2 26.4 24.6 10.9
100 0.2 40.6 75.1 199.9 51.4 15.7

0.8 306.3 270.3 167.6 51.8 75.1
100 0.5 251.6 275.1 309 57.7 31.2

0.2 914 314.1 635.8 792.1 45.3
0.8 78.2 381.2 233.8 121.8 48.4

125 0.5 451.5 443.9 482.8 469 157.7
0.2 4703.2 518.8 1659.4 1007.9 322

TOTAL: 6828.3 2451.8 3779.3 2622.2 723.6
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Table 2 Computational results for n = 100 and q = 0.4n (max-CPU-time=6000 msec).

Parameters Average objective function values
n ` d EXACT PM MS MS+LS JPSO

0.8 1 1 1 1 1
25 0.5 1.9 1.9 1.9 1.9 1.9

0.2 3 3 3 3 3
0.8 2 2 2 2 2

50 0.5 2.2 2.2 2.2 2.2 2.2
100 0.2 4.3 4.4 4.5 4.3 4.3

0.8 3 3 3 3 3
100 0.5 3.6 3.6 3.6 3.6 3.6

0.2 NF 6.5 8.7 6.8 6.4
0.8 3 3 3 3 3

125 0.5 4 4 4.4 4.1 4
0.2 NF 7 10.7 8 6.9

TOTAL: - 41.6 48 42.9 41.3

Parameters Computational times (msec)
n ` d EXACT PM MS MS+LS JPSO

0.8 24.7 15.6 11.2 11.6 9.3
25 0.5 29.7 21.7 14.8 11.6 6.4

0.2 36.9 29.8 25.6 25 23.6
0.8 60.9 53 15.6 13.1 20.4

50 0.5 117.2 76.6 47.5 39.7 34.3
100 0.2 314.1 111 1093.8 129 45.1

0.8 175 260.9 169.6 48 39.2
100 0.5 389.1 312.5 1148.4 157.9 96.8

0.2 NF 472 1604.7 870.7 350
0.8 354.6 440.7 237.5 81.1 57.6

125 0.5 479.6 507.8 643.7 887.6 67.1
0.2 NF 811 2012.7 1072 411

TOTAL: - 3112.6 7025.1 3347.3 1160.8
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Table 3 Computational results for n = 500 and q = 0.2n (max-CPU-time=500∗103 msec).

Parameters Average objective function values
n ` d EXACT PM MS MS+LS JPSO

0.8 1.1 1.1 1.1 1.1 1.1
25 0.5 2 2 2 2 2

0.2 3 3 3 3 3
0.8 2 2 2 2 2

50 0.5 2.9 2.9 2.9 2.9 2.9
500 0.2 NF 4.4 5 4.8 4.3

0.8 3 3 3.1 3 3
100 0.5 NF 3.9 4.5 4.5 4

0.2 NF 6.8 9.4 8.3 6.9
0.8 NF 3.8 4 4 3.8

125 0.5 NF 4.8 5.7 5.3 4.8
0.2 NF 8 11 9.8 7.9

TOTAL: - 45.7 53.7 50.7 45.7

Parameters Computational times (msec)
n ` d EXACT PM MS MS+LS JPSO

0.8 1.5∗103 1.2∗103 2.5∗103 876.1 3.4∗103

25 0.5 2.1∗103 2.5∗103 1.6∗103 640.1 575
0.2 4.1∗103 7.1∗103 7.2∗103 1.6∗103 5.9∗103

0.8 13.6∗103 17.4∗103 22∗103 3.6∗103 9.7∗103

50 0.5 37.3∗103 46.8∗103 28.1∗103 10.5∗103 8.8∗103

500 0.2 NF 48.1∗103 82.5∗103 47.1∗103 36.7∗103

0.8 300.8∗103 304.4∗103 360∗103 235.3∗103 22.1∗103

100 0.5 NF 325.8∗103 361.7∗103 332.3∗103 106.5∗103

0.2 NF 452.2∗103 326.5∗103 399.1∗103 170.4∗103

0.8 NF 465.6∗103 305.7∗103 383.5∗103 180.2∗103

125 0.5 NF 403∗103 494.3∗103 361.9∗103 110.4∗103

0.2 NF 399.3∗103 488.6∗103 443.2∗103 285.7∗103

TOTAL: - 2446.4∗103 2480.7∗103 2219.6∗103 940.4∗103
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Table 4 Computational results for n = 500 and q = 0.4n (max-CPU-time=600∗103 msec).

Parameters Average objective function values
n ` d EXACT PM MS MS+LS JPSO

0.8 1.9 1.9 1.9 1.9 1.9
25 0.5 2 2 2 2 2

0.2 NF 4.1 4.4 4.1 4.1
0.8 2 2 2 2 2

50 0.5 3 3 3 3 3
500 0.2 NF 6.2 8.5 7.4 6.3

0.8 NF 3.7 4 4 3.7
100 0.5 NF 5 5.7 5.5 5

0.2 NF 9.9 16.6 12.6 9.9
0.8 NF 4 5 4.8 4

125 0.5 NF 5.8 6.9 6.6 5.7
0.2 NF 11.5 18.6 14.6 11.4

TOTAL: - 59.1 78.6 68.5 59

Parameters Computational times (msec)
n ` d EXACT PM MS MS+LS JPSO

0.8 218 1.1∗103 1.2∗103 900 778.2
25 0.5 2.8∗103 2.6∗103 2.5∗103 6.5∗103 4.3∗103

0.2 NF 8.3∗103 70∗103 101∗103 8.8∗103

0.8 44.6∗103 20.2∗103 21.1∗103 12.7∗103 12.5∗103

50 0.5 48.8∗103 49.8∗103 59.8∗103 46.9∗103 13.4∗103

500 0.2 NF 48.7∗103 180∗103 160.2∗103 122.2∗103

0.8 NF 201.1∗103 282.6∗103 282.5∗103 19.4∗103

100 0.5 NF 193.1∗103 269.9∗103 229.8∗103 19.6∗103

0.2 NF 579.7∗103 470.8∗103 497.5∗103 195.3∗103

0.8 NF 384∗103 329.9∗103 353.7∗103 18.5∗103

125 0.5 NF 421.2∗103 428.1∗103 375∗103 32.6∗103

0.2 NF 397.9∗103 479.4∗103 397.5∗103 232.1∗103

TOTAL: - 2307.7∗103 2595.3∗103 2422.2∗103 679.5∗103
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Table 5 Relative performance of the algorithms. Each element (i, j) represents the number
of datasets for which algorithm i has better performance than algorithm j.

EXACT PM MS MS+LS JPSO TOTAL
EXACT - 14 15 8 4 41

PM 29 - 32 21 3 85
MS 30 13 - 3 2 38

MS+LS 37 23 38 - 5 103
JPSO 44 43 43 38 - 168


