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Abstract. We study the border minimization problem (BMP), which asise
microarray synthesis to place and embed probes in the aFfay.synthesis is
based on a light-directed chemical process in which undaedrillumination may
contaminate the quality of the experiments. Border length measure of the
amount of unintended illumination and the objective of BMRa find a place-
ment and embedding of probes such that the border lengthrisrmzied. The
problem is believed to be NP-hard. In this paper we show tHdPBadmits
an O(y/nlog? n)-approximation, where: is the number of probes to be syn-
thesized. In the case where the placement is given in advaveehow that
the problem isO(log? n)-approximable. We also study a related problem called
agreement maximization problem (AMP). In contrast to BM@skiow that AMP
admits a constant approximation even when placement isivert ¢n advance.

1 Introduction

DNA microarrays [9] have become a very important researchwudich have proved
to benefit areas including gene discovery, disease diagjrensil multi-virus discovery.
They are used for performing a large number of hybridizaggperiments simultane-
ously. Besides their prevalent use to measure the amourdred gxpression [21] in a
cell, microarray is an efficient tool for making a qualitatistatement about the pres-
ence or absence of biological target sequences in a samplBlAAmicroarray (“chip”)

is a plastic or glass slide which consists of thousands ofy&ab0,000) short DNA
sequences known gsobes DNA microarray design raises a number of challenging
combinatorial problems, such as probe selection [10, 1£22]8 deposition sequence
design [17,19] and probe placement and synthesis [3-55]126]. In this paper, we
focus on the probe placement and synthesis problem.

Probes are synthesized on the microarray through the goededvery large-scale
immobilized polymer syntheqigLSIPS) [8]. In each step, light is selectively allowed
through amaskto exposespotsin the microarray in order to activate the nucleotides in
the spots. The patterns of the masks used and the sequehegleftosition nucleotides
in the illumination define the ultimate sequence of nuctiegiof the array spot. A mask
consists of masked (blocking light) and unmasked (alloviglgt) regions and induces
deposition of a particular nucleotide (A, C, G or T) at its egpd arrayspots The
deposition sequenck corresponding to the sequence of masks is a supersequence of
all probes in the array (see example in Figure 1).
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Fig. 1. Synthesis of & x 2 microarray. The deposition sequente = CTAC corresponds to
the sequence of four maskg., M2, M3, andM,. The masked regions are shaded. The borders
between the masked and unmasked regions are representettibynes.

DNA microarray synthesis consists of two components, ngrpelbe placement
and probe embeddingGiven a set of probes to be synthesized, probe placement is
to place each probe to a unique spot in the microarray andepeofbedding is the
sequence of masked and unmasked steps used in the syrffbesisample, in Figure 2,
the deposition sequence(iBCGT)? and the sequende) A(—)*C(—)5T is a possible
embedding of the probe ACT, whefe- ” represents a space.

We distinguish two types of synthesis, namslynchronouandasynchronousyn-
thesis. In synchronous synthesis, each deposition nigdecan only be deposited to
thei-th position of the probes for a particularin asynchronous synthesis, there is no
such restriction, allowing arbitrary embeddings. For epgemFigure 1 shows an asyn-
chronous synthesis in which/; deposits a nucleotide to the second position of the
sequence CT and the first position of TA. Asynchronous s\gitie more flexible, yet
more difficult to optimize. In this paper we focus on asynctmas synthesis.

Due to diffraction, internal reflection and scattering, tspon theborder between
masked and unmasked regions are often subject to unintetgmihation [8]. This
uncertainty produces unpredicted probes that can comgeexiperimental results. As
microarray chip is expensive to synthesize, it is usualdlsahany probes as possible are
placed in a chip (i.e., as many entries are used), while enited illumination has to be
minimized. The magnitude of unintended illumination camieasured by thborder
lengthof the masks used, which is the number of borders shared batmasked and
unmasked regions, e.g., in Figure 1, the border lengtW of M3, M, is 2 and M- is 4.

To reduce the amount of unintended illumination, one carnoéxipeedom in plac-
ing probes in the microarray during probe placement and singalifferent probe em-
beddings. Th&order Minimization Problem (BMPL2] is to find a placement of the
probes on the microarray together with their embeddingsiédh s way that the sum of
border lengths over all masks is minimized. It has beendtat{3, 4] that the problem
is believed to be NP-hard because of the exponential nunfbgrssible placements
(although we are not aware of an NP-hardness proof). Forrégison, we focus on
approximation algorithms for BMP in this paper.

Previous work. The BMP problem has attracted a lot of attention [3-5, 12165,
and most work is experimental in nature. As far as we know, sigrppmial time ap-
proximation algorithm is known for BMP with non-trivial plermance guarantee.
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Fig. 2. Different embeddings of probe= ACT into deposition sequendg = (ACGT)?.

BMP was first formally defined by Hannenhalli et al. [12]. THegused on syn-
chronous synthesis and the only concern becomes probenmateTheir algorithm
computes an approximated travelling salesman path (TStReisomplete graph with
nodes representing probes and edge costs representingitheidg distance between
the probes. The TSP path is then placed on the microarrayaraiic way calledhread-
ing. Experiments shows that threading is effective in redubimgler length. Since then,
other algorithms [4, 15, 16] have been proposed to improgegperimental results.

Asynchronous probe embedding was introduced by Kahng Et5l. They studied
a special case that the deposition sequdncegiven and the embeddings of all but one
probes are known. A polynomial time dynamic programmingé&thpm was proposed
to compute the optimal embedding of this single probe whasghiors are already
embedded. This algorithm is used as the basis for severaisties [3-5, 15, 16] that
are shown experimentally to reduce unintended illumimeaiioterms of border length.

On the other hand, there are few theoretical results. In [@ser bounds on the total
border length for synchronous and asynchronous BMP proktere given, which are
based on Hamming distance, and Longest Common SubsequelBE (espectively.
The asynchronous dynamic programming mentioned above c@sphe optimal em-
bedding of a single probe in tin®@(¢| D|), wherel is the length of a probe anill is the
deposition sequence. The algorithm can be extended to amerpal time algorithm
to find the optimal embedding of all probes inO(2™¢™| D|) time.

Our contribution. In this paper, we study approximation of BMP in asynchronous
synthesis. This is the first result with proved performangargntee. The main result
is anO(\/ﬁlog2 n)-approximation, where is the number of probes in the microarray.
This is based on an approximation algorithm for the variahewthe placement of
probes is given in advance (called P-BMP problem). We shanRFBMP isO(log? n)-
approximable. We further show that if the array is one-disienal, P-BMP can be
solved optimally in polynomial time and there is a constagraximation for BMP. On
the other hand, we show that BMP can be defined as the maximiearagnt problem
(AMP) with a different objective called “agreement”. Miniomg the border length is
equivalent to maximizing the agreement. Yet we are able¥sd€ (1)-approximation
algorithms for AMP regardless of whether the placementisigin advance or not.

Organization of the paper.In Section 2, we give some definitions and notations.
In Sections 3 and 4, we present and analyze approximatiamigdgs for BMP and
AMP, respectively. Finally we give a conclusion and disdusre work in Section 5.



2 Preliminaries

We are given a set of length< probesP = {p1,ps,...,pn}, @a/n x /n array (for
simplicity, we assume thayn is an integer). For any sequengg we denote the-th
character of a sequenpeby p;[t]. The probes iP are to be placed on thgn x /n
array. We represent this array by a grid gra@h= (V, E). Two grid vertices(z1, y1)
and(z2, y2) are said to baeighborif |x1 — x2|+ |y1 — y2| = 1. For each vertex € V,
we denote the set of neighborswoby N (v).

Placement and embeddingA placemenbf the probes is a bijective functiaon :
P — V that maps each probe to a unique vertex in the gfidAn embeddingf a
set of probe#” into a deposition sequend? is denoted by = {e1,¢3,...,e,}. For
1 < i < n, ¢ is alengthtD| sequence such that (&)[t] is eitherD[¢] or a space
“—7-and (2) removing all spaces from givesp;. The hamming distance between
ande; measures the border length betwegmndp; if they are neighbors in a certain
placement. We define this quantity as tuaflictbetween the embeddingsmfandp;,
denoted by confp;, p;). Note that conf(p;, p;) < 2¢. We define thesharebetween
the embeddings qf; andp; as2¢ — cont.(p;, p;), and denote it by sharg;, p;).

Border length and agreement.The border lengthof a placement and an em-
beddinge is defined as the sum of conflicts between the embeddings béprhat are
neighbors in the placemeatin G:

BL(¢,¢) = % > cont(p;, p;) - (1)

)
The objective of the BMP problem is to find a placemerdnd an embedding, so
that BL(¢, €) is minimized. We denote the optimal placement and the cpomrding
optimal embedding by* ande*, respectively. We further define the counter part of
border length, thagreementwhich is the sum of shares between the embeddings of
probes that are neighbors in the placemgit G:

1
Alde)=5 >, share(p;,p)) (2)
Pi;Pj -
#(p;) € N(d(pi))

TheMaximum Agreement ProblefAMP) is to find a placement and an embedding
so that A¢, ) is maximized. Since &, ¢) = 4¢(n— /n) —BL(¢, &), minimizing the
border length Bl(¢, ) is equivalent to maximizing the agreemern(As).

Common subsequence and common supersequentée border length is closely
related to the common subsequence and common supersecen@en neighbor-
ing sequences in the placement. Consider any two leAgbguencep, . We de-
note the longest common subsequence and shortest commersagpence of two
sequencep andq by LCS(p, q) andSCS(p, q), respectively, and the corresponding
length as|LCS(p, q)| and|SCS(p, q)|, respectively.SCS(p, q) can be obtained by
finding LC'S(p, q) and inserting inte the characters ig that are not inLC'S(p, q)
while preserving the order in. Therefore|SCS(p, ¢)| = 2¢ — |LCS(p, q)|. For any
embedding;, the maximum number of common deposition nucleotides betwend
qis|LCS(p,q)|, in other words, conf(p, q) > 2(¢ — |[LCS(p, ¢)|) and sharg(p, q) <
2|LCS(p, q)|- We define th& CS distancéo be2(¢/—|LCS(p, q)|), denoted by disp, q).
In other words, dig, ¢) is a lower bound of confp, ¢) for any embedding.



Multiple sequence alignment (MSA) and Weighted MSA (WMSA).As we will
see in later sections, a variant of BMP problem, named P-BBIMK problem in
which the placement is given), can be polynomial time relecto WMSA. As a
consequence, we can apply the approximation results on WkSR-BMP, which
we can further use as a building block for the approximationBMP. We first re-
view the MSA and WMSA problems. MSA and WMSA have been studigtén-
sively [2,7,11,20]. Let™ be the set of characters as = {S;,S,,...,S,} be a
set of k sequences, with maximum length, overX'. An alignment ofS' is a matrix
S’ = (81,55,...,5;,) such that|S]| = m’ and S] is formed by inserting spaces
into S;. For a given distance functiaf{a, b) wherea, b € XU {—}, thepair-wise score
of S} and S’ is defined a9, ., ., 6(S;[y], Sj[y]). Given a weight functionu(s, 5)
for the pair of sequences; andS;, theweighted sum-of-paifSP) score SB&’, w) =
z Doi<ij<k W J) Do <y<m 6(Si[Y], Si[yl). The WMSA problem s to find an align-
mentS’ such that SBS’, w) is minimized. WMSA has been proved to be NP-complete.
An O(log? n)-approximation algorithm [23] has been given via a reductithe min-
imum routing cost tree problem (MRCT) [1].

Minimum routing cost tree problem (MRCT). In this problem, a graph with
weighted edges is given. For a spanning tree of the graphothieg costbetween two
vertices is the sum of weights of the edges on the unique ptieen the two vertices
in the spanning tree. Threuting costof the spanning tree is defined as the sum of rout-
ing cost between every pair of two vertices. The MRCT probieno find a spanning
tree whose routing cost is minimum. The results in [1] sthtd there is a polynomial
time reduction from WMSA to MRCT. Each sequence in the indMISA corre-
sponds to a vertex in the input graph of MRCT. The edge weighwéen two vertices
is set to be the weighted edit distance between the two qumekng sequences. The
reduction result states that (1) there is a routing spanmméejl’ whose routing cost is
at mostO(log® n) timesy", ;w(i, j)d(i, j), whered(i, j) is the edit distance between
the two sequencesandj; and (2) there is an alignmeft whose SPS’, w) is at most
the routing cost of . Note thaty _, ; w(i, j)d(¢, j) is a lower bound on the weighted SP
score. Therefore, the following lemma follows.

Lemma 1. [23] There is anO(log2 n)-approximation algorithm for the WMSA prob-
lem, wheren is the number of sequences to be aligned.

3 The BMP problem

In this section, we study the BMP problem. We are to find a pfeesg and an embed-
ding for the given probe set. A@(\/ﬁlogQ n)-approximation algorithm is given for
BMP (Section 3.2), which is based on an approximability itefew a variant of BMP,
named P-BMP (Section 3.1). At the end of this section, we dilscuss the case when
the array is one-dimensional and we show that BMP admitgbetsults in this case.

3.1 P-BMP: finding embedding when placement is given

In this section, we study the P-BMP problem, a variant of BMihva placement
given in advance. The concern becomes to find an embeddingh@vethat P-BMP is



O(log2 n)-approximable by giving a reduction to the weighted mudtipgéquence align-
ment problem (WMSA), for which there is a(h(log2 n)-approximation algorithm [23].

Lemma 2. There is a polynomial time reduction from P-BMP to WMSA.

Proof. Let I be an instance of the P-BMP problem with a given placemekite con-
struct an instanc& for WMSA such that there is a solution féwith border lengthX
if and only if there is a solution foF’ with a weighted SP score of.

Construction of I’. We first show the construction df. The input sequence for
WMSA is the same as the input probe $etThe weightw(i, 7) is defined as follows:

w(i,j) = {1 if ¢(pj) € N(o(pi)),

0 otherwise.

The distance functiofi(a, b), fora,b € X U {—}, is defined as follows:
0 ifa=0y5,
0(a,b)=<¢1 ifa#band@=“-"0rb=“-"),
oo otherwise.

Note that the edit distance pf andp; in WMSA is the same as digt;, p;) in BMP.

Solution for I implies solution for I’. Suppose we have an embeddinfpr I.
Note thate = {e1---¢,} is an alignment fofP and the pairwise score ef ande;
equals conf(p;, p;). So, SRP', w) = 3 P<ij<n Wb 0) Xi<y<ip| d(eslyl,g5ly]) =
% Zlgi,jgn w(i7j)conf€(pi7pj) = % Zpi,p_i:qb(pj)EN(qb(p,;)) ConfE(pi’pj) = BL(¢’ E)'
The second last equality is due to the definitionudt, j), which is based om.

Solution for I’ implies solution for I. On the other hand, suppose we have a
solution forI’, i.e., an alignmen?’ = (p}---pl,) for P and|p,| = m’, for some
m’. In the alignmentP’, each column contains the same charactet er” because
of the definition of the distance functiaf{a, b). We denote the resulting matrix as
e = (e1---€,). It can be seen that is an embedding foP and the hamming dis-
tance between; ande; equals the pair-wise score pf andp’j. Then BL(¢,e) =

1
3 Dpips o) N (@) CONE(Pi D) = 3320, 1 o(p)en(o(p)) 21 <y<|p) O(PELY]: PG [Y])

= %Zlgi,jgn w(i, j) Z1gyg\D\ §(pilyl, pjlyl) = SRAP’,w). Note that the second
last equality holds for the same reason as above. Therd¢f@émma follows. a

Corollary 1. The P-BMP problem i§)(log? n)-approximable.

3.2 BMP: finding placement and embedding

In this section, we study the BMP problem in which we are to finth the placement
as well as the embedding. We give @f/n log® n)-approximation, which makes use
of the approximability result for P-BMP (Section 3.1). To keause of the result for
P-BMP, we need a certain placement, the choice of which ideglby some travel-
ling salesman path (TSP) on a particular graph (to be defindofe that finding the
minimum TSP is NP-hard, yet there is a polynomial tid¢ )-approximation [6].
The algorithm PLACE&EMBED. The approximation algorithm IRCE&EMBED
is shown in Algorithm 1. The grapli’. constructed in the algorithm is a weighted
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Fig. 3. Row-by-row threading of a TSP (solid edges) on a grid. Satid dotted edges connect
neighbors in the placement that are and are not, respectheibhbors on the TSP.

complete graph with vertices representiRgand edge weight representing djsbe-
tween the two vertices. A travelling salesman path (TSPpisioed fromG., which
we “thread” on the gridG in a row-by-row fashion to form a placement [12]: the TSP
is placed from left to right on the first row, right to left oretlsecond, and then alternate
in the same way in the remaining rows (see Figure 3 for an eligmye then employ
the approximation algorithm in Section 3.1. We denote tlre@inent and embedding
computed by PACE&E MBED as¢ andz, respectively.

Algorithm 1 PLACE&E MBED: Approximation algorithm for BMP.

Input: Probe seP = {p1, p2, ..., pn} to be placed on §n x \/n array.
Output: A placementp and an embedding for P.
1: Construct the weighted complete gra@gh.
2: Find an approximate TS@ for G, using algorithm in [6].
3: ThreadQ in a row-by-row fashion to obtain a placement
4: Run the approximation algorithm for P-BMP in Section 3.&.( by reducing the P-BMP
instance to an WMSA instance) to obtain an embedding

Theorem 1. Algorithm PLACE&E MBED is anO(,/n log® n)-approximation for BMP.

To analyze the performance of RCE&EMBED, we need some notations. Recall
that we define for any sequences, dist(p, q) = 2(¢ — |[LCS(p, q)|). We overload
the notation dig for any subgraph ofz.. For any subgrapl#/ of G., we define the
LCS distance ofd, denoted by digt ), to be the sum of LCS distances of neighboring
probesinH, i.e., distH) = %Ep,q LqeN(p)in 7 dist(p, q).

As mentioned before in Section 2, distq) is the minimum conflict between probes
p andg. Yet the embeddings needed to achieve(digt) may not be compatible with
each other in a particular placement. For example, consideplacemend in Fig-
ure 1, disty) = 8 since disfp, q) = 2 for every neighboring paip, ¢. Yet the min-
imum border length isl0 with CTAC as the deposition sequence, and embeddings
(— —AC,-TA—,CT— —,C— A—). We summarize this as follows.

Observation 1 Given a placement, dist(¢) < BL(¢, ¢), for any embedding.

Observation 1 implies that for the optimal placemghtind embedding*, dist(¢*) <
BL(¢*,£*). To approximate BMP, it suffices to bound the border lengthdisy ¢*).
On the other hand, we make an observation about a giapmd its subgrapi/s. The
observation is true since any neighbordin are also neighbors ifl; .

Observation 2 Consider any grapli/; and a subgraptH, of it. dist H) < dist(H;).
Corollary 2. Suppos&)* is the optimal TSP fof7.. Then, we have digh*) < dist(¢*).



Proof. ¢* can be viewed as threading a T&Hn a row-by-row fashion. By Observa-
tion 2, dist{@) < dist(¢*). As Q* is the optimal TSP, dis€)*) < dist(Q) < dist(¢*).
0

It is known that TSP can be approximated d2 (Lemma 3). So, di$t)) <
3dist(Q*)/2.

Lemma 3. [6] The travelling salesman problem admits3@2-approximation if the
weight satisfies the triangle inequality.

Lemma 4. (i) dist(¢) < 2¢/ndist(Q); and (i) BL(¢, &) < O(log® n) dist(¢).

Proof (Sketch). (i) Suppos€® = {ui,us, ..., u,}. Note that the LCS distance dist
satisfies the triangular inequality, i.e., dist, u;) < Zi§k<j dist(uy, ug+1). Neigh-
boring probes orf) are also neighbors in but not vice versa. For any two probes
andu; which are neighbors ip, we havel < [j —i| < 2y/n. When we sum up diép),
dist(uy, ug 1), foranyk, may be counted more than once, but no more than times.
Therefore, digtp) < 2,/n dist(Q). )

(i) In Step 4 of RACE&EMBED, we reduce the P-BMP instance withas the
placement to an WMSA instance. Lemma 2 asserts that the iHerdgh of the embed-
ding obtained is the same as the weighted SP score of theradigin Furthermore, we
have seen in Section 2 that approximation for WMSA can beddunthe approxima-
tion for MRCT and the resulting routing tree has a routingtcasd thus, the weighted
SP score, at mosP(log” n) times the total weighted edit distance in WMSA. In the
proof of Lemma 2, we note that the weighted edit distance of¥equences is the same
as dist) of the two sequences. So, Bk, &) < O(log? n) dist(¢). m

Proof (Theorem 1By Lemmas4, 3, and Corollary 2, we have @lé) < O(v/nlog?n)
dist(Q) < O(y/nlog®n)dis(Q*) < O(y/nlog®n)dist(¢*). Furthermore, Observa-
tion 1 holds for all placements, and hencedéy in other words, digty*) < BL(¢*,¢*).
Therefore, Bl(¢, &) < O(v/nlog? n) BL(¢*,*). O

3.3 One dimensional array

In this section, we study the special case on an 1D arrayitilrdly, the problem is
easier than the 2D case. We show that P-BMP on an 1D array cswive optimally
in polynomial time while BMP on an 1D array admits @xi1)-approximation.

P-BMP on 1D array. The algorithm BMBED1D shown in Algorithm 2 makes use
of a procedure called EreEND. EXTEND takes two sequencesandq, and a superse-
guenceS of p as input and returns a supersequencs ahdg. Letc = |[LCS(p, q)|,
x1,%2,...,x. be the indices of corresponding te that belongs td.C'S(p, ¢), and
Y1,Y2,- - -, Y be the indices of that belongs td.C'S(p, ¢). EXTEND then extend$' by
inserting characters ipbut notinLC'S(p, q): characters betweerty;.—1] andg[yx] are
inserted right beforeéS[x;] and characters beyongdly.] are appended to the end 6f
EXTEND keeps track of the indices of the néithat correspond tg (see Figure 4).

Theorem 2. EMBED1D finds an optimal embedding for the P-BMP problem on 1D
array in polynomial time.
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Fig. 4. An illustration of EXTEND. Shaded squares refer to character&@S(p, ¢). Characters
in ¢ but notinLC'S(p, q) are inserted int&' so that the order preserves agji(see the arrows).

Algorithm 2 EMBED1D: Optimal embedding for P-BMP on 1D array.

Input: Probe se® = {p1,p2,...,pn}, placed on a 1D array in that order.
Output: An embedding: with minimum border length.
1. SetD = p;.
2: Fori > 1, call the procedure ETEND with p;,—1, p; and D as the input to obtain a nel.
3: For eacty;, sete; such that[y] = D[y] if D[y] corresponds to a characterznkept track
by EXTEND, ande[y] = “ — ” otherwise.

Proof. We first observe thab constructed in each iteration byxEEND is a common
supersequence @f, . .., p;. This is clear from the way ¥TeND finds LC'S(p;—1, p;)

and inserts characters info. It also implies that the number of nucleotides shared by
pi—1 andp; is maintained a$LC'S(p;—1,pi)|, which is the maximum possible. Note
that this property does not change by later steps. Hencdyditer length of the final
embedding is the minimum. As for time complexity, the batdek is finding the longest
common subsequences of two sequences, which is known tpadkeomial time [13].
This is done fom — 1 times only. Therefore, EBED 1D also takes polynomial time.O

BMP on 1D array. Similar to the case on 2D array, we find a placement by finding
an approximate TSP on the weighted complete gidptand then find an embedding
by EMBED1D. This algorithm gives &/2-approximation for BMP on 1D array.

Theorem 3. There is a polynomial time algorithm for BMP on 1D array withpaoxi-
mation ratio3,/2.

4 The maximum agreement problem (AMP)

In this section, we study the counter part of BMP, which wdethimaximum agree-
ment problem (AMP) (recall definition in Section 2). In cagt to BMP, AMP admits
constant approximations, whether the placement is givahirance or not.

4.1 Approximation for P-AMP

We first study the P-AMP problem, a variant of AMP with a plaesalready given.
Algorithm AEMBED. The algorithm AEMBED (EMBED for Agreement) makes use

of procedure KTEND in Section 3.3. The order of probes to be considered is deter-

mined by a certain tre& with the bottom rightmost probe itr being the root. To
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Fig.5. (a) A(s)et of probes placed on3ax 3 grid G. The values represent the length of LCS
between the two neighboring probes. An arrow frprto ¢ meansparent(p) = q. (b) The tree
constructed by ARBED with root CTT. (c) How the deposition sequenbechanges iteratively.
The sequences are drawn in a way the characters align wifinédeD.

constructT’, for each probe, we assign a parent to the probe, denotegdment(p).
We denote by (p) andb(p) the right and bottom neighbors of properespectively.
The probes in the rightmost column and bottommost columnrfigs = NULL and
b(p) = NULL, respectively. We separent(p) to r(p) or b(p) depending on whether
|LCS(p,r(p))| or [LCS(p,b(p))| is larger. Details of ABED is shown in Algo-
rithm 3. The embedding found is denoteddyFigure 5 shows an example.

Algorithm 3 AEMBED: Approximate algorithm for P-AMP.

Input: Probe seP = {p1,p2,...,pn} placed on a/n x y/n array according to a placemepi
Output: An embedding for P.
1: Construct a tre@' by assigning parent to each profdf |[LCS(p,7(p))| > |LCS(p, b(p))|
setparent(p) = r(p) else separent(p) = b(p).
2: SetD to be the bottom rightmost probe in the gfitd
3: TraverseT in a pre-order fashion: for each probpetraversed, call the procedurexEEND
with parent(p), p and D as input.
4: For eaclp;, seté; such tha€[y] = D[y] if D[y] corresponds to a characterppnkept track
by EXTEND, andé[y] = “ —” otherwise.

Analysis.To analyze the performance of MBED, we first observe that in the final
embedding, the number of nucleotides shared by a probe and its pareai®tp the
length of their LCS (by a similar argument as the proof of Tieeo 2). We then bound
the performance of AEBED as follows.

Theorem 4. AEMBED is a polynomial-tim&-approximation algorithm for P-AMP.

Proof. For the given placemepgtand the optimal embedding, the optimal agreement
is: A(p,e") = > cp(share(p,7(p)) + share- (p, b(p))). We assume shargp, q) =

0 if ¢ = NULL. As mentioned in Section 2, for any embedding, the sharedstthe
embeddings of probes ¢ is at mose|LCS(p, ¢)|. Thus 2| LC'S (p, r(p))| > share-(p,
r(p)) and2|LCS(p, b(p))| > share- (p, b(p)). Note that sharép, parent(p)) = 2 max{
|ILCS(p,r(p))|, ILCS(p,b(p))|} > 5(share-(p,r(p)) + share- (p, b(p))). Therefore,
A(¢,€) = 3 cp share(p, parent(p)) > $A(¢,e*). Finally, AEMBED runs in poly-
nomial time as the bottleneck is finding LCS between two seges a



4.2 Approximation for AMP

In this section, we study the general AMP problem to find bbthglacement and the
embedding to maximize the agreement. We prove that theitigpAPLACE&EMBED
as shown in Algorithm 4 has an asymptotic approximatiororati4.

Algorithm 4 APLACE&E MBED: Approximation algorithm for AMP.

Input: Probe se = {p1, p2, ..., pn} to be placed on §n x \/n array.
Output: A placement) and an embedding for P.

1: Partition into four disjoint groups4, C, G and7: a probe belongs tal if the number of A

in the probe is the maximum over the number of other charag¢gémilarly forC, G and7).

2: Thread the probes in grough on the array in a row-by-row fashion, followed by threadirig o

probes inC, G, andT to form the placemenp.

3: For probes in4, align them such that the maximum number of A are alignedendiifferent
characters are not aligned. This forms a partial embedgingith deposition sequencB,.
Similarly, findé., €4, €: andD., Dy, Ds.

CombineD,, D., Dy, andD; to form D (append one after the other).

5: Extend the embeddings,, &, €4, &; according toD by inserting“ — ” in the columns
corresponding to other groups. The union of the extendededdihgs is the resulting em-
beddinge.

&

Theorem 5. The asymptotic approximation ratio BfPLACE&EMBED is 4.

Proof. Consider the optimal placeme#it and embedding*. For every pair of neigh-
boring probe9, ¢, share(p, ¢) < 2¢. There are a total o(n — /n) pairs of neigh-
bors on the grid in total. So, the optimal agreemefwAc*) < 4¢(n — /n). On the
other hand, considef andé returned by ARACE&E MBED. According to the way we
partition the probes into group, for any two proheg in a group, the number of nu-
cleotides that can be shared is at le&st. Hence, shai€p, q) > 2(¢/4) = £/2. As
we seen above, there are altogethgr — /n) pairs of neighbors in the grid. We may
not share any nucleotide when the pair belongs to differestifgs. According to the
way we thread the groups, there are at nagh + 3 such pairs {/n pairs of vertical
neighbors between consecutive groups ameairs of neighbors that are the last one in
a group and the first one in the next group). As a result, we haleastn — 5/n — 3
pairs each with shag€) at least//2. Therefore, A¢, &) > ¢(n — 2.5\/n — 1.5). Then
A(p,8)/A(¢*,e*) tends tot as A¢*, *) tends to infinity. So, the asymptotic approx-
imation ratio of AR ACE&EMBED is 4. O

5 Concluding remarks

To summarize, we study the border minimization problem Wwhscbelieved to be NP-
hard with no known NP-hardness proof. An open question ietivd an NP-hardness
proof. Another interesting open question is to improve thpraximation ratio and/or

derive inapproximability result. As mentioned before rthis an exponential time algo-
rithm to compute the optimal BMP solution. Improving the erpntial time algorithm

could be useful in practice and is of theoretical interest.
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