Skip to main content

Searching for Glider Guns in Cellular Automata: Exploring Evolutionary and Other Techniques

  • Conference paper
Artificial Evolution (EA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4926))

Abstract

We aim to construct an automatic system for the discovery of collision-based universal cellular automata that simulate Turing machines in their space-time dynamics using gliders and glider guns.

In this paper, an evolutionary search for glider guns with different parameters is described and other search techniques are also presented as benchmark. We demonstrate the spontaneous emergence of an important number of novel glider guns discovered by genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Illinois, USA (2002)

    MATH  Google Scholar 

  2. Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana, Ill (1966)

    Google Scholar 

  3. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)

    Article  MathSciNet  Google Scholar 

  4. Banks, E.R.: Information and transmission in cellular automata. PhD thesis, MIT (1971)

    Google Scholar 

  5. Margolus, N.: Physics-like models of computation. Physica D 10, 81–95 (1984)

    Article  MathSciNet  Google Scholar 

  6. Lindgren, K., Nordahl, M.: Universal computation in simple one dimensional cellular automata. Complex Systems 4, 299–318 (1990)

    MATH  MathSciNet  Google Scholar 

  7. Morita, K., Tojima, Y., Katsunobo, I., Ogiro, T.: Universal computing in reversible and number-conserving two-dimensional cellular spaces. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 161–199. Springer, Heidelberg (2002)

    Google Scholar 

  8. Adamatzky, A.: Universal dymical computation in multi-dimensional excitable lattices. International Journal of Theoretical Physics 37, 3069–3108 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gardner, M.: The fantastic combinations of john conway’s new solitaire game ”life”. Scientific American 223, 120–123 (1970)

    Article  Google Scholar 

  10. Berlekamp, E., Conway, J.H., Guy, R.: Winning ways for your mathematical plays. Academic Press, New York (1982)

    MATH  Google Scholar 

  11. Adamatzky, A., Martinez, G.J., McIntosh, H.V.: Phenomenology of glider collisions in cellular automaton rule 54 and associated logical gates chaos. Fractals and Solitons 28, 100–111 (2006)

    Article  MATH  Google Scholar 

  12. Wuensche, A.: Discrete dinamics lab (ddlab) (2005), http://www.ddlab.org

  13. Eppstein, D., http://www.ics.uci.edu/~eppstein/ca/

  14. Sapin, E., Bailleux, O., Chabrier, J.J., Collet, P.: A new universel automata discovered by evolutionary algorithms. In: Deb, K., al., e. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 175–187. Springer, Heidelberg (2004)

    Google Scholar 

  15. Wolfram, S., Packard, N.H.: Two-dimensional cellular automata. Journal of Statistical Physics 38, 901–946 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers and Operations Research 13, 533–549 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Holland, J. H. : Adaptation in natural and artificial systems. University of Michigan (1975)

    Google Scholar 

  18. Packard, N.H.: Adaptation toward the edge of chaos. In: Kelso, J.A.S., Mandell, A.J., Shlesinger, M.F. (eds.) Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific, Singapore (1988)

    Google Scholar 

  19. Mitchell, M., Crutchfield, J.P., Hraber, P.T.: Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D 75, 361–391 (1994)

    Article  MATH  Google Scholar 

  20. Hraber, P.T., Mitchell, M., Crutchfield, J.P.: Revisiting the edge of chaos: Evolving cellular automate to perform computations. Complex systems 7, 89–130 (1993)

    MATH  Google Scholar 

  21. Hordijk, W., Crutchfield, J.P., Mitchell, M.: Mechanisms of emergent computation in cellular automata. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature-V, vol. 866, pp. 344–353. Springer, Heidelberg (1998)

    Google Scholar 

  22. Das, R., Crutchfield, J.P., Mitchell, M., Hanson, J.E.: Evolving globally synchronized cellular automata. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 336–343 (1995)

    Google Scholar 

  23. Sipper, M.: Evolution of parallel cellular machines. In: Stauffer, D. (ed.) Annual Reviews of Computational Physics, vol. V, pp. 243–285. World Scientific, Singapore (1997)

    Google Scholar 

  24. Andre, D., Koza, J.R., Bennett III, F.H., Keane, M.A.: Genetic programming iii: Darwinian invention and problem solving. Morgan Kaufmann, San Francisco (1999)

    MATH  Google Scholar 

  25. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  26. Sapin, E., Bailleux, O., Chabrier, J.J.: Research of Complex Forms in Cellular Automata by Evolutionary Algorithms. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 357–367. Springer, Heidelberg (2004)

    Google Scholar 

  27. Bays, C.: Candidates for the game of life in three dimensions. Complex Systems 1, 373–400 (1987)

    MATH  MathSciNet  Google Scholar 

  28. Sapin, E., Bailleux, O., Chabrier, J.J.: Research of a cellular automaton simulating logic gates by evolutionary algorithms. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 414–423. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  29. Sapin, E.: http://uncomp.uwe.ac.uk/sapin/ea/gun

  30. Langton, C.L.: Computation at the edge of chaos. Physica D 42 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicolas Monmarché El-Ghazali Talbi Pierre Collet Marc Schoenauer Evelyne Lutton

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sapin, E., Bull, L. (2008). Searching for Glider Guns in Cellular Automata: Exploring Evolutionary and Other Techniques. In: Monmarché, N., Talbi, EG., Collet, P., Schoenauer, M., Lutton, E. (eds) Artificial Evolution. EA 2007. Lecture Notes in Computer Science, vol 4926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79305-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79305-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79304-5

  • Online ISBN: 978-3-540-79305-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics