Skip to main content

Topology Representing Network Map – A New Tool for Visualization of High-Dimensional Data

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 4750))

Abstract

In practical data mining problems high-dimensional data has to be analyzed. In most of these cases it is very informative to map and visualize the hidden structure of complex data set in a low-dimensional space. The aim of this paper is to propose a new mapping algorithm based both on the topology and the metric of the data.

The utilized Topology Representing Network (TRN) combines neural gas vector quantization and competitive Hebbian learning rule in such a way that the hidden data structure is approximated by a compact graph representation. TRN is able to define a low-dimensional manifold in the high-dimensional feature space. In case the existence of a manifold, multidimensional scaling and/or Sammon mapping of the graph distances can be used to form the map of the TRN (TRNMap).

The systematic analysis of the algorithms that can be used for data visualization and the numerical examples presented in this paper demonstrate that the resulting map gives a good representation of the topology and the metric of complex data sets, and the component plane representation of TRNMap is useful to explore the hidden relations among the features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, H., Villmann, T.: Growing a hypercubical output space in a self-organizing feature map. IEEE Transactions on Neural Networks 8(2), 218–226 (1997)

    Article  Google Scholar 

  2. Bernstein, M., de Silva, V., Langford, J.C., Tenenbaum, J.B.: Graph approximations to geodesics on embedded manifolds. Technical report, Stanford University, Stanford (2000)

    Google Scholar 

  3. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (1997)

    MATH  Google Scholar 

  4. Comon, P.: Independent component analysis: A new concept? Signal Processing 36(3), 287–317 (1994)

    Article  MATH  Google Scholar 

  5. Demartines, P., Herault, J.: Curvilinear Component Analysis: A Self-Organizing Neural Network for Nonlinear Mapping of Data Sets. IEEE Trans. Neural Networks 8(1), 148–154 (1997)

    Article  Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerical Mathematics 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Estévez, P.A., Figueroa, C.J.: Online data visualization using the neural gas network. Neural Networks 19, 923–934 (2006)

    Article  MATH  Google Scholar 

  8. Estéivez, P.A., Chong, A.M., Held, C.M., Perez, C.A.: Nonlinear Projection Using Geodesic Distances and the Neural Gas Network. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 464–473. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Hebb, D.O.: The organization of behavior. John Wiley and Son, New York (1949)

    Google Scholar 

  10. Hoteling, H.: Analysis of a complex of statistical variables into principal components. Journal of Education Psychology 24, 417–441 (1933)

    Article  Google Scholar 

  11. Jain, A., Zongker, D.: Feature selection: evaluation, application, and small sample performance. IEEE Trans. on Pattern Analysis and Machine Intelligence 192, 153–158 (1997)

    Article  Google Scholar 

  12. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1996)

    Google Scholar 

  13. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  14. Kruskal, J., Wish, M.: Multidimensional Scaling. SAGE publications, Beverly Hills (1978)

    Google Scholar 

  15. Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A Robust Nonlinear Projection Method. In: Verleysen, M. (ed.) Proceedings of ESANN 2000, 8th European Symposium on Artificial Neural Networks, D-Facto public., Bruges (Belgium), pp. 13–20 (2000)

    Google Scholar 

  16. Lee, J.A., Verleysen, M.: Nonlinear Projection with the Isotop Method. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 933–938. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Lee, J.A., Lendasse, A., Verleysen, M.: Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing 57, 49–76 (2004)

    Article  Google Scholar 

  18. Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. Society for Industrial and Applied Mathematics News 23(5), 1–18 (1990)

    Google Scholar 

  19. Martinetz, T.M., Schulten, K.J.: A neural-gas network learns topologies. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 397–402. North-Holland, Amsterdam (1991)

    Google Scholar 

  20. Martinetz, T.M., Shulten, K.J.: Topology representing networks. Neural Networks 7(3), 507–522 (1994)

    Article  Google Scholar 

  21. Militk, J., Meloun, M.: Some graphical aids for univariate exploratory data analysis. Analytica Chimica Acta 277(2), 215–221 (1993)

    Article  Google Scholar 

  22. Muhammed, H.H.: Unsupervised Fuzzy Clustering Using Weighted Incremental Neural Networks. International Journal of Neural Systems (IJNS), 14(6), 355–371 (2004)

    Article  Google Scholar 

  23. Narendra, P., Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Trans. on Computers C-269, 917–922 (1977)

    Article  Google Scholar 

  24. Naud, A.: Neural and statistical methods for the visualization of multidimensional data. Thesis, Technical Science Katedra Metod Komputerowych Uniwersytet Mikoaja Kopernika w Toruniu (2001)

    Google Scholar 

  25. Pudil, P., Novoviov, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Letters 15(1), 119–125 (1994)

    Article  Google Scholar 

  26. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  27. Sammon, J.W.: A Non-Linear Mapping for Data Structure Analysis, IEEE Trans. on Computers C18(5), 401–409 (1969)

    Google Scholar 

  28. Si, J., Lin, S., Vuong, M.-A.: Dynamic topology representing networks. Neural Networks 13, 617–627 (2000)

    Article  Google Scholar 

  29. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  30. Tukey, J.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)

    MATH  Google Scholar 

  31. Ultsch, A.: Self-organization neural networks for visualization and classification. In: Opitz, O., Lausen, B., Klar, R. (eds.) Information and classification, pp. 307–313. Springer, Heidelberg (1993)

    Google Scholar 

  32. Wu, Y., Chan, K.L.: An Extended Isomap Algorithm for Learning Multi-Class Manifold. In: Proceeding of IEEE International Conference on Machine Learning and Cybernetics (ICMLC 2004), Shanghai, China, vol. 6, pp. 3429–3433 (2004)

    Google Scholar 

  33. Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3(1), 19–22 (1938)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marina L. Gavrilova C. J. Kenneth Tan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vathy-Fogarassy, A., Kiss, A., Abonyi, J. (2008). Topology Representing Network Map – A New Tool for Visualization of High-Dimensional Data. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science I. Lecture Notes in Computer Science, vol 4750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79299-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79299-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79298-7

  • Online ISBN: 978-3-540-79299-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics