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Preface

In many areas in engineering, economics and science new developments
are only possible by the application of modern optimization methods.
The optimization problems arising nowadays in applications are mostly
multiobjective, i. e. many competing objectives are aspired all at once.
These optimization problems with a vector-valued objective function
have in opposition to scalar-valued problems generally not only one
minimal solution but the solution set is very large. Thus the develop-
ment of efficient numerical methods for special classes of multiobjec-
tive optimization problems is, due to the complexity of the solution
set, of special interest. This relevance is pointed out in many recent
publications in application areas such as medicine ([63, 118, 100, 143]),
engineering ([112, 126, 133, 211, 224], references in [81]), environmental
decision making ([137, 227]) or economics ([57, 65, 217, 234]).

Considering multiobjective optimization problems demands first the
definition of minimality for such problems. A first minimality notion
traces back to Edgeworth [59], 1881, and Pareto [180], 1896, using the
natural ordering in the image space. A first mathematical consideration
of this topic was done by Kuhn and Tucker [144] in 1951. Since that time
multiobjective optimization became an active research field. Several
books and survey papers have been published giving introductions to
this topic, for instance [28, 60, 66, 76, 112, 124, 165, 188, 189, 190, 215].
In the last decades the main focus was on the development of interactive
methods for determining one single solution in an iterative process.
Thereby numerical calculations alternate with subjective decisions of
the decision maker (d. m.) till a satisfying solution is found. For a survey
of interactive methods see [28, 124, 165].



VIII Preface

Based on an extreme increase in computer performances it is now
possible to determine the entire efficient set. Having an approxima-
tion of the whole solution set available the decision maker gets a use-
ful insight in the problem structure and important information are
delivered like trade-off information. Thereby trade-off is the informa-
tion how the improvement of one objective function leads to a de-
terioration of the other objectives. The importance of approximating
the complete efficient set is thus also emphasized in many applica-
tions. Especially in engineering it is interesting to know all design al-
ternatives ([119]). Hence nowadays there is an increasing interest in
methods for approximating the whole solution set as also the high
number of papers related to this topic demonstrates, see for instance
[10, 40, 82, 81, 84, 83, 106, 139, 164, 182, 196, 197].

For the determination of approximations of the efficient set sev-
eral approaches have been developed, as for example evolutionary al-
gorithms (for surveys see [31, 41, 112, 228, 246]) or stochastic meth-
ods ([194]). A large class of methods is based on scalarizations. This
means the replacement of the multiobjective optimization problem by
a suitable scalar optimization problem involving possibly some parame-
ters or additional constraints. Examples for such scalarizations are the
weighted sum ([245]) or the ε-constraint problem ([98, 159]). In this
book we concentrate on the scalarization approach and we set espe-
cially value on the scalar problem according to Pascoletti and Serafini
([181]). However, many other existing auxiliary problems, which will
also be presented, can be related to that method.

As generally not the entire efficient set can be computed an approx-
imation is instead generated by solving the scalar problems for various
parameters. The information delivered to the decision maker by such
an approximation depends mainly on the quality of the approxima-
tion. Too many points are related to a high computational effort. Too
few points means that some parts of the efficient set are neglected.
Hence it is important to take quality criteria as discussed for instance
in [32, 43, 101, 141, 191] into account. An approximation with a high
quality is given if it is stinted but also representative, i. e. if the ap-
proximation points are spread evenly over the efficient set with almost
equal distances.

We develop in this book methods for generating such approxima-
tions for nonlinear differentiable problems. For these methods the sen-
sitivity of the scalar problems on their parameters are examined. These
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sensitivity results are used for developing an adaptive parameter con-
trol. Then, without any interaction from the decision maker, the choice
of the parameters is in such a way controlled during the procedure,
that the generated approximation points have almost equal distances.

Thereby we consider very general multiobjective problems and al-
low arbitrary partial orderings induced by a closed pointed convex cone
in the image space (like in [81, 96, 106, 181, 230]) using the notion of
K-minimality as given in [14, 102, 122, 124, 190, 243]. The partial or-
dering of the Edgeworth-Pareto-minimality concept represented by the
natural ordering cone, the positive orthant, is included as a special case.
More general orderings rise the applicability of our methods as the de-
cision makers get more freedom in the formulation of the optimization
problems. Preference structures can be incorporated, which cannot be
expressed explicitly by an objective function (see Example 1.5 and [230,
Example 4.1]). In decision theory in economics it is a well-known tool
to use arbitrary partial orderings for modeling the relative importance
of several criteria for a d. m. as well for handling groups of decision
makers ([235]).

For example in [116, 117] convex polyhedral cones are used for mod-
eling the preferences of a d. m. based on trade-off information facil-
itating multi-criteria decision making. In portfolio optimization ([5])
polyhedral cones in R

m generated by more than m vectors, as well
as non-finitely generated cones as the ice-cream cone, are considered.
Besides, orderings, other than the natural ordering, are important in
[85] where a scalar bilevel optimization problem is reformulated as a
multiobjective problem. There a non-convex cone which is the union of
two convex cones is used. Helbig constructs in [106] cone-variations as
a tool for finding EP-minimal points, see also [134, 237]. In addition to
that Wu considers in [238] convex cones for a solution concept in fuzzy
multiobjective optimization. Hence, multiobjective optimization prob-
lems w. r. t. arbitrary partial orderings are essential in decision making
and are further an important tool in other areas. Therefore we develop
our results w. r. t. general partial orderings.

This book consists of three parts. In the first part theoretical ba-
sics of multiobjective optimization are introduced as for instance min-
imality notions and properties of ordering cones especially of polyhe-
dral cones. Scalarizations are discussed with a special focus on the
Pascoletti-Serafini scalarization. Further, sensitivity results for these
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parameter depended scalar problems are developed like the first order
derivative information of the local minimal value function.

The second part is devoted to numerical methods and their ap-
plication. Quality criteria for approximations of the efficient set are
introduced and the main topic of this book, the adaptive parameter
control using the sensitivity results developed before, is constructed.
We differentiate thereby between the treatment of biobjective opti-
mization problems and general multiobjective optimization problems.
The gained algorithms are applied to various test problems and to an
actual application in intensity modulated radiotherapy.

The book concludes in the third part with the examination of mul-
tiobjective bilevel problems and a solution method for those kinds of
problems, which is also applied to a test problem and to an application
in medical engineering.

I am very grateful to Prof. Dr. Johannes Jahn for his support as
well as to Prof. Dr. Joydeep Dutta, Prof. Dr. Jörg Fliege and PD Dr.
Karl-Heinz Küfer for valuable discussions. Moreover, I am indebted
to Dipl.-Math. Annette Merkel, Dr. Michael Monz, Dipl.-Technomath.
Joachim Prohaska and Elizabeth Rogers.

Erlangen, January 2008 Gabriele Eichfelder
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