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Abstract. A “data-aware” web service property is a constraint on the
pattern of message exchanges of a workflow where the order of messages
and their data content are interdependent. The logic CTL-FO+ expresses
these properties by allowing temporal operators and first-order quantifi-
cation over message content to be freely mixed. A “näıve” translation
of CTL-FO+ into CTL leads to a serious exponential blow-up of the
problem that prevents existing validation tools to be used. In this paper,
we provide an alternate translation of CTL-FO+ into CTL where the
construction of the workflow model depends on the property to validate.
We show experimentally how this translation is significantly more effi-
cient and makes model checking of data-aware temporal properties on
real-world web service workflows tractable using off-the-shelf tools.

1 Introduction

The phrase web service validation generally refers to the operation of checking
the basic syntactical structure of the messages exchanged by a service for confor-
mance to an interface description. It has long been known that to ensure a true
interoperability of services, messages must also be sent and received in a proper
sequence [2,18]. Therefore, workflow validation extends to conformance to a set
of temporal constraints; depending on the authors, the approach has been called
“operating guidelines”, “behavioural properties” or “protocol of interaction”.

A large amount of works have studied this question from various angles,
mostly borrowing from model checking techniques. The external behaviour of
web services can be modelled by the transmission or reception of messages iden-
tified by propositional letters standing for their names [9, 12, 16, 22, 26, 35]. A
possible refinement is to consider that the data exchanged in the messages of a
web service can actually influence the control flow of that service [5,15,25,28,29].
A number of automated tools for the validation of the properties has been de-
veloped around this principle [8, 24, 30, 32]; most of them use standard model
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checkers such as SPIN [23], NuSMV [10] or CWB [1] to validate the workflow
models. The properties are expressed in Linear Temporal Logic (LTL), Compu-
tation Tree Logic (CTL), π-calculus, or a similar formalism [12,32,33].

These languages are called propositional: their atoms are propositional sym-
bols over which first-order quantification is not allowed. For example, the CTL
formula AG (a = x → AF b = x) correlates the values of state variables a
and b at two different moments in time; it is a valid CTL formula when x is
a static constant, but it cannot be used to express the same thing “for all x”
unless the formula is repeated for every possible static value. This limited form
of quantification is called explicit.

In contrast, there exist constraints where the sequence of messages and the
data inside these messages are interdependent in such a way that first-order
quantification is necessary; we call these properties “data-aware”; this concept
was first introduced in [20]. We briefly show in Section 2 how these constraints
arise naturally in a real-world web service scenario and are essential to validate.
In Section 3, we present CTL-FO+, a generalization of CTL that allows general
first-order quantifiers to be freely mixed with temporal operators to express
complex data-aware constraints. We show how it distinguishes itself from the
few other methodologies suggested to model data-awareness; in particular, CTL-
FO+ model checking is decidable and PSPACE-complete.

There exist numerous ways to transform the CTL-FO+ model checking prob-
lem back into classical CTL model checking to leverage existing workflow tools
and standard model checkers; explicit quantification is one of them. Unfortu-
nately, any such transformation results in an exponential blowup and shifts the
original problem to the higher EXPTIME-hard class, unless P = NP. This result
seems to suggest that data-aware properties are out of reach of existing tools.

However, in Section 4, we present a reduction of CTL-FO+ to CTL that mod-
ifies the translation of a workflow into a finite-state system using the concept of
“freeze quantification”: the construction of the system becomes dependent on the
property to validate. In Section 5, we compare this freeze quantification approach
with the explicit quantification suggested above. Although both translations are
ultimately exponential, we empirically demonstrate that freeze quantification is
several orders of magnitude more efficient. We illustrate our claim by showing a
technology chain using two off-the-shelf tools, the VERBUS [4] workflow trans-
lator coupled with the NuSMV [10] model checker to validate constraints on
sample web service workflows. We conclude that despite the theoretical lower
bound, it is nevertheless possible to model and validate data-aware properties
in web services using existing technologies and a suitable reduction to CTL.

2 Data-Aware Web Service Properties

Our concern about capabilities of existing solutions to validate data-aware con-
straints comes from our observation that there exist real-world scenarios where
such properties arise naturally.
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We take as an example the User-Controlled Lightpath (UCLP) research
project initiated by the CANARIE Consortium1, which develops an environ-
ment that allows end users to self-provision and dynamically reconfigure optical
network resources, called lightpaths, within a single domain or across multiple
independent management domains. To this end, network resources from a spe-
cific provider are virtualized and exposed to the end user as instances of web
services that implement functionality related to lightpath manipulation. Simply
put, a lightpath object (LPO) is a point-to-point, high-speed optical link. In the
UQAM-UO UCLP framework, each LPO is identified by a unique ID. The UCLP
operations usually manipulate these IDs.

There are two main operations provided to manage LPOs. In order to build
an end-to-end link, two adjacent LPOs can first be concatenated. The result of
the concatenation operation is an LPO that is considered as one single link.
In a dual manner, an LPO’s bandwidth can be partitioned into links of equal
bandwidth. This operation takes as input the reference to an LPO and returns an
array of references to spawned lightpaths, each of the desired bandwidth. Typical
partition and concatenate request and response XML messages are shown in
Table 1.

<message>
<operation>

concatenateRequest
</operation>
<LPO-ID>i1</LPO-ID>
<LPO-ID>i2</LPO-ID>
. . .
<LPO-ID>in</LPO-ID>

</message>

<message>
<operation>

concatenateResponse
</operation>
<LPO-ID>i</LPO-ID>

</message>

<message>
<operation>

partitionRequest
</operation>
<LPO-ID>i</LPO-ID>
<bandwidth>b</bandwidth>
<login>`</login>

</message>

<message>
<operation>

partitionResponse
</operation>
<LPO-ID>i1</LPO-ID>
<LPO-ID>i2</LPO-ID>
. . .
<LPO-ID>in</LPO-ID>

</message>

Table 1. The concatenate request, concatenate response, partition request and parti-
tion response XML messages.

Once lightpaths are exposed as web services, operations for manipulating
them can be called like any other web service invocation in a process expressed
1 http://www.canarie.ca/canet4/uclp/. The software developed by all CANARIE

funded development teams is freely available from their site http://www.uclpv2.ca.
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in a workflow language such as BPEL. However, these operations cannot be
called arbitrarily.

To illustrate our point, we take the example of the partition operation, which
takes as input the ID of some LPO x and returns new LPOs y, z corresponding
to the results of the partition. It does not make sense to use x as an argument
of a subsequent UCLP operation such as concatenate: although the LPO still
physically exists, it has been logically superseded by its fragments y, z. The
process could even have applied further operations on y and z, like concatenating
them to other LPOs or further partitioning them. In this context, invoking, for
example, a partition operation with x is at best semantically unsound and at
worst plain dangerous for the reliability of the whole UCLP environment. We
must therefore enforce the following constraint on any UCLP process:

UCLP Service Constraint 1 Any LPO ID appearing in any partition request
must be different from any LPO ID appearing in any future concatenate request.

In that sentence, the first and third occurrences of the word “any” indicate
a quantification over message content, while the second and fourth occurrences
represent a quantification over messages in an execution sequence: data and
temporal modalities are intertwined and the constraint is data-aware. Other
data-aware constraints of technical nature can be easily found. We mention two
of them which will be referred to in Section 5:

UCLP Service Constraint 2 If two LPOs are the result of the same partition
response, they cannot be involved together in any subsequent concatenate request.

UCLP Service Constraint 3 Every LPO occurring as an input of the con-
catenate operation must be of the same bandwidth.

More details about UCLP and data-aware properties can be found in [20].

3 Formalizing Data-Aware Properties with CTL-FO+

The previous properties express constraints on the data and sequentiality of
messages exchanged by a workflow. Therefore, a suitable representation of this
pattern of messages is a Kripke structure which contains state variables that
represent the content of the messages that are sent or received. Discarding in-
termediate states where no message is received or sent, a path in the system
corresponds to a possible sequence of messages in a service interaction. Proper-
ties about message sequences become properties on sequences of states that can
then be expressed using temporal logics.

3.1 Syntax and Semantics of CTL-FO+

The Computation Tree Logic with Full First-order Quantification (CTL-FO+) is
an extension of the well-known temporal logic CTL [11] aimed at describing se-
quentialities in a finite-state system while allowing full quantification over values
of its state variables. Its syntax is defined as follows:
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Definition 1 (Syntax) The language CTL-FO+ (Computation Tree Logic with
general first-order quantification) is obtained by closing CTL under the following
construction rules:

1. If x is a variable or a constant, and y is either a variable, a constant or a
state variable, then x = y is a CTL-FO+ formula;

2. If ϕ and ψ are CTL-FO+ formulæ, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, AGϕ,
EGϕ, AFϕ, EFϕ, AXϕ, EXϕ, AϕUψ, EϕUψ, are CTL-FO+ for-
mulæ;

3. If ϕ is a CTL-FO+ formula and x is a free variable in ϕ, then ∃x : ϕ(x) and
∀x : ϕ(x) are CTL-FO+ formulæ.

As usual [11], semantics can be defined in terms of the adequate set of oper-
ators ∃, AF , EX and EU , ¬ and ∨:

Definition 2 (Semantics) Let K = (S, I,R, L) be a Kripke structure, with S
the set of states, I the set of initial states, R ⊆ S2 the transition relation and
L a labelling of states. Let s0 ∈ S be a state. Define a path π = s0, s1, . . . as a
sequence of states in S such that (si, si+1) ∈ R for every i ≥ 0. Let Ds(x) be
the (finite) set of possible values for a quantified variable x in state s, p be some
state variable in K and c1 and c2 be constants. We say the pair K, s0 satisfies
the CTL-FO+ formula ϕ if and only if it respects the following rules:

K, s0 |= p = c1 ⇔ p is equal to c1 in state s0
K, s0 |= c1 = c2 ⇔ c1 is equal to c2

K, s0 |= ¬ϕ⇔ K, s0 6|= ϕ

K, s0 |= ϕ ∨ ψ ⇔ K, s0 |= ϕ orK, s0 |= ψ

K, s0 |= AFϕ⇔ for each π = s0s1s2 . . . ,K, si |= ϕ for some i
K, s0 |= EXϕ⇔ there exists π = s0s1s2 . . . such that K, s1 |= ϕ

K, s0 |= EϕUψ ⇔ there exists π = s0s1s2 . . . such that K, sj |= ψ for some j
and K, si |= ϕ for i < j

K, s0 |= ∃xϕ(x) ⇔ there exists a ∈ Ds0(x) such that K, s0 |= ϕ(a)

By extension, we write K |= ϕ if the initial state s of K is such that K, s |= ϕ.

The values of the variables appearing in a CTL-FO+ formula are quantified
according to specific elements of the XML message that is received or sent in the
current state of the system. To indicate this, we add a subscript to the quantifier
indicating the name of the element. A quantifier like ∀LPO-IDx therefore means
“for all values x of elements named LPO-ID in the current message”. Therefore,
the domain of a variable depends on the content of the current message, which
in turn depends on the current state of the system. By extension, we write D(x)
to designate the union of the Ds(x) for all s ∈ S.

Using such notation, UCLP Service Constraint 1 becomes the following CTL-
FO+ formula:
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UCLP Formal Service Constraint 1

AG (∀operation x1 : x1 = concatenateRequest →
∀LPO-ID x2 : AX AG (∀operation x3 :
x3 = partitionRequest → ∀LPO-ID x4 : x2 6= x4))

This formula states that at any time in any execution of the process, if the
operation x1 of the message is concatenateRequest, then for every LPO ID x2

appearing in this message, we have that for every future message whose operation
element value x3 is partitionRequest, any value x4 for its LPO ID is different from
x2. In other words, once an LPO has been concatenated, no further partition
involves this LPO, which is indeed equivalent to UCLP Service Constraint 1.
UCLP Service Constraints 2 and 3 can be formalized into similar CTL-FO+

formulæ.
We are only aware of a limited number of works related to data-awareness in

temporal properties. CTL-FO+ is reminiscent of EQCTL that extends CTL by
allowing existential quantification over state variables [27]. EQCTL is not closed
under negation; therefore, universal quantification cannot be obtained; moreover,
CTL-FO+ quantifies over values and is closer to true first-order quantification.
QCTL [31] extends CTL by including first-order quantification and monadic
second-order quantification over arbitrary algebraic data structures. Such ex-
pressiveness is not required in our case. Specifications using XQuery on traces
(SXQT) are defined in [34], but the approach allows the validation of one spe-
cific trace at a time; graph transformation rules [21] allow the description of data
modifications but lack the ability to express temporal modalities; a logic called
CTL-FO is introduced in [14], but its general model checking problem is shown
to be undecidable. CTL-FO+ generalizes CTL-FO by allowing free use of the
existential quantifier.

3.2 Model Checking CTL-FO+ Properties

Now that we have shown how data-aware properties can be expressed in CTL-
FO+, the next question is how to efficiently perform the model checking of these
formulæ. We first establish the complexity of the problem with the following
theorem.

Theorem 1 Let K = (S, I,R, L) be a Kripke structure modelling a particular
web service and ϕ be a CTL-FO+ formula. The problem of deciding whether
K |= ϕ is PSPACE-complete.

Proof. PSPACE-hardness is obtained by reduction to the Quantified Boolean
Formula (QBF) problem [17]; it suffices to observe that a QBF is by definition a
CTL-FO+ formula. A model checking algorithm can be devised in a straightfor-
ward manner from the classical CTL model checking algorithm. This algorithm
performs a structural recursion on the formula and computes a set of states de-
pending on the top-level operator. It suffices to add an additional case to the
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algorithm when the top-level operator is a quantifier of the form ∃xϕ(x). The
algorithm simply calls itself on ϕ(x) for every possible value of the variable x
and computes the union of all sets of states returned by each such call. Every
recursive call of the algorithm returns a subset of S and the height of the stack
is bounded by |ϕ|, the length of ϕ. Since domains are considered finite, the total
space consumed is polynomial in |ϕ|. �

Although CTL-FO+ is a generalization of CTL-FO mentioned above, we
apply it on a simpler model of workflows that makes its model checking de-
cidable. In particular, since all UCLP properties only involve equality between
values, finitely many symbols are needed to handle infinite domains. This result
shows that CTL-FO+ is a generalization of CTL, whose model checking is in
P. Therefore, existing web service tools and model checkers cannot be used as
is to validate data aware properties. However, one can easily use the semantics
definition of the existential operator and explicitly enumerate all possible val-
ues k1, k2, . . . , kn in the domain D of the quantified variable. The universally
quantified formula ∀x : AG (a = x→ AF b = x) hence becomes:

AG (a = k1 → AF b = k1) ∧AG (a = k2 → AF b = k2)
∧ · · · ∧AG (a = kn → AF b = kn)

The resulting expression is a plain CTL formula where all references to data
are now static, which amounts to extending the message alphabet. This approach
has already been suggested in Section 1 and has been called “explicit quantifi-
cation”. However, the next theorem shows that this construction is unlikely to
be optimal.

Theorem 2 If there exists a polynomial reduction of CTL-FO+ model checking
to CTL model checking, then P = NP.

Proof. Suppose that that for every Kripke structure K and every CTL-FO+

formula ϕ, there exists a polynomial translation of K into a Kripke structure
K ′ and a polynomial translation of ϕ into a CTL formula ϕ′. Since CTL model
checking is in P [11], and that P ⊆ PSPACE [17, sect. 7.4], then from Theorem
1 PSPACE ⊆ P, which can be true only if P = NP. �

4 An Efficient Reduction of CTL-FO+ to CTL

Theorem 2 seems to indicate that in fact, any attempt to use standard model
checkers to validate data-aware workflow properties is “doomed” to an expo-
nential blow-up of the original problem, and not only the explicit quantification
method suggested above. In this section, we show an alternate translation of
the CTL-FO+ model checking problem to CTL which, while still in EXPTIME,
performs much better.

The method employed to achieve this result uses a technique called “freeze
quantification” where additional variables can be added to a Kripke structure
that can be used to “freeze” the value of a state variable at some point in
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the execution for future reference. It has been originally developed in [3] for
timed transitions systems and further studied in [13]. [19] used this technique to
reduce a subset of XPath to CTL. We proceed in two steps: first, we show how
to convert a Kripke structure K = (S, I,R, L) and a CTL-FO+ formula ϕ to a
Kripke structure Kϕ = (S′, I ′, R′, L′); then, we show how a CTL-FO+ formula ϕ
can be translated to a CTL formula ϕ′ and show that ϕ is true for K if and only
if ϕ′ is true for Kϕ, thereby reducing the problem of CTL-FO+ model checking
to CTL model checking.

4.1 Transforming a Kripke Structure

Set of system states. The principle consists in adding to the original Kripke
structure one system variable for each distinct quantified variable appearing
in the CTL-FO+ formula to validate. These variables are called the “freeze”
variables, since they are intended to capture the value of some part of a message
at a given point in the execution of the workflow. For example, to validate UCLP
Formal Service Constraint 1, four additional variables are needed corresponding
to the variables x1 to x4 in the CTL-FO+ formula. At the start of any execution
sequence, these variables take a special value noted # that indicates they have
not yet taken any “real” value.

The domain of each freeze variable is dependent on the message part on
which they are defined; in the previous example, the freeze variable x1 is defined
on operation elements; its domain is the set of all values appearing inside such
elements somewhere in the process. In contrast, the freeze variable x2 is defined
on elements of name LPO-ID; its domain is the set of all possible values that
can occur in this part of any message during the process. The computation of
the domain of each variable is an easy task that can be statically computed
on the original BPEL process; most web service validation tools can perform it
automatically.

Formally, if we let D(x1), D(x2), . . . , D(xn) be the respective domains of
freeze variables x1, x2, . . . , xn, the set S′ of states in Kϕ is defined as S′ =
S × D(x1) × D(x2) . . . D(xn). That is, the new Kripke structure is simply the
extension of the original system to the n freeze variables. Consequently, we say
that state s′ ∈ S′ is an extension of s ∈ S if all the non-freeze variables have the
same values in both states; conversely, s is the (unique) restriction of s′.

The initial state of Kϕ is defined uniquely by choosing the state s for which
all non-freeze variables are identical as in the initial state of K, and where all
freeze variables take the value #.

Transition relation. We then define the transition relation of Kϕ in the
following way. In all states of the system where no message is sent or received,
the transitions are left untouched. The internal variables of the model can change
value in the same way as in the original Kripke structure, while all the freeze
variables do not change. That is, if s, t ∈ S, (s′, t′) ∈ S′ and s′ and t′ are
respective extensions of s and t such that all freeze variables have the same
values in both s′ and t′, and s is a state where no BPEL communicating activity
(invoke, receive or reply) occurs, then (s, t) ∈ R if and only if (s′, t′) ∈ R′.
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Let us now consider the case of a state of the model where a message is either
sent or received. Such a state is exploded in the resulting Kripke structure into
two phases: in the first phase, the non-freeze variables can change according to
the original transition relation as described previously, while the freeze variables
stay the same. Once these changes are made, the system enters into a “freezing”
phase where the roles are reversed: the non-freeze variables keep their values,
and some freeze variables can change in a specific way.

In the freezing phase, a freeze variable can stay undefined, or take the value
of some part of the current message. It is important to remark that the variables
can only be assigned values corresponding to the message part on which they
are defined. Consider for example the sequence formed of a partitionRequest and
a partitionResponse XML messages as shown in Table 1. In the first message
of the pattern, variable x1 can only take the value “partitionRequest”, since x1

is defined in UCLP Formal Service Constraint 1 as a variable on root element
names. In the same way, x2 can only take the value i, since x2 is defined as a
variable on elements of name <LPO-ID>. In the second message, x2 can take
the values i1, . . . , in.

The actual value assigned to either of these special variables in each state is
non-deterministic. In addition, each variable may or may not take a value –that
is, variables can stay undefined. However, once a variable has taken a defined
value, it keeps this value for the remainder of the execution trace.

The exit from the freezing phase is also non-deterministic. The system loops
any number of times into the freezing phase of a given state and then comes out
and resumes its execution as specified by the original transition relation.

Formally, let s ∈ S be a state of the model where an invoke, receive or
reply occurs and s′ ∈ S′ be an extension of s. Let xi be a freeze variable and
v ∈ Ds(xi). Let t ∈ S be a state such that (s, t) ∈ R and t′ ∈ S′. Then (s′, t′) ∈ S′

if and only t′ is an extension of s or an extension of t, xi = # in s′, xi = v in
t′ and for all 1 ≤ j ≤ n, if i 6= j, xj does not change between s′ and t′. We
must then show that these modifications preserves the behaviour of the original
model.

Theorem 3 Let π′ be an execution in Kϕ, and let π′′ be the sequence of states
in S obtained by taking the reduction of π′. There exists an execution π in K
such that π′′ and π are stuttering equivalent.

Proof. By construction, every transition (s′
1, s

′
2) in Kϕ that does not enter or

leave a freezing phase is the extension of some transition (s1, s2) in K. It remains
to observe that any sequence of states t1, . . . , ti in a freezing phase in Kϕ leaves
all non-freeze variables unchanged; therefore, the reduction of that sequence is
nothing but the repetition of the same state inK, i times. It follows that π′′ is the
same sequence of states as some execution π in K, with the possible exception
that some states are repeated a finite number of times, thus leading to stuttering
equivalence. �



10

4.2 Converting a CTL-FO+ Formula

Once the Kripke structure has been modified in the previously described manner,
the conversion of a CTL-FO+ formula into a standard CTL formula becomes
straightforward.

We define a linear embedding ω of CTL-FO+ into CTL formulæ. Let ϕ and
ψ be CTL-FO+ formulæ, c be a constant in V , m and n be message part names
in N , and the xi be quantified variables in the CTL-FO+ formula. Translating
the Boolean connectives and the ground equality testings is direct.

The quantification on variables becomes a quantification on some execution
paths. In effect, a quantifier like ∀x : ϕ(x) actually means “for all possible values
x can take in the current state, ϕ(x) holds”. According to the Kripke structure
Kϕ defined previously, this simply amounts to asserting that in the current state,
for all possible ways for x of changing from # to some definite value, ϕ is true,
which becomes the following translation:

ω(∀nxi : ϕ) ≡ (xi = # → AX (xi 6= # → ω(ϕ))) (1)

Similarly, a quantifier like ∃x : ϕ(x) actually means “there exists a value x
can take in the current state such that ϕ(x) holds”. According to the Kripke
structure Kϕ defined previously, this simply amounts to asserting that in the
current state, there exists a way for x of changing from # to some definite value
where ϕ is true. This becomes the following translation:

ω(∃nxi : ϕ) ≡ (xi = # → EX (xi 6= # ∧ ω(ϕ))) (2)

The translation of the CTL temporal operators is also direct, except for
the next quantifiers AX and EX. The next state state in K is not necessarily
the next state in Kϕ because of the possible freeze loops that may put two
consecutive states in K arbitrarily far apart in Kϕ. However, it is possible to
work around this by asserting that the next state in K is mirrored by the next
non-freezing state in Kϕ. We obtain:

ω(AXϕ) ≡ A γU ω(ϕ) (3)
ω(EXϕ) ≡ E γU ω(ϕ) (4)

where γ is an additional Boolean variable that is true whenever the system is
in a freezing phase, and false otherwise. Formula (3) hence asserts that in Kϕ,
as soon as the system gets out of the current freezing phase (if any), ϕ must be
true.

Using this embedding, UCLP Formal Constraint 1 is recursively translated
to the following CTL expression.
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AG (x1 = # → (AX (x1 6= # →
(x2 = # → (AX (x2 6= # →
x1 = partitionRequest →
AX AG (x3 = # → (AX (x3 6= # →
(x4 = # → (AX (x4 6= # →
x3 = concatenateRequest → x2 6= x4))))))))))))

(5)

We do not expect data aware constraints to be expressed directly in CTL in
such a way. However, the translation from CTL-FO+ to CTL can be automated,
and the next theorem shows that the overall construction preserves the validity
of the original problem.

Theorem 4 Let K be a Kripke structure, ϕ be a CTL-FO+ formula, Kϕ be a
converted Kripke structure and ϕ′ = ω(ϕ). Then ϕ is true for K if and only if
ϕ′ is true for Kϕ.

We only sketch the proof here, which is done by induction on the structure of the
formula. By Theorem 3, we know that reachability of states is preserved when
converting K to Kϕ. It remains to show that an assignment ρ of values to the
freeze variables x1, . . . , xn is true for ϕ in K if and only if it is true for ϕ′ in Kϕ,
which can be realized by observing the definition of the freeze transitions.

Contrarily to explicit quantification, the freeze quantification approach does
not cause an exponential blow-up of the original formula. The embedding ω is
linear: that is, if we denote by |ϕ| the length of a CTL-FO+ formula ϕ, then
|ω(ϕ)| ∈ O(|ϕ|). It suffices to remark that each translation rule consumes at least
one symbol of the original CTL-FO+ formula and contributes a fixed number of
symbols in the resulting CTL formula.

5 Experimental Results

To confirm the soundness of our approach, we conducted a set of experiments
that involved the validation of UCLP constraints detailed in Section 2 on sample
BPEL processes taken from real-world UCLP use cases. The goal of these ex-
periments was to show that validating UCLP constraints can be effectively done
using the freeze quantification solution presented in this paper. Furthermore, we
also show that the explicit model checking approach quickly becomes inadequate
for these properties.

5.1 Methodology

The experiments were made using only readily available and open source tools.
NuSMV [10] was chosen as the model checker because of its robustness, good
performance, and especially its capability of model checking CTL formulæ. VER-
BUS [4] was chosen to generate the Kripke structure from the original BPEL



12

processes; the choice was influenced mostly by its ability to model the content
of variables and messages in a process and its capability to directly output the
Kripke structure as an SMV file. Only minor bug-solving modifications were
made to the original code of VERBUS to make it work in our situation. The
modified version of VERBUS, a compiled copy of NuSMV, the BPEL modifi-
cation routines and all the files used in the experiments are released under the
GNU GPL.2

The SMV files produced by VERBUS were then modified according either to
the explicit quantification or the freeze approach. In the explicit quantification,
no modification other than appending the desired CTL formula at the end of
the file was made. In the freeze approach, freeze variables and freeze transitions
were added throughout the file, and the corresponding CTL formula was also
added at the end.

5.2 Results and Discussion

We then proceeded to this method successively with sample BPEL processes.
Each process consisted in one concatenation and one partition of a given num-
ber of LPOs. For n = 1, the result of all operations in the process is deterministic:
for example, the partition operation with LPO A always returns the same LPO
IDs B, C, D. We then varied this number n of LPOs by making the operations
non-deterministically return IDs taken from a set of possible values. This gen-
eralization of the process is a natural step to take, since a UCLP operation on
an LPO is dependent of the global situation of the UCLP network and therefore
need not return the same value in every invocation.

The validation times for the freeze and the explicit quantification approaches
are presented in Table 2, for each UCLP formal constraint, for BPEL processes
with n ranging from 1 to 4. Similarly, the size of the NuSMV file required to
validate the process is shown in Table 3. All times have been obtained with
NuSMV 2.4.0 on an AMD Athlon 2200+ CPU running under Windows XP. Since
NuSMV takes several dozens of seconds only to display the explicitly quantified
formulæ, this time was not included in the results.

Freeze quantification Explicit quantification

Constraint n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 2 n = 3 n = 4 n = 5

1 1.5 1.9 4.5 5.4 8.7 0.2 0.3 0.4 0.4 0.5

2 1.6 2.2 4.4 5.4 9.2 13 36 101 222 884

3 1.8 2.2 4.6 5.8 9.3 — — — — —

Table 2. Validation time (in seconds) of sample BPEL processes with UCLP con-
straints, using respectively the freeze and the explicit quantification approach.

2 All the material is available from
http://www.teleinfo.uqam.ca/Members/halle sylvain/uclp
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Freeze quantification Explicit quantification

Constraint n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 2 n = 3 n = 4 n = 5

1 30.3 30.5 30.6 30.7 30.8 237 299 368 445 529

2 33.9 34.0 34.2 34.3 34.5 10542 18156 29249 47939 70509

3 34.8 35.0 35.1 35.3 35.5 111597 198831 329075 — —

Table 3. File size (in kilobytes) of the NuSMV files for the validation of sample BPEL
processes with UCLP constraints, using respectively the freeze and the explicit quan-
tification approach.

These figures confirm what was suggested in Section 3.2: using explicit quan-
tification to produce the CTL formula quickly takes its toll on the validation
time. As expected, the translation of the CTL-FO+ formula is heavily dependent
on n and grows exponentially. With UCLP operations returning only 5 different
possible values, validation time takes almost 15 minutes. We could not get any
times for UCLP Formal Constraint 3 since NuSMV crashed before reaching the
end of the files, most probably due to their size. We did not dare to generate
the formulæ for n = 4 and n = 5 that were expected to occupy more than 500
Mb each. Comparatively, the freeze approach requires only minimal modifica-
tions to the original NuSMV file produced by VERBUS; most importantly, these
modifications are constant and do not depend on n. The increase in the file size
is only due to the addition of the non-deterministic transitions required when
incrementing n. Validation time, no matter the property, exhibits the same be-
haviour and grows much more reasonably: the 884 seconds required to validate
property 2 with n = 5 in the explicit quantification is improved by a factor 80
and falls to less than 10 seconds using the freeze approach.

These trends do not hold for UCLP Formal Service Constraint 1 where the
explicit quantification approach fares better than the freeze approach. This can
be explained by the fact that the addition of freeze variables and transitions
imposes an initial overhead on the Kripke structure that the explicit quantifica-
tion does not have. Since in this situation, the CTL formulæ to validate are only
a few hundred kilobytes long, they can be considered too small to represent a
serious load on the model checker.

6 Conclusions

In this paper, we have shown that the composition of User-Controlled Lightpath
resources is subject to constraints involving both the sequentiality of messages
and the content of these messages. We have demonstrated how current traditional
model checking approaches to the validation of web service workflows are insuf-
ficient for the validation of UCLP scripts subject to these kinds of constraints.
We have demonstrated by empirical testing on real-world BPEL processes how
an extension of CTL called CTL-FO+ can be used to effectively model these
complex workflow properties; we showed how a suitable reduction of CTL-FO+
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to CTL can be used to validate them in reasonable time compared to classical
approaches.

The success of this project opens the way for future developments. First, we
plan to integrate the automated generation of freeze variables and transitions di-
rectly into VERBUS. Second, it is possible to expand the range of expressiveness
of CTL-FO+ formulæ by taking into account not only the values inside XML
messages exchanged by a BPEL process, but also their hierarchical organization
into trees, thereby embedding into CTL-FO+ a subset of a tree language like
XPath.
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